首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ionizing radiation and normal cellular respiration form reactive oxygen species that damage DNA and contribute to a variety of human disorders including tumor promotion and carcinogenesis. A major product of free radical DNA damage is the formation of 8-oxoguanine, which is a highly mutagenic base modification produced by oxidative stress. Here, Drosophila ribosomal protein S3 is shown to cleave DNA containing 8-oxoguanine residues efficiently, The ribosomal protein also contains an associated apurinic/apyrimidinic (AP) lyase activity, cleaving phosphodiester bonds via a beta,delta elimination reaction. The significance of this DNA repair activity acting on 8-oxoguanine is shown by the ability of S3 to rescue the H2O2 sensitivity of an Escherichia coli mutM strain (defective for the repair of 8-oxoguanine) and to abolish completely the mutator phenotype of mutM caused by 8-oxoguanine-mediated G-->T transversions. The ribosomal protein is also able to rescue the alkylation sensitivity of an E.coli mutant deficient for the AP endonuclease activities associated with exonuclease III (xth) and endonuclease IV (nfo), indicating for the first time that an AP lyase can represent a significant source of DNA repair activity for the repair of AP sites. These results raise the possibility that DNA repair may be associated with protein translation.  相似文献   

2.
Apurinic/apyrimidinic (AP) sites in cellular DNA are considered to be both cytotoxic and mutagenic, and can arise spontaneously or following exposure to DNA damaging agents. We have isolated cDNA clones which encode an endonuclease, designated HAP1 (human AP endonuclease 1), that catalyses the initial step in AP site repair in human cells. The predicted HAP1 protein has an Mr of 35,500 and shows striking sequence similarity (93% identity) to BAP 1, a bovine AP endonuclease enzyme. Significant sequence homology to two bacterial DNA repair enzymes, E. coli exonuclease III and S. pneumoniae ExoA proteins, and to Drosophila Rrp1 protein is also apparent. We have expressed the HAP1 cDNA in E. coli mutants lacking exonuclease III (xth), endonuclease IV (nfo), or both AP endonucleases. The HAP1 protein can substitute for exonuclease III, but not for endonuclease IV, in respect of some, but not all, DNA repair and mutagenesis functions. Moreover, a dut xth (ts) double mutant, which is nonviable at 42 degrees C due to an accumulation of unrepaired AP sites following excision of uracil from DNA, was rescued by expression of the HAP1 cDNA. These results indicate that AP endonucleases show remarkable conservation of both primary sequence and function. We would predict that the HAP1 protein is important in human cells for protection against the toxic and mutagenic effects of DNA damaging agents.  相似文献   

3.
1-Methyl-9H-pyrido-[3,4-b]indole (harmane) inhibits the apurinic/apyrimidinic (AP) endonuclease activity of the UV endonuclease induced by phage T4, whereas it stimulates the pyrimidine dimer-DNA glycosylase activity of that enzyme. E. coli endonuclease IV, E. coli endonuclease VI (the AP endonuclease activity associated with E. coli exonuclease III), and E. coli uracil-DNA glycosylase were not inhibited by harmane. Human fibroblast AP endonucleases I and II also were only slightly inhibited. Therefore, harmane is neither a general inhibitor of AP endonucleases, nor a general inhibitor of Class I AP endonucleases which incise DNA on the 3'-side of AP sites. However, E. coli endonuclease III and its associated dihydroxythymine-DNA glycosylase activity were both inhibited by harmane. This observation suggests that harmane may inhibit only AP endonucleases which have associated glycosylase activities.  相似文献   

4.
The human ribosomal protein S3 (rpS3) functions as a component of the 40S subunit and as a UV DNA repair endonuclease. This enzyme has an endonuclease activity for UV-irradiated and oxidatively damaged DNAs. DNA repair endonucleases recognize a variety of UV and oxidative base damages in DNA from E. coli to human cells. E. coli endonuclease III is especially known to have an iron-sulfur cluster as a co-factor. Here, we tried an electron paramagnetic resonance (EPR) method for the first time to observe a known iron-sulfur cluster signal from E. coli endonuclease III that was previously reported. We compared it to the human rpS3 in order to find out whether or not the human protein contains an iron-sulfur cluster. As a result, we succeeded in observing a Fe EPR signal that is apparently from an iron-sulfur cluster in the human rpS3 endonuclease. The EPR signal from the human enzyme, consisting of three major parts, is similar to that from the E. coli enzyme, but it has a distinct extra peak.  相似文献   

