首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aberrant concentrations of cardiac extracellular matrix (ECM) fibrillar collagen cross-linking have been proposed to be an underlying cause of cardiac diastolic dysfunction however the role of the adaptive immune system in this process has yet to be investigated. Fibrillar collagen cross-linking is a product of the enzymatic activities of lysyl oxidase (LOX and LOXL-3) released by the cardiac fibroblast and possibly cardiac myocytes. Our hypothesis is that stimulation of the TH1 lymphocytes activates lysyl oxidase mediated ECM cross-linking and thereby alters left ventricular function. Three-month old C57BL/J female mice were treated with selective TH1 lymphocyte inducers — T-cell receptor Vβ peptides (TCR). After 6 weeks, candidate gene expression, tissue enzymatic activity, ECM composition, and left ventricular mechanics were quantified. Lymphocyte gene expression and cytokine assay revealed TH1 immune polarization with TCR administration which was associated with a 2.6-fold and 3.1-fold increase of LOX and LOXL3 gene expression, respectively, and a 55% increase in cardiac LOX enzymatic activity. The ECM cross-linked fibrillar collagen increased by 95% when compared with the control. Concurrently, there was a 33% increased ventricular stiffness, decreased cardiac output, and normal ejection fraction. These data implicate the TH1 lymphocyte in the pathogenesis of diastolic dysfunction which has potential clinical application in the pathogenesis of diastolic heart failure.  相似文献   

2.

Aims

The impact of the neonatal environment on the development of adult cardiovascular disease is poorly understood. Systemic maternal inflammation is linked to growth retardation, preterm birth, and maturation deficits in the developing fetus. Often preterm or small-for-gestational age infants require medical interventions such as oxygen therapy. The long-term pathological consequences of medical interventions on an immature physiology remain unknown. In the present study, we hypothesized that systemic maternal inflammation and neonatal hyperoxia exposure compromise cardiac structure, resulting in LV dysfunction during adulthood.

Methods and Results

Pregnant C3H/HeN mice were injected on embryonic day 16 (E16) with LPS (80 µg/kg; i.p.) or saline. Offspring were placed in room air (RA) or 85% O2 for 14 days and subsequently maintained in RA. Cardiac echocardiography, cardiomyocyte contractility, and molecular analyses were performed. Echocardiography revealed persistent lower left ventricular fractional shortening with greater left ventricular end systolic diameter at 8 weeks in LPS/O2 than in saline/RA mice. Isolated cardiomyocytes from LPS/O2 mice had slower rates of contraction and relaxation, and a slower return to baseline length than cardiomyocytes isolated from saline/RA controls. α-/β-MHC ratio was increased and Connexin-43 levels decreased in LPS/O2 mice at 8 weeks. Nox4 was reduced between day 3 and 14 and capillary density was lower at 8 weeks of life in LPS/O2 mice.

Conclusion

These results demonstrate that systemic maternal inflammation combined with neonatal hyperoxia exposure induces alterations in cardiac structure and function leading to cardiac failure in adulthood and supports the importance of the intrauterine and neonatal milieu on adult health.  相似文献   

3.
To define the informative value of Doppler studies in the early diagnosis of left ventricular (LV) diastolic dysfunction in patients with hypertensive disease (HD), the authors examined 74 patients with grade 1-2 HD, including 65 men and 9 women aged 43 to 63 years. All the patients underwent echocardiography (echoCG), Doppler echoCG (DechoCG), tissue DechoCG (TDechoCG), and treadmill. According to the echoCG LV mass index (LVMI), all the patients were divided into 2 groups: 1) 33 patients with increased LVMI and 2) 41 with normal LVMI. A control group consisted of 20 apparently healthy patients. Groups 1 and 2 showed a preponderance of patients with concentric LV hypertrophy (CLVH) and those with concentric LV remodeling, respectively. In accordance with DechoCG, the signs of primary LV diastolic dysfunction ((E/A = 0.8+/-0.1; IVRT = 103+/-15) were found only in Group 1 patients. TDechoCG displayed the signs of primary LV diastolic dysfunction in both groups (e' or =10 ratio, suggests elevated LV filling pressure as an early stage of diastolic dysfunction.  相似文献   

4.

