首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several 2-aminotetralones were identified as novel inhibitors of the bacterial enzymes MurA and MurZ. A number of these inhibitors demonstrated antibacterial activity against Staphylococcus aureus and Escherichia coli with MICs in the range 8-128 microg/ml. Based on structure-activity relationships we propose that the alpha-aminoketone functionality is responsible for the inhibitory activity and evidence is provided to support a covalent mode of action involving the C115 thiol group of MurA/MurZ.  相似文献   

2.
The Escherichia coli gene murZ was recently shown to encode UDP-N-acetylglucosamine enolpyruvyl transferase, which catalyzes the first committed step of peptidoglycan biosynthesis (J. L. Marquardt, D. A. Siegele, R. Kolter, and C. T. Walsh, J. Bacteriol. 174:5748-5752, 1992). The map position of murZ (69.3 min) differed from that determined for murA (90 min), a gene which had been previously proposed to encode the same activity (P.S. Venkateswaran and H. C. Wu, J. Bacteriol. 110:935-944, 1972). Here we describe the construction of a chromosomal deletion of murZ and a plasmid containing murZ under arabinose control. Growth of cells containing the murZ deletion was dependent on the expression of murZ from the plasmid. We conclude that murZ is an essential gene and encodes the sole UDP-N-acetylglucosamine enolpyruvyl transferase of E. coli. To simplify the nomenclature, we recommend that murA be used to designate the gene at 69.3 min that encodes this activity and that the designation murZ be abandoned.  相似文献   

3.
4.
Summary The auxanographic analysis of 67 purine-dependent mutants and chromatographic analysis of their culture fluids were used to study purine biosynthesis in Staphylococcus aureus. The de novo biosynthesis of IMP from SAICAR, and the conversion of IMP to AMP and GMP were shown to occur via the conventional pathways reported for other organisms. Mutants blocked prior to the formation of SAICAR could not be differentiated by the tests used, and no substantial information on this portion of the pathway was obtained. The auxanographic characteristics of double mutants requiring both histidine and purines provided evidence that the sole route whereby S. aureus can convert AMP to IMP (and hence to GMP) is via those reactions of the histidine biosynthetic pathway leading to the formation of IGP and AICAR. In addition, we were able to mutationally separate AICAR transformylase and inosinocase; this separation has not been accomplished in other microorganisms.  相似文献   

5.
The MurA enzyme from Pseudomonas aeruginosa was purified to homogeneity and found to be biologically active as a UDP-N-acetylglucosamine (UNAG) enolpyruvyl transferase in a coupled enzyme assay where ATPase activity was measured by the release of inorganic phosphate. A microtiter plate assay coupled to competitive biopanning using the UDP-N-acetylglucosamine was used to screen 109 C-7-C and 12-mers peptides from phage display libraries. From 60 phage-encoded peptides identified after the fourth round of biopanning, deduced amino acid sequences were aligned and two peptides were synthesized and tested for inhibition of the MurA-catalyzed reaction. The PEP 1354 peptide inhibited the ATPase activity of MurA with an IC50 value of 200 μM and was found to be a competitive inhibitor of UNAG. The pre-incubation of MurA with inhibitor indicated a time-independent inhibition. This time-dependent inhibition is the first report of peptide inhibitors of MurA, which represent the scaffold for the synthesis of inhibitory peptidomimetic molecules.  相似文献   

6.
Peptidoglycan synthesis begins in the cytoplasm with the condensation of UDP-N-acetyl glucosamine (UDP-GlcNAc) and phosphoenolpyruvate catalyzed by UDP-N-acetylglucosamine enolpyruvoyl transferase. UDP-GlcNAc is also utilized as substrate for the glycosyltransferase MurG, a membrane-bound enzyme that catalyzes the production of lipid II. Membranes from Escherichia coli cells overproducing MurG support peptidoglycan formation at a rate approximately fivefold faster than membranes containing wild-type levels of MurG. Conditions have been optimized for the production of large amounts of membranes with increased levels of MurG, allowing the development of an assay suitable for high-throughput screening of large compound libraries. The quality of the purified membranes was assessed by electron microscopy and also by testing cross-linked peptidoglycan production. Moreover, kinetic studies allowed the determination of optimal concentrations of the substrates and membranes to be utilized for maximum sensitivity of the assay. Using a 96-well assay format, the IC50 values for vancomycin, tunicamycin, flavomycin, and bacitracin were 1.1 microM, 0.01 microg/ml, 0.03 microg/ml, and 0.7 microg/ml, respectively.  相似文献   