5.
The mammalian ribosomal protein S3 (rpS3) is a component of the 40S ribosomal subunit. It is known to function as a DNA repair enzyme, UV endonuclease III, which cleaves DNA that is irradiated by UV. It also has an endonuclease activity on AP DNA. In this report, the yeast ribosomal protein S3 (Rps3p) in S. cerevisiae was cloned, expressed in E. coli, and affinity-purified by 285 fold. Rps3p is composed of 240 amino acids and has a 78% amino acid similarity with the human counterpart that has 243 amino acids. The major difference in the amino acid sequence between the two proteins lies in most of the C-terminal 50 residues. Surprisingly, Rps3p only showed an endonuclease activity on AP DNA, but not on DNA that was irradiated with UV. The AP endonuclease activity of Rps3p was affected by pH, KCl, and beta-mercaptoethanol, but Triton X-100 and EDTA did not affect the enzyme activity. From these results, both the mammalian rpS3 and Rps3p appear to be involved in DNA damage processing, but in different modes.  相似文献   

6.
L Gu  S M Huang    M Sander 《Nucleic acids research》1993,21(20):4788-4795
Drosophila Rrp1 protein has four tightly associated enzymatic activities: DNA strand transfer, ssDNA renaturation, dsDNA 3'-exonuclease and apurinic/apyrimidinic (AP) endonuclease. The carboxy-terminal region of Rrp1 is homologous to Escherichia coli exonuclease III and several eukaryotic AP endonucleases. All members of this protein family cleave abasic sites. Rrp1 protein was expressed under the control of the E. coli RNA polymerase tac promoter (pRrp1-tac) in two repair deficient E. coli strains (BW528 and LG101) lacking both exonuclease III (xth) and endonuclease IV (nfo). Rrp1 confers resistance to killing by oxidative, antitumor and alkylating agents that damage DNA (hydrogen peroxide, t-butylhydroperoxide, bleomycin, methyl methanesulfonate, and mitomycin C). Complementation of the repair deficiency by Rrp1 provides up to a two log increase in survival and requires the C-terminal nuclease region of Rrp1, but not its N-terminal region. The AP endonuclease activity in extracts from the repair deficient strain LG101 is increased up to 12-fold when the strain contains pRrp1-tac. These results indicate that pRrp1-tac directs the synthesis of active enzyme, and that the nuclease activities of Rrp1 are likely to be the cause of the increased resistance to DNA damage of the mutant cells.  相似文献   

7.
Apurinic/apyrimidinic (AP) endonucleases play a major role in the repair of AP sites, oxidative damage and alkylation damage in DNA. We employed Saccharomyces cerevisiae in an unbiased forward genetic screen to identify amino acid substitutions in the major yeast AP endonuclease, Apn1, that impair cellular DNA repair capacity by conferring sensitivity to the DNA alkylating agent methyl methanesulfonate. We report here the identification and characterization of the Apn1 V156E amino acid substitution mutant through biochemical and functional analysis. We found that steady state levels of Apn1 V156E were substantially decreased compared to wild type protein, and that this decrease was due to more rapid degradation of mutant protein compared to wild type. Based on homology to E. coli endonuclease IV and computational modeling, we predicted that V156E impairs catalytic ability. However, overexpression of mutant protein restored DNA repair activity in vitro and in vivo. Thus, the V156E substitution decreases DNA repair capacity by an unanticipated mechanism via increased degradation of mutant protein, leading to substantially reduced cellular levels. Our study provides evidence that the V156 residue plays a critical role in Apn1 structural integrity, but is not involved in catalytic activity. These results have important implications for elucidating structure-function relationships for the endonuclease IV family of proteins, and for employing simple eukaryotic model systems to understand how structural defects in the major human AP endonuclease APE1 may contribute to disease etiology.  相似文献   