Background

Mathematical modeling can be employed to overcome the practical difficulty of isolating the mechanisms responsible for clinical heart failure in the setting of normal left ventricular ejection fraction (HFNEF). In a human cardiovascular respiratory system (H-CRS) model we introduce three cases of left ventricular diastolic dysfunction (LVDD): (1) impaired left ventricular active relaxation (IR-type); (2) increased passive stiffness (restrictive or R-type); and (3) the combination of both (pseudo-normal or PN-type), to produce HFNEF. The effects of increasing systolic contractility are also considered. Model results showing ensuing heart failure and mechanisms involved are reported.

Methods

We employ our previously described H-CRS model with modified pulmonary compliances to better mimic normal pulmonary blood distribution. IR-type is modeled by changing the activation function of the left ventricle (LV), and R-type by increasing diastolic stiffness of the LV wall and septum. A 5th-order Cash-Karp Runge-Kutta numerical integration method solves the model differential equations.

Results

IR-type and R-type decrease LV stroke volume, cardiac output, ejection fraction (EF), and mean systemic arterial pressure. Heart rate, pulmonary pressures, pulmonary volumes, and pulmonary and systemic arterial-venous O2 and CO2 differences increase. IR-type decreases, but R-type increases the mitral E/A ratio. PN-type produces the well-described, pseudo-normal mitral inflow pattern. All three types of LVDD reduce right ventricular (RV) and LV EF, but the latter remains normal or near normal. Simulations show reduced EF is partly restored by an accompanying increase in systolic stiffness, a compensatory mechanism that may lead clinicians to miss the presence of HF if they only consider LVEF and other indices of LV function. Simulations using the H-CRS model indicate that changes in RV function might well be diagnostic. This study also highlights the importance of septal mechanics in LVDD.

Conclusion

The model demonstrates that abnormal LV diastolic performance alone can result in decreased LV and RV systolic performance, not previously appreciated, and contribute to the clinical syndrome of HF. Furthermore, alterations of RV diastolic performance are present and may be a hallmark of LV diastolic parameter changes that can be used for better clinical recognition of LV diastolic heart disease.  相似文献   

5.
Myoglobin-deficient mice are viable and have preserved cardiac function due to their ability to mount a complex compensatory response involving increased vascularization and the induction of the hypoxia gene program (hypoxia-inducible factor-1alpha, endothelial PAS, heat shock protein27, etc.). To further define and explore functional roles for myoglobin, we challenged age- and gender-matched wild-type and myoglobin-null mice to chronic hypoxia (10% oxygen for 1 day to 3 wk). We observed a 30% reduction in cardiac systolic function in the myoglobin mutant mice exposed to chronic hypoxia with no changes observed in the wild-type control hearts. The cardiac dysfunction observed in the hypoxic myoglobin-null mice was reversible with reexposure to normoxic conditions and could be prevented with treatment of an inhibitor of nitric oxide (NO) synthases. These results support the conclusion that hypoxia-induced cardiac dysfunction in myoglobin-null mice occurs via a NO-mediated mechanism. Utilizing enzymatic assays for NO synthases and immunohistochemical analyses, we observed a marked induction of inducible NO synthase in the hypoxic myoglobin mutant ventricle compared with the wild-type hypoxic control ventricle. These new data establish that myoglobin is an important cytoplasmic cardiac hemoprotein that functions in regulating NO homeostasis within cardiomyocytes.  相似文献   

6.
Prolonged exercise induces left ventricular dysfunction in healthy subjects   总被引:2,自引:0,他引:2  
To determine the effects of a moderately prolonged exercise on left ventricular systolic performance, 23 healthy male subjects, aged 18 to 51 yr (mean 37 yr) were studied. The subjects exercised first on a treadmill (brief exercise) and completed, on a separate day, a 20-km run. M-mode, two-dimensional, and Doppler echocardiography, as well as calibrated carotid pulse tracings, were obtained at rest and immediately on completion of both brief and prolonged exercise. Left ventricular systolic function was assessed by end-systolic stress-shortening relationships. Heart rate increased similarly after brief and prolonged exercise (+30%). Mean arterial pressure decreased from 99 +/- 7 to 92 +/- 8 mmHg (P less than 0.001) after prolonged exercise, but it remained unchanged after brief exercise. Left ventricular end-diastolic volume was decreased after prolonged exercise (130 +/- 23 vs. 147 +/- 18 ml at rest, P less than 0.01). Both ejection fraction and rate-adjusted mean velocity of fiber shortening decreased after prolonged exercise [from 67 +/- 5 to 60 +/- 6% (P less than 0.001) and from 1.12 +/- 0.2 to 0.91 +/- 0.2 cm/s (P less than 0.001), respectively] despite a lower circumferential end-systolic wall stress (133 +/- 23 vs. 152 +/- 20 g/cm2). The relationship between ejection fraction (or mean velocity of fiber shortening adjusted for heart rate) and end-systolic wall stress was displaced downward on race finish (P less than 0.05). These changes were independent of the changes in left ventricular end-diastolic volume and hence those in preload. The data suggest that moderately prolonged exercise may result in depressed left ventricular performance in healthy normal subjects.  相似文献   