7.
具有多重抗生素耐药性的金黄色葡萄球菌是导致医院感染最常见的致病菌,而目前高致病性耐甲氧西林菌株(MRSA)在社区中的传播使得健康人群也面临极大威胁,因此针对金黄色葡萄球菌的疫苗和免疫治疗的研究迫在眉睫。多数的研究以金黄色葡萄球菌细胞壁锚定蛋白、荚膜多糖、外毒素等为靶点,虽然在一些临床前试验中显示出疫苗和免疫治疗对金葡菌感染具有保护性,但是目前临床试验结果却并不乐观,还没有一个经得起临床检验的疫苗。本文章从临床前试验和临床试验两个方面综述了目前关于金黄色葡萄球菌的疫苗和免疫治疗进展。  相似文献   

8.
Staphylococcus aureus H growing exponentially was labelled with N-acetyl[14C]glucosamine, which became incorporated into the peptidoglycan. The portion of peptidoglycan not linked to teichoic acid (60-75% of the whole) was degraded with Chalaropsis muramidase to yield disaccharide-peptide monomers and dimers, trimers and oligomers formed by biosynthetic cross-linking of the monomers. The degree of O-acetylation of these fragments was also examined. Pulse-chase experiments showed that the proportion of label initially in the monomer fraction immediately after the 1 min pulse declined rapidly during a 3 min chase, while the oligomer fraction (fragments greater than trimer) gained the radioactivity proportionately. The radioactivity of the dimer and trimer fractions remained virtually unchanged. At 4 min after the commencement of labelling (i.e. approx. one-tenth of a generation time) final values had been reached. The O-acetylation of all fragments had achieved final values even at 1 min, except for the monomer fraction, which showed an increase from 40% to 60% during the first 3 min of chase. Although O-acetylation was clearly a very rapid process, no O-acetylated peptidoglycan lipid-intermediates could be detected.  相似文献   

9.
Peptidoglycan (PGN), a component of bacterial cell wall and belonging to "Microbe-Associated Molecular Patterns" (MAMP) triggers host reactions contributing to the pathophysiology of infectious disease. Host cell responses to PGN exposure include apoptosis. Bacterial infections may result in activation of blood platelets and thrombocytopenia. The present study explored, whether HPLC-purified fractions of PGNs from Staphylococcus aureus 113 triggers apoptosis of platelets. To this end platelets were exposed to PGN fractions and annexin-V binding determined to depict cell membrane scrambling, DiOC6 fluorescence to estimate depolarization of mitochondrial potential, Fluo-3AM staining for intracellular Ca(2+) activity ([Ca(2+)](i)) and immunofluorescence to quantify protein abundance of active caspase-3. As a result, a 30?min exposure to monomeric fraction (mPGN) (≥50?ng/ml) was followed by annexin-V binding, paralleled by increase of [Ca(2+)](i), mitochondrial depolarization, caspase-3 activation and integrin α(IIb)β(3) upregulation. The annexin-V binding was significantly blunted by anti-TLR-2 antibodies, in absence of extracellular Ca(2+), and by pancaspase inhibitor zVAD-FMK (1?μM). In conclusion, PGN triggers apoptosis of platelets in activation-dependent manner, characterized by mitochondrial depolarization, caspase-3 activation and cell membrane scrambling.  相似文献   

10.
Most Staphylococcus aureus strains produce the orange carotenoid staphyloxanthin. The staphyloxanthin biosynthesis genes are organized in an operon, crtOPQMN, with a sigma(B)-dependent promoter upstream of crtO and a termination region downstream of crtN. The functions of the five encoded enzymes were predicted on the basis of their sequence similarity to known enzymes and by product analysis of gene deletion mutants. The first step in staphyloxanthin biosynthesis is the head-to-head condensation of two molecules of farnesyl diphosphate to form dehydrosqualene (4,4'-diapophytoene), catalyzed by the dehydrosqualene synthase CrtM. The dehydrosqualene desaturase CrtN dehydrogenates dehydrosqualene to form the yellow, main intermediate 4,4'-diaponeurosporene. CrtP, very likely a mixed function oxidase, oxidizes the terminal methyl group of 4,4'-diaponeurosporene to form 4,4'-diaponeurosporenic acid. CrtQ, a glycosyltransferase, esterifies glucose at the C(1)' position with the carboxyl group of 4,4'-diaponeurosporenic acid to yield glycosyl 4,4'-diaponeurosporenoate; this compound was the major product in the clone expressing crtPQMN. In the final step, the acyltransferase CrtO esterifies glucose at the C(6)' position with the carboxyl group of 12-methyltetradecanoic acid to yield staphyloxanthin. Staphyloxanthin overexpressed in Staphylococcus carnosus (pTX-crtOPQMN) and purified was analyzed by high pressure liquid chromatography-mass spectroscopy and NMR spectroscopy. Staphyloxanthin was identified as beta-D-glucopyranosyl 1-O-(4,4'-diaponeurosporen-4-oate)-6-O-(12-methyltetradecanoate).  相似文献   