8.
Shatilla A  Leduc A  Yang X  Ramotar D 《DNA Repair》2005,4(6):655-670
The Saccharomyces cerevisiae mutant strain YW778, which lacks apurinic/apyrimidinic (AP) endonuclease and 3'-diesterase DNA repair activities, displays high levels of spontaneous mutations and hypersensitivities to several DNA damaging agents. We searched a cDNA library derived from the nematode Caenorhabditis elegans for gene products that would rescue the DNA repair defects of this yeast mutant. We isolated two genes, apn-1 and exo-3, encoding proteins that have not been previously characterized. Both APN-1 and EXO-3 share significant identity with the functionally established Escherichia coli AP endonucleases, endonuclease IV and exonuclease III, respectively. Strain YW778 expressing either apn-1 or exo-3 shows parental levels of spontaneous mutations, as well as resistance to DNA damaging agents that produce AP sites and DNA single strand breaks with blocked 3'-ends. Using an in vitro assay, we show that the apn-1 and exo-3 genes independently express AP endonuclease activity in the yeast mutant. We further characterize the EXO-3 protein and three of its mutated variants E68A, D190A, and H279A. The E68A variant retains both AP endonuclease and 3'-diesterase repair activities in vitro, yet severely lacks the ability to protect strain YW778 from spontaneous and drug-induced DNA lesions, suggesting that this variant E68A may possess a defect that interferes with the repair process in vivo. In contrast, D190A and H279A are completely devoid of DNA repair activities and fail to rescue the genetic instability of strain YW778. Our data strongly suggest that EXO-3 and APN-1 are enzymes possessing intrinsic AP endonuclease and 3'-diesterase activities.  相似文献   

9.
We have developed simple and sensitive assays that distinguish the main classes of apurinic/apyrimidinic (AP) endonucleases: Class I enzymes that cleave on the 3' side of AP sites by beta-elimination, and Class II enzymes that cleave by hydrolysis on the 5' side. The distinction of the two types depends on the use of a synthetic DNA polymer that contains AP sites with 5'-[32P]phosphate residues. Using this approach, we now show directly that Escherichia coli endonuclease IV and human AP endonuclease are Class II enzymes, as inferred previously on the basis of indirect assays. The assay method does not exhibit significant interference by nonspecific nucleases or primary amines, which allows the ready determination of different AP endonuclease activities in crude cell extracts. In this way, we show that virtually all of the Class II AP endonuclease activity in E. coli can be accounted for by two enzymes: exonuclease III and endonuclease IV. In the yeast Saccharomyces cerevisiae, the Class II AP endonuclease activity is totally dependent on a single enzyme, the Apn1 protein, but there are probably multiple Class I enzymes. The versatility and ease of our approach should be useful for characterizing this important class of DNA repair enzymes in diverse systems.  相似文献   

10.
L F Povirk  C W Houlgrave 《Biochemistry》1988,27(10):3850-3857
Bleomycin and neocarzinostatin induce modified apurinic/apyrimidinic (AP) sites by oxidation of the sugar moiety in DNA. In order to quantitatively assess the susceptibility of these lesions to repair endonucleases, drug-treated 3H-labeled colE1 DNA was mixed with 14C-labeled heat-depurinated DNA, and endonuclease-susceptible sites in the mixture were titrated with various AP endonucleases or with polyamines. Single- and double-strand breaks were quantitated by determining the fractions of supercoiled, nicked circular, and linear molecules. Exonuclease III and endonucleases III and IV of Escherichia coli, as well as putrescine, produced a nearly 2-fold increase in single-strand breaks in bleomycin-treated DNA, indicating cleavage of drug-induced AP sites. The bleomycin-induced AP sites were comparable to heat-induced sites in their sensitivity to E. coli endonucleases III and IV but were cleaved by exonuclease III only at high concentrations. Bleomycin-induced AP sites were much more sensitive to cleavage by putrescine than heat-induced sites. Treatment with putrescine or very high concentrations of endonuclease III also increased the number of double-strand breaks in bleomycin-treated DNA, suggesting a minor class of lesion consisting of an AP site accompanied by a closely opposed break in the complementary strand. These complex lesions were resistant to cleavage by endonuclease IV. However, when colE1 DNA was treated with neocarzinostatin, subsequent treatment with putrescine, endonuclease IV, or very high concentrations of endonuclease III produced a dramatic increase in double-strand breaks but no detectable increase in single-strand breaks. These results suggest that virtually all neocarzinostatin-induced AP sites are accompanied by a closely opposed strand break.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
AP endonucleases catalyse an important step in the base excision repair (BER) pathway by incising the phosphodiester backbone of damaged DNA immediately 5' to an abasic site. Here, we report the cloning and expression of the 774 bp Mth0212 gene from the thermophilic archaeon Methanothermobacter thermautotrophicus, which codes for a putative AP endonuclease. The 30.3 kDa protein shares 30% sequence identity with exonuclease III (ExoIII) of Escherichia coli and 40% sequence identity with the human AP endonuclease Ape1. The gene was amplified from a culture sample and cloned into an expression vector. Using an E. coli host, the thermophilic protein could be produced and purified. Characterization of the enzymatic activity revealed strong binding and Mg2+-dependent nicking activity on undamaged double-stranded (ds) DNA at low ionic strength, even at temperatures below the optimum growth temperature of M. thermautotrophicus (65 degrees C). Additionally, a much faster nicking activity on AP site containing DNA was demonstrated. Unspecific incision of undamaged ds DNA was nearly inhibited at KCl concentration of approximately 0.5 M, whereas incision at AP sites was still complete at such salt concentrations. Nicked DNA was further degraded at temperatures above 50 degrees C, probably by an exonucleolytic activity of the enzyme, which was also found on recessed 3' ends of linearized ds DNA. The enzyme was active at temperatures up to 70 degrees C and, using circular dichroism spectroscopy, shown to denature at temperatures approaching 80 degrees C. Considering the high intracellular potassium ion concentration in M. thermautotrophicus, our results suggest that the characterized thermophilic enzyme acts as an AP endonuclease in vivo with similar activities as Ape1.  相似文献   