7.
Developmental changes in left and right ventricular diastolic filling patterns were determined noninvasively in isoflurane-anesthetized outbred ICR mice. Blood velocities in the mitral and tricuspid orifices were recorded in 16 embryos at days 14.5 (E14.5) and 17.5 of gestation (E17.5) using an ultrasound biomicroscope and also serially in three groups of postnatal mice aged 1-7 days (n = 23), 1-4 wk (n = 18), and 4-12 wk (n = 27) using 20-MHz pulsed Doppler. Postnatal body weight increased rapidly to 8 wk. Heart rate increased rapidly from approximately 180 beats/min at E14.5 to approximately 380 beats/min at 1 wk after birth and then more gradually to plateau at approximately 450 beats/min after 4 wk. Ventricular filling was quantified using the ratio of peak velocity of early ventricular filling due to active relaxation (E wave) to that of the late ventricular filling caused by atrial contraction (A wave) (peak E/A ratio) and the ratio of the peak E velocity to total time-velocity integral of E and A waves (peak E/total TVI ratio). Both ventricles had similar diastolic filling patterns in embryos (peak E/A ratio of 0.28 +/- 0.02 for mitral flow and 0.27 +/- 0.02 for tricuspid flow at E14.5). After birth, mitral peak E/A increased to >1 between the third and fifth day, continued to increase to 2.25 +/- 0.25 at approximately 3 wk, and then remained stable. The tricuspid peak E/A ratio increased much less but stabilized at the same age (increased to 0.79 +/- 0.03 at 3 wk). The peak E/total TVI ratio showed similar left-right differences and changes with development. Age-related changes were largely due to increases in peak E velocity. The results suggest that diastolic function matures approximately 3 wk postnatally, presumably in association with maturation of ventricular recoil and relaxation mechanisms.  相似文献   

8.

Background

There are increasing evidence that left ventricle diastolic dysfunction is the initial functional alteration in the diabetic myocardium. In this study, we hypothesized that alogliptin prevents diastolic dysfunction and preserves left ventricular mitochondrial function and structure in diabetic rabbits.

Methods

A total of 30 rabbits were randomized into control group (CON, n?=?10), alloxan-induced diabetic group (DM, n?=?10) and alogliptin-treated (12.5 mg/kd/day for 12 weeks) diabetic group (DM-A, n?=?10). Echocardiographic and hemodynamic studies were performed in vivo. Mitochondrial morphology, respiratory function, membrane potential and reactive oxygen species (ROS) generation rate of left ventricular tissue were assessed. The serum concentrations of glucagon-like peptide-1, insulin, inflammatory and oxidative stress markers were measured. Protein expression of TGF-β1, NF-κB p65 and mitochondrial biogenesis related proteins were determined by Western blotting.

Results

DM rabbits exhibited left ventricular hypertrophy, left atrial dilation, increased E/e′ ratio and normal left ventricular ejection fraction. Elevated left ventricular end diastolic pressure combined with decreased maximal decreasing rate of left intraventricular pressure (??dp/dtmax) were observed. Alogliptin alleviated ventricular hypertrophy, interstitial fibrosis and diastolic dysfunction in diabetic rabbits. These changes were associated with decreased mitochondrial ROS production rate, prevented mitochondrial membrane depolarization and improved mitochondrial swelling. It also improved mitochondrial biogenesis by PGC-1α/NRF1/Tfam signaling pathway.