11.
The capacity of S. aureus peptidoglycan (PG) for inducing the luminol-dependent chemiluminescence of human lymphocytes has been studied. Lymphocytes taken from adult donors have been found to give dose-dependent reaction to S. aureus PG, while lymphocytes from newborn infants have been inert under the same conditions. Essential differences in the kinetics of response to PG (the maximum intensity of chemiluminescence occurs in 25-30 minutes) and to phytohemagglutinin (the maximum intensity is reached in 1 minute) were observed. These results are considered as the manifestation of specific sensitization to bacterial peptidoglycans, which may be rapidly detected by reactive chemiluminescence.  相似文献   

12.
The biosynthesis of the linkage region between peptidoglycan and the ribitol teichoic acid was investigated in the bacteriophage-resistant, teichoic acid-less mutant Staphylococcus aureus 52A5 (Chatterjee et al., J. Bacteriol. 100:846--853, 1969). Membrane preparations of this strain were found to be incapable of forming the first intermediate of the biosynthetic pathway, namely, the transfer of N-acetyl-D-glucosamine (GlcNAc) from UDP-GlcNAc to the acceptor molecule, which presumbably is undecaprenol phosphate (R. Bracha and L. Glaser, Biochem. Biophys. Res. Commun. 72:1091--1098, 1976). The addition of heat-inactivated membrane preparations of S. aureus 52A2 (which normally has ribitol teichoic acid) that had been preincubated with UDP-GlcNAc to membranes of strain 52A5 enabled the synthesis of teichoic acid. These data suggest that the mutational defect in the teichoic acid-less organism is in the synthesis of the first compound of the linkage unit, and this is apparently the reason for its absence in the cell walls.  相似文献   

13.
14.
A small molecule (1835F03) that inhibits Staphylococcus aureus wall teichoic acid biosynthesis, a proposed antibiotic target, has been discovered. Rapid, parallel, solution-phase synthesis was employed to generate a focused library of analogs, providing detailed information about structure–activity relationships and leading to the identification of targocil, a potent antibiotic.  相似文献   

15.
Toll-like receptor 2 (TLR2) has been recognized to mediate cell signaling in response to peptidoglycan (PGN), a major cell wall component of Gram-positive bacteria. The mechanism by which TLR2 recognizes PGN is unknown. It is not even clear whether TLR2 directly binds to PGN. In this study, we generated a soluble form of recombinant TLR2 (sTLR2) possessing only its putative extracellular domain by using the baculovirus expression system to examine the direct interaction between sTLR2 and PGN. sTLR2 bound avidly to insoluble PGN (iPGN) from Staphylococcus aureus coated onto microtiter wells in a concentration-dependent manner. In contrast, sTLR2 exhibited a very weak binding to lipopolysaccharide. iPGN cosedimented sTLR2 after the mixture of iPGN and sTLR2 had been incubated and centrifuged. sTLR2 partially attenuated the iPGN-induced NF-kappaB activation in TLR2-transfected HEK 293 cells and the iPGN-induced IL-8 secretion in U937 cells. One of anti-human TLR2 monoclonal antibodies, which blocked iPGN-induced NF-kappaB activation in TLR2-transfected cells, inhibited the binding of sTLR2 to iPGN. In addition, we found that sCD14 interacted with sTLR2 and increased the binding of sTLR2 to iPGN. From these results, we conclude that the extracellular TLR2 domain directly binds to PGN.  相似文献   