12.
Sites of base loss in DNA arise spontaneously, are induced by damaging agents or are generated by DNA glycosylases. Repair of these potentially mutagenic or lethal lesions is carried out by apurinic/apyrimidinic (AP) endonucleases. To test current models of AP site recognition, we examined the effects of site-specific DNA structural modifications and an F266A mutation on incision and protein-DNA complex formation by the major human AP endonuclease, Ape. Changing the ring component of the abasic site from a neutral tetrahydrofuran (F) to a positively charged pyrrolidine had only a 4-fold effect on the binding capacity of Ape. A non-polar 4-methylindole base analog opposite F had a <2-fold effect on the incision activity of Ape and the human protein was unable to incise or specifically bind 'bulged' DNA substrates. Mutant Ape F266A protein complexed with F-containing DNA with only a 6-fold reduced affinity relative to wild-type protein. Similar studies are described using Escherichia coli AP endonucleases, exonuclease III and endonuclease IV. The results, in combination with previous findings, indicate that the ring structure of an AP site, the base opposite an AP site, the conformation of AP-DNA prior to protein binding and the F266 residue of Ape are not critical elements in targeted recognition by AP endonucleases.  相似文献   

13.
DNA deoxyribophosphodiesterase (dRpase) of E. coli catalyzes the release of deoxyribose-phosphate moieties following the cleavage of DNA at an apurinic/apyrimidinic (AP) site by either an AP endonuclease or AP lyase. Exonuclease I is a single-strand specific DNA nuclease which affects the expression of recombination and repair pathways in E. coli. We show here that a major dRpase activity in E. coli is associated with the exonuclease I protein. Highly purified exonuclease I isolated from an over-producing stain contains high levels of dRpase activity; it catalyzes the release of deoxyribose-5-phosphate from an AP site incised with endonuclease IV of E. coli and the release of 4-hydroxy-2-pentenal-5-phosphate from an AP site incised by the AP lyase activity of endonuclease III of E. coli. A strain containing a deletion of the sbcB gene showed little dRpase activity; the activity could be restored by transformation of the strain with a plasmid containing the sbcB gene. The dRpase activity isolated from an overproducing stain was increased 70-fold as compared to a normal sbcB+ strain (AB3027). These results suggest that the dRpase activity may be important in pathways for both DNA repair and recombination.  相似文献   

14.
Jilani A  Ramotar D 《Biochemistry》2002,41(24):7688-7694
Cells that depend on oxygen for survival constantly produce reactive oxygen species that attack DNA to produce a variety of lesions, including single-strand breaks with 3'-blocking groups such as 3'-phosphate and 3'-phosphoglycolate. These 3'-blocking ends prevent the activity of DNA polymerase and are generally removed by DNA repair proteins with 3'-diesterase activity. We report here the purification and partial characterization of a 45 kDa protein from Schizosaccharomyces pombe total extract based on the ability of this protein to process bleomycin- or H(2)O(2)-damaged DNA in vitro to allow DNA repair synthesis by DNA polymerase I. Further analysis revealed that the 45 kDa protein removes 3'-phosphate ends created by the Escherichia coli fpg AP lyase following the incision of AP site but is unable to process the 3'-alpha,beta unsaturated aldehyde generated by E. coli endonuclease III. The protein cannot cleave DNA bearing AP sites, suggesting that it is not an AP endonuclease or AP lyase. We conclude that the 45 kDa protein purified from S. pombe is a DNA 3'-phosphatase.  相似文献   