Conclusions

The DPP-4 inhibitor alogliptin prevents cardiac diastolic dysfunction by inhibiting ventricular remodeling, explicable by improved mitochondrial function and increased mitochondrial biogenesis.
  相似文献   

9.
A computational model that accounts for blood-tissue interaction under physiological flow conditions was developed and applied to a thin-walled model of the left heart. This model consisted of the left ventricle, left atrium, and pulmonary vein flow. The input functions for the model included the pulmonary vein driving pressure and time-dependent relationship for changes in chamber tissue properties during the simulation. The Immersed Boundary Method was used for the interaction of the tissue and blood in response to fluid forces and changes in tissue pathophysiology, and the fluid mass and momentum conservation equations were solved using Patankar's Semi-Implicit Method for Pressure Linked Equations (SIMPLE). This model was used to examine the flow fields in the left heart under abnormal diastolic conditions of delayed ventricular relaxation, delayed ventricular relaxation with increased ventricular stiffness, and delayed ventricular relaxation with an increased atrial contraction. The results obtained from the left heart model were compared to clinically observed diastolic flow conditions, and to the results from simulations of normal diastolic function in this model [1]. Cases involving impairment of diastolic function were modeled with changes to the input functions for fiber relaxation/contraction of the chambers. The three cases of diastolic dysfunction investigated agreed with the changes in diastolic flow fields seen clinically. The effect of delayed relaxation was to decrease the early filling magnitude, and this decrease was larger when the stiffness of the ventricle was increased. Also, increasing the contraction of the atrium during atrial systole resulted in a higher late filling velocity and atrial pressure. The results show that dysfunction can be modeled by changing the relationships for fiber resting-length and/or stiffness. This provides confidence in future modeling of disease, especially changes to chamber properties to examine the effect of local dysfunction on global flow fields.  相似文献   

10.
Sub-clinical cardiac dysfunction may be significantly associated with chronic obstructive pulmonary disease (COPD) with a different degree of severity. In a cross-sectional design we aimed to evaluate the frequency of left ventricular diastolic dysfunction (LVdd) and its correlation with lung function, pulmonary arterial pressure and systemic inflammation in a selected population of COPD at an early stage of their disease. Fifty-five COPD patients with no clinical signs of cardiovascular dysfunction were recruited and compared to 40 matched healthy controls. All the subjects underwent pulmonary function testing, doppler echocardiography, and interleukin-6 blood sampling. Presence of LVdd was defined according to the significant change in both the ratio between early and late diastolic transmitral flow velocity (E/A ratio), isovolumetric relaxation time (IVRT), and deceleration time (DT). The frequency of LVdd was higher in the COPD group (70.9 percent) compared to controls (27.5 percent). In these patients decreased E/A ratio, and prolonged IVRT and DT clearly pointed to left ventricular filling impairment, a condition we found to be especially severe in those patients suffering from lung static hyperinflation as expressed by inspiratory-to-total lung capacity ratio (IC/TLC) <0.25. Circulating levels of interleukin-6 were also higher among COPD patients compared to controls. The results of the present study suggest that subclinical left ventricular filling impairment is frequently found in COPD patients at the earlier stage of the disease even in the absence of any other cardiovascular dysfunction. Doppler echocardiography may help the early identification of LVdd in COPD patients.  相似文献   

11.
Metcalfe EE  Traaseth NJ  Veglia G 《Biochemistry》2005,44(11):4386-4396
Phospholamban (PLB) is a 52 amino acid membrane-endogenous regulator of the sarco(endo)plasmic calcium adenosinetriphosphatase (SERCA) in cardiac muscle. PLB's phosphorylation and dephosphorylation at S16 modulate its regulatory effect on SERCA by an undetermined mechanism. In this paper, we use multidimensional (1)H/(15)N solution NMR methods to establish the structural and dynamics basis for PLB's control of SERCA upon S16 phosphorylation. For our studies, we use a monomeric, fully active mutant of PLB, where C36, C41, and C46 have been mutated to A36, F41, and A46, respectively. Our data show that phosphorylation disrupts the "L-shaped" structure of monomeric PLB, causing significant unwinding of both the cytoplasmic helix (domain Ia) and the short loop (residues 17-21) connecting this domain to the transmembrane helix (domains Ib and II). Concomitant with this conformational transition, we also find pronounced changes in both the pico- to nanosecond and the micro- to millisecond time scale dynamics. The (1)H/(15)N heteronuclear NOE values for residues 1-25 are significantly lower than those of unphosphorylated PLB, with slightly lower NOE values in the transmembrane domain, reflecting less restricted motion throughout the whole protein. These data are supported by the faster spin-lattice relaxation rates (R(1)) present in both the cytoplasmic and loop regions and by the enhanced spin-spin transverse relaxation rates (R(2)) observed in the transmembrane domain. These results demonstrate that while S16 phosphorylation induces a localized structural transition, changes in PLB's backbone dynamics are propagated throughout the protein backbone. We propose that the regulatory mechanism of PLB phosphorylation involves an order-to-disorder transition, resulting in a decrease in the PLB inhibition of SERCA.  相似文献   