16.
Staphylococcus aureus, in spite of antibiotics, is still a major human pathogen causing a wide range of infections. The present study describes the new vaccine A170PG, a peptidoglycan-based vaccine. In a mouse model of infection, A170PG protects mice against a lethal dose of S. aureus. Protection lasts at least 40 weeks and correlates with increased survival and reduced colonization. Protection extends into drug-resistant (MRSA or VISA) and genetically diverse clinical strains. The vaccine is effective when administered - in a single dose and without adjuvant - by the intramuscular, intravenous or the aerosol routes and induces active as well as passive immunization. Of note, A170PG also displays therapeutic activity, eradicating staphylococci, even when infection is systemic. Sustained antibacterial activity and induction of a strong and rapid anti-inflammatory response are the mechanisms conferring therapeutic efficacy to A170PG.  相似文献   

17.
Cells of eukaryotic or prokaryotic origin express proteins with LysM domains that associate with the cell wall envelope of bacteria. The molecular properties that enable LysM domains to interact with microbial cell walls are not yet established. Staphylococcus aureus, a spherical microbe, secretes two murein hydrolases with LysM domains, Sle1 and LytN. We show here that the LysM domains of Sle1 and LytN direct murein hydrolases to the staphylococcal envelope in the vicinity of the cross-wall, the mid-cell compartment for peptidoglycan synthesis. LysM domains associate with the repeating disaccharide β-N-acetylmuramic acid, (1→4)-β-N-acetylglucosamine of staphylococcal peptidoglycan. Modification of N-acetylmuramic acid with wall teichoic acid, a ribitol-phosphate polymer tethered to murein linkage units, prevents the LysM domain from binding to peptidoglycan. The localization of LytN and Sle1 to the cross-wall is abolished in staphylococcal tagO mutants, which are defective for wall teichoic acid synthesis. We propose a model whereby the LysM domain ensures septal localization of LytN and Sle1 followed by processive cleavage of peptidoglycan, thereby exposing new LysM binding sites in the cross-wall and separating bacterial cells.  相似文献   

18.
The mechanism of staphylococcal resistance to methicillin is unknown. Peptidoglycan synthesis was studied in a methicillin-resistant and a derived methicillin-sensitive Staphylococcus aureus strain. Although the methicillin minimum inhibitory concentration for growth of the methicillin-resistant strain was 1,600 micrograms/ml, peptidoglycan synthesis by the organism incubated in a wall synthesis solution was inhibited about 90% by 5 micrograms of methicillin per ml. In contrast, high concentrations of methicillin added to actively growing cultures of the methicillin-resistant strain had little effect on growth or peptidoglycan synthesis. Peptidoglycan synthesis in chloramphenicol-treated cultures was more susceptible to methicillin than it was in actively growing cultures of the methicillin-resistant strain. It is proposed that in this strain cell wall thickening peptidoglycan synthesis which predominates in cell wall synthesis solution and chloramphenicol-treated cultures is methicillin sensitive, whereas peptidoglycan synthesis involved in cell division, primarily in the region of the septum, which predominates in actively growing cultures is methicillin resistant. Both cell wall thickening and septal peptidoglycan syntheses are methicillin sensitive in the methicillin-sensitive strain.  相似文献   

19.
20.
The monomer units in the Escherichia coli and Staphylococcus aureus cell wall peptidoglycans differ in the nature of the third amino acid in the L-alanyl-gamma-D-glutamyl-X-D-alanyl-D-alanine side chain, where X is meso-diaminopimelic acid or L-lysine, respectively. The murE gene from S. aureus encoding the UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: L-lysine ligase was identified and cloned into plasmid vectors. Induction of its overexpression in E. coli rapidly results in abnormal morphological changes and subsequent cell lysis. A reduction of 28% in the peptidoglycan content was observed in induced cells, and analysis of the peptidoglycan composition and structure showed that ca. 50% of the meso-diaminopimelic acid residues were replaced by L-lysine. Lysine was detected in both monomer and dimer fragments, but the acceptor units from the latter contained exclusively meso-diaminopimelic acid, suggesting that no transpeptidation could occur between the epsilon-amino group of L-lysine and the alpha-carboxyl group of D-alanine. The overall cross-linking of the macromolecule was only slightly decreased. Detection and analysis of meso-diaminopimelic acid- and L-lysine-containing peptidoglycan precursors confirmed the presence of L-lysine in precursors containing amino acids added after the reaction catalyzed by the MurE ligase and provided additional information about the specificity of the enzymes involved in these latter processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号