15.
It has been shown previously that the DNA deoxyribophosphodiesterase (dRpase) activity of Escherichia coli excises 2-deoxyribose 5-phosphate moieties at apurinic/apyrimidinic (AP) sites in DNA following cleavage of the DNA at the AP site by an AP endonuclease such as endonuclease IV of E coli. A second class of enzymes that cleave DNA at AP sites by a beta-elimination mechanism, AP lyases, leave a different sugar-phosphate product remaining at the AP site, which has been identified as the compound trans-4-hydroxy-2-pentenal 5-phosphate. It is shown that dRpase removes this unsaturated sugar-phosphate group following cleavage of a poly(dA-dT) substrate containing AP sites by the action of the AP lyase endonuclease III of E. coli. The Km for the removal of trans-4-hydroxy-2-pentenal 5-phosphate is 0.06 microM; the Km for the removal of 2-deoxyribose 5-phosphate is 0.17 microM. It was verified that the sugar-phosphate product removed by dRpase from the endonuclease III-cleaved substrate was trans-4-hydroxy-2-pentenal 5-phosphate by conversion of the product to the compound cyclopentane-1,2-dione. The dRpase activity is unique in its ability to remove sugar-phosphate products after cleavage by both AP endonucleases and AP lyases.  相似文献   

16.
The inactivation efficiency and repair of single-strand breaks was investigated using model strand breaks created by endonucleolytic incision of damaged DNA. Phi X-174 duplex transfecting DNA containing either thymine glycols, urea residues, or abasic (AP) sites was incubated with AP endonucleases that produce breaks on the 3' side, the 5' side, or both sides of the lesion. For each lesion, incubation with Escherichia coli endonuclease III results in a single-strand break containing a 3' alpha, beta-unsaturated aldehyde (4-hydroxy-2-pentenal), while treatment of AP- or urea-containing DNA with E. coli endonuclease IV results in a single-strand break containing a 5' deoxyribose or a 5' deoxyribosylurea moiety, respectively. Incubation of lesion-containing DNA with both enzymes results in a base gap. Ligatable nicks containing 3' hydroxyl and 5' phosphate moieties were produced by subjecting undamaged DNA to DNase I. When the biological activity of these DNAs was assessed in wild-type cells, ligatable nicks were not lethal, but each of the other strand breaks tested was lethal, having inactivation efficiencies between 0.12 and 0.14. These inactivation efficiencies are similar to those of the base lesions from which the strand breaks were derived. In keeping with the current model of base excision repair, when phi X duplex DNA containing strand breaks with a blocked 3' terminus was transfected into an E. coli double mutant lacking the major 5' cellular AP endonucleases, a greater than twofold decrease in survival was observed. Moreover, when this DNA was treated with a 5' AP endonuclease prior to transfection, the survival returned to that of wild type. As expected, when DNA containing strand breaks with a 5' blocked terminus or DNA containing base gaps was transfected into the double mutant lacking 5' AP endonucleases, the survival was the same as in wild-type cells. The decreased survival of transfecting DNA containing thymine glycols, urea, or AP sites observed in appropriate base excision repair-defective mutants was also obviated if the DNA was incubated with the homologous enzyme prior to transfection. Thus, in every case, with both base lesions and single-strand breaks, the lesion was repaired in the cell by the enzyme that recognizes it in vitro. Furthermore, the repair step in the cell could be eliminated if the appropriate enzyme was added in vitro prior to transfection.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
D S Chen  T Herman    B Demple 《Nucleic acids research》1991,19(21):5907-5914
Mammalian cells were investigated for enzymes that help correct oxidative damages in DNA. We focused on 3'-repair diesterases, which process DNA ends at oxidative strand breaks by removing 3'-blocking fragments of deoxyribose that prevent DNA repair synthesis. Two enzymes were found in a variety of mouse, bovine and human tissues and cultured cells. The two activities were purified to differing degrees from HeLa cells. One enzyme had the properties of the known HeLa AP endonuclease (Mr approximately 38,000, with identical substrate specificity and reaction requirements, and cross-reactivity with anti-HeLa AP endonuclease antiserum) and is presumed identical to that protein. The second activity did not interact with anti-HeLa AP endonuclease antibodies and had relatively less AP endonuclease activity. This second enzyme may have been detected in other studies but never characterized. In addition to the 3'-repair diesterase and AP endonuclease, this partially purified preparation also harbored DNA 3'-phosphatase and 3'-deoxyribose diesterase activities. It is unknown whether all activities detected in the second preparation are due to a single protein, although activity against undamaged DNA was not detected. The in vivo roles of these two widely distributed 3'-repair diesterase/AP endonucleases have not been determined, but with the characterizations presented here such questions may now be focused.  相似文献   