12.
ObjectivesInvestigation of the effect of SGLT2 inhibition by empagliflozin on left ventricular function in a model of diabetic cardiomyopathy.BackgroundSGLT2 inhibition is a new strategy to treat diabetes. In the EMPA-REG Outcome trial empagliflozin treatment reduced cardiovascular and overall mortality in patients with diabetes presumably due to beneficial cardiac effects, leading to reduced heart failure hospitalization. The relevant mechanisms remain currently elusive but might be mediated by a shift in cardiac substrate utilization leading to improved energetic supply to the heart.MethodsWe used db/db mice on high-fat western diet with or without empagliflozin treatment as a model of severe diabetes. Left ventricular function was assessed by pressure catheter with or without dobutamine stress.ResultsTreatment with empagliflozin significantly increased glycosuria, improved glucose metabolism, ameliorated left ventricular diastolic function and reduced mortality of mice. This was associated with reduced cardiac glucose concentrations and decreased calcium/calmodulin-dependent protein kinase (CaMKII) activation with subsequent less phosphorylation of the ryanodine receptor (RyR). No change of cardiac ketone bodies or branched-chain amino acid (BCAA) metabolites in serum was detected nor was cardiac expression of relevant catabolic enzymes for these substrates affected.ConclusionsIn a murine model of severe diabetes empagliflozin-dependent SGLT2 inhibition improved diastolic function and reduced mortality. Improvement of diastolic function was likely mediated by reduced spontaneous diastolic sarcoplasmic reticulum (SR) calcium release but independent of changes in cardiac ketone and BCAA metabolism.  相似文献   

13.
Chronic intermittent hypoxia (CIH) and cardiovascular dysfunction occur in patients with obstructive sleep apnea. We hypothesized that the Na(+)/Ca(2+) exchanger-1 (NCX1) mediates, at least partially, left ventricular (LV) dysfunction in CIH. Four groups of mice (N = 15-17 per group), either cardiac-specific NCX1 knockouts (KO) or wild types (WT), were exposed to either CIH or normoxia [i.e., handled controls (HC)] 10 h/day for 8 wk. As expected, myocardial expression of NCX1 was greater in WT than in KO animals, both in HC and CIH-exposed groups. In both CIH groups (WT or KO), but not the HC groups, blood pressure increased by 10% at week 1 over their baseline and remained elevated for all 8 wk, with no differences between WT and KO. LV dilation (increased diastolic and systolic dimension) and hypertrophy (increased left heart weight), along with LV dysfunction (greater end-diastolic pressure and lower ejection fraction), were observed in the WT animals compared with the KO following CIH exposure. Compared with HC, CIH exposure was associated with apoptosis (terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling and caspase-3) in WT, but not KO, mice. We conclude that myocardial NCX1 does not mediate changes in blood pressure, but is one of the mediators for LV global dysfunction and cardiomyocyte injury in CIH.  相似文献   