18.
Mechanism of action of a mammalian DNA repair endonuclease   总被引:17,自引:0,他引:17  
The mechanism of action of a DNA repair endonuclease isolated from calf thymus was determined. The calf thymus endonuclease possesses a substrate specificity nearly identical with that of Escherichia coli endonuclease III following DNA damage by high doses of UV light, osmium tetroxide, and other oxidizing agents. The calf thymus enzyme incises damaged DNA at sites of pyrimidines. A cytosine photoproduct was found to be the primary monobasic UV adduct. The calf thymus endonuclease and E. coli endonuclease III were found to possess similar, but not identical, DNA incision mechanisms. The mechanism of action of the calf thymus endonuclease was deduced by analysis of the 3' and 5' termini of the enzyme-generated DNA scission products with DNA sequencing methodologies and HPLC analysis of the material released by the enzyme following DNA damage. The calf thymus endonuclease removes UV light and osmium tetroxide damaged bases via an N-glycosylase activity followed by a 3' apurinic/apyrimidinic (AP) endonuclease activity. The calf thymus endonuclease also possesses a novel 5' AP endonuclease activity not possessed by endonuclease III. The product of this three-step mechanism is a nucleoside-free site flanked by 3'-and 5'-terminal phosphate groups. These results indicate the conservation of both substrate specificity and mechanism of action in the enzymatic removal of oxidative base damage between prokaryotes and eukaryotes. We propose the name redoxy endonucleases for this group of enzymes.  相似文献   

19.
The intracellular pathogen Trypanosoma cruzi is the etiological agent of Chagas' disease. We have isolated a full-length cDNA encoding uracil-DNA glycosylase (UDGase), a key enzyme involved in DNA repair, from this organism. The deduced protein sequence is highly conserved at the C-terminus of the molecule and shares key residues involved in binding or catalysis with most of the UDGases described so far, while the N-terminal part is highly variable. The gene is single copy and is located on a chromosome of approximately 1.9 Mb. A His-tagged recombinant protein was overexpressed, purified and used to raise polyclonal antibodies. Western blot analysis revealed the existence of a single UDGase species in parasite extracts. Using a specific ethidium bromide fluorescence assay, recombinant T.cruzi UDGase was shown to specifically excise uracil from DNA. The addition of both Leishmania major AP endonuclease and exonuclease III, the major AP endonuclease from Escherichia coli, produces stimulation of UDGase activity. This activation is specific for AP endonuclease and suggests functional communication between the two enzymes.  相似文献   

20.
Back JH  Chung JH  Park YI  Kim KS  Han YS 《DNA Repair》2003,2(5):455-470
Damaged DNA strands are repaired by base excision (BER) in organisms, a process initiated by repair enzymes, which include DNA glycosylases and endonucleases. We expressed and characterized two putative endonuclease genes from Methanobacterium thermoautotrophicum, Mt0764 and Mt1010, encoding homologues of endonuclease III (endo III) and endonuclease IV (endo IV) of Escherichia coli. The Mt0764 and Mt1010 proteins showed endo III activity by removing thymine glycol from DNA strand and AP endonuclease activity, respectively. The Mt0764 protein not only cleaved the oligonucleotide duplex, containing a thymine glycol/adenine pair efficiently, but also showed activity on the 8-oxoguanine-containing oligonucleotide duplex. In this study, we report upon the stimulation of endo III activity by endo IV using two recombinant proteins (Mt1010 and Mt0764) from M. thermoautotrophicum. Mt1010 stimulated the DNA glycosylase activity of Mt0764 for DNA substrates containing 8-oxoguanine residues and increasing the formation of the Mt0764 protein-DNA complex. The interaction between Mt1010 and Mt0764 was observed by using an in vitro binding assay. These results suggest that association between endo III and endo IV may occur in vivo, and this contributes to efficient base excision repair for the oxidative damage of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号