14.
15.
Sleep apnea syndrome increases the risk of cardiovascular morbidity and mortality. We previously reported that intermittent hypoxia increases superoxide production in a manner dependent on nicotinamide adenine dinucleotide phosphate and accelerates adverse left ventricular (LV) remodeling. Recent studies have suggested that hydrogen (H(2)) may have an antioxidant effect by reducing hydroxyl radicals. In this study, we investigated the effects of H(2) gas inhalation on lipid metabolism and LV remodeling induced by intermittent hypoxia in mice. Male C57BL/6J mice (n = 62) were exposed to intermittent hypoxia (repetitive cycle of 1-min periods of 5 and 21% oxygen for 8 h during daytime) for 7 days. H(2) gas (1.3 vol/100 vol) was given either at the time of reoxygenation, during hypoxic conditions, or throughout the experimental period. Mice kept under normoxic conditions served as controls (n = 13). Intermittent hypoxia significantly increased plasma levels of low- and very low-density cholesterol and the amount of 4-hydroxy-2-nonenal-modified protein adducts in the LV myocardium. It also upregulated mRNA expression of tissue necrosis factor-α, interleukin-6, and brain natriuretic peptide, increased production of superoxide, and induced cardiomyocyte hypertrophy, nuclear deformity, mitochondrial degeneration, and interstitial fibrosis. H(2) gas inhalation significantly suppressed these changes induced by intermittent hypoxia. In particular, H(2) gas inhaled at the timing of reoxygenation or throughout the experiment was effective in preventing dyslipidemia and suppressing superoxide production in the LV myocardium. These results suggest that inhalation of H(2) gas was effective for reducing oxidative stress and preventing LV remodeling induced by intermittent hypoxia relevant to sleep apnea.  相似文献   

16.
Left ventricular (LV) diastolic dysfunction, particularly relaxation abnormalities, are known to be associated with the development of LV hypertrophy (LVH). Preliminary human and animal studies suggested that early LV diastolic dysfunction may be revealed independently of LVH. However, whether LV diastolic dysfunction is compromised before the onset of hypertension and LVH remains unknown. We therefore evaluated LV diastolic function in spontaneously hypertensive rats (SHR) at different ages and tested whether LV diastolic dysfunction is associated with abnormal intracellular calcium homeostasis. LV systolic and diastolic functions were evaluated by invasive and echocardiographic methods in 3-week-old (without hypertension) and 5-week-old (with hypertension) SHR and Wistar-Kyoto control rats. Basal intracytoplasmic calcium and sarcoplasmic reticulum (SR) Ca(2+) contents were measured in cardiomyocytes using fura-2 AM. Sarco(endo)plasmic Ca(2+)-ATPase isoform 2a (SERCA 2a) and phospholamban (PLB) expressions were quantified by Western blot and quantitative RT-PCR techniques. LV relaxation dysfunction was observed in 3-week-old SHR rats before onset of hypertension and LVH. An increase in basal intracytoplasmic Ca(2+) and a decrease in SR Ca(2+) release were demonstrated in SHR. Decreased expression of SERCA 2a and Ser16 PLB (p16-PLB) protein levels was also observed in SHR rats, whereas mRNA expression was not decreased. For the first time, we have shown that LV myocardial dysfunction precedes hypertension in 3-week-old SHR rats. This LV myocardial dysfunction was associated with high diastolic [Ca(2+)](i) possibly due to decreased SERCA 2a and p16-PLB protein levels. Diastolic dysfunction may be a potential predictive marker of arterial hypertension in genetic hypertension syndromes.  相似文献   

17.
This article deals with providing a theoretical explanation for quantitative changes in the geometry, the opening angle and the deformation parameters of the rat ventricular wall during adaptation of the passive left ventricle in diastolic dysfunction. A large deformation theory is applied to analyse transmural stress and strain distribution in the left ventricular wall considering it to be made of homogeneous, incompressible, transversely isotropic, non-linear elastic material. The basic assumptions made for computing stress distributions are that the average circumferential stress and strain for the adaptive ventricle is equal to the average circumferential stress and strain in the normotensive ventricle, respectively.All the relevant parameters, such as opening angle, twist per unit length, axial extension, internal and external radii and others, in the stress-free, unloaded and loaded states of normotensive, hypertensive and adaptive left ventricle are determined. The circumferential stress and strain distribution through the ventricular wall are also computed. Our analysis predicts that during adaptation, wall thickness and wall mass of the ventricle increase. These results are consistent with experimental findings and are the indications of initiation of congestive heart failure.  相似文献   

18.

Background

The objective was to explore the relationship between left ventricular ejection fraction (LVEF) assessed during hospitalization for acute myocardial infarction (MI) and later health-related quality of life (HRQoL).

Methods

We used multivariable linear regression to assess the relationship between LVEF and HRQoL in 256 MI patients who responded to the Kansas City Cardiomyopathy Questionnaire (KCCQ), the EQ-5D Index, and the EuroQol Visual Analogue Scale (EQ-VAS) 2.5 years after the index MI.

Results

167 patients had normal LVEF (>50%), 56 intermediate (40%–50%), and 33 reduced (<40%). The mean (SD) KCCQ clinical summary scores were 85 (18), 75 (22), and 68 (21) (p <0.001) in the three groups, respectively. The corresponding EQ-5D Index scores were 0.83 (0.18), 0.72 (0.27), and 0.76 (0.14) (p = 0.005) and EQ-VAS scores were 72 (18), 65 (21), and 57 (20) (p = 0.001). In multivariable linear regression analysis age ≥ 70 years, known chronic obstructive pulmonary disease (COPD), subsequent MI, intermediate LVEF, and reduced LVEF were independent determinants for reduced KCCQ clinical summary score. Female sex, medication for angina pectoris at discharge, and intermediate LVEF were independent determinants for reduced EQ-5D Index score. Age ≥ 70 years, COPD, and reduced LVEF were associated with reduced EQ-VAS score.

Conclusion

LVEF measured during hospitalization for MI was a determinant for HRQoL 2.5 years later.  相似文献   

19.
We previously reported the unexpected finding that 4 wk of exposure to intermittent hypoxia (IH), which simulates the hypoxic stress of obstructive sleep apnea, improved LV cardiac function in healthy, lean C57BL/6J mice. The purpose of the present study was to assess the impact of 4 wk of IH on cardiac function in a transgenic murine model that exhibits a natural history of heart failure. We hypothesized that IH exposure would exacerbate cardiac decompensation in heart failure. Adult male FVB (wild type) and transgenic mice with cardiac overexpression of tumor necrosis factor α (TNF-αTG) at 10-12 wk of age were exposed to 4 wk of IH (nadir inspired oxygen 5-6% at 60 cycles/h for 12 h during light period) or intermittent air (IA) as control. Cardiac function was assessed by echocardiography and pressure-volume loop analyses, and mRNA and protein expression were performed on ventricular homogenates. TNF-αTG mice exposed to IA exhibited impaired LV contractility and increased LV dilation associated with markedly elevated cardiac expression of atrial natriuretic peptide and brain natriuretic peptide compared with wild-type mice. When wild-type FVB mice were exposed to IH, they exhibited increases in arterial pressure and dP/dt(max), consistent with our previous report in C57BL/6J mice. Surprisingly, we found that TNF-αTG mice exposed to IH showed a reduction in end-diastolic volume (38.7 ± 3.8 to 22.2 ± 2.1 ul; P < 0.01) and an increase in ejection fraction (29.4 ± 2.5 to 41.9 ± 3.1%; P < 0.05). In contrast to our previous study in C56Bl/6J mice, neither FVB nor TNF-αTG mice exhibited an upregulation in β-adrenergic expression or cAMP in response to IH exposure. We conclude that 4 wk of exposure to IH in mice induces adaptive responses that improve cardiac function in not only healthy animals but also in animals with underlying heart failure.  相似文献   

20.
The left ventricle (LV) plays a central role in the maintenance of health of children and adults due to its role as the major pump of the heart. In cases of LV dysfunction, a significant percentage of affected individuals develop signs and symptoms of congestive heart failure (CHF), leading to the need for therapeutic intervention. Therapy for these patients include anticongestive medications and, in some, placement of devices such as aortic balloon pump or left ventricular assist device (LVAD), or cardiac transplantation. In the majority of patients the etiology is unknown, leading to the term idiopathic dilated cardiomyopathy (IDC). During the past decade, the basis of LV dysfunction has begun to unravel. In approximately 30-40% of cases, the disorder is inherited; autosomal dominant inheritance is most common (although X-linked, autosomal recessive and mitochondrial inheritance occurs). In the remaining patients, the disorder is presumed to be acquired, with inflammatory heart disease playing an important role. In the case of familial dilated cardiomyopathy (FDCM), the genetic basis is beginning to unfold. To date, two genes for X-linked FDCM (dystrophin, G4.5) have been identified and four genes for the autosomal dominant form (actin, desmin, lamin A/C, delta-sarcoglycan) have been described. In one form of inflammatory heart disease, coxsackievirus myocarditis, inflammatory mediators and dystrophin cleavage play a role in the development of LV dysfunction. In this review, we will describe the molecular genetics of LV dysfunction and provide evidence for a "final common pathway" responsible for the phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号