首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Membrane-associated cytidine 5'-diphospho-1,2-diacyl-sn-glycerol (CDP-diacylglycerol):L-serine O-phosphatidyltransferase (phosphatidylserine synthase, EC2.7.8.8.) and CDP-diacylglycerol:myo-inositol phosphatidyltransferase (phosphatidylinositol synthase, EC 2.7.8.11) were solubilized from the microsomal fraction of Saccharomyces cerevisiae. A variety of detergents were examined for their ability to release phosphatidylserine synthase and phosphatidylinositol synthase activities from the microsome fraction. Both enzymes were solubilized from the microsome fraction with Renex 690 in yield over 80% with increase to specific activity of 1.6-fold. Both solubilized enzymatic activities were dependent on manganese ions and Triton X-100 for maximum activity. The pH optimum for each reaction was 8.0. The apparent Km values for CDP-diacylglycerol and serine for the phosphatidylserine synthase reaction were 0.1 and 0.25 mM, respectively. The apparent Km values for CDP-diacylglycerol and inositol for the phosphatidylinositol synthase reaction were 70 microM and 0.1 mM, respectively. Thioreactive agents inhibited both enzymatic activities. Both solubilized enzymatic activities were thermally inactivated at temperatures above 30 degrees C.  相似文献   

2.
The addition of inositol to the growth medium of Saccharomyces cerevisiae resulted in rapid changes in the rates of phospholipid biosynthesis. The partitioning of the phospholipid intermediate CDP-diacylglycerol was shifted to phosphatidylinositol at the expense of phosphatidylserine and its derivatives phosphatidylethanolamine and phosphatidylcholine. Serine at 133-fold greater concentrations than that of inositol shifted the partitioning of CDP-diacylglycerol to phosphatidylserine at the expense of phosphatidylinositol but to a much lesser degree. Kinetic experiments with pure phosphatidylserine synthase and phosphatidylinositol synthase indicated that the partitioning of CDP-diacylglycerol between phosphatidylserine and phosphatidylinositol was not governed by the affinities both enzymes have for their common substrate CDP-diacylglycerol. Instead, the main regulation of phosphatidylinositol and phosphatidylserine synthesis was through the exogenous supply of inositol. The Km of inositol (0.21 mM) for phosphatidylinositol synthase was 9-fold higher than cytosolic concentration of inositol (24 microM). The Km of serine (0.83 mM) for phosphatidylserine synthase was 3-fold below the cytosolic concentration of serine (2.6 mM). Therefore, inositol supplementation resulted in a dramatic increase in the rate of phosphatidylinositol synthesis, whereas serine supplementation resulted in little affect on the rate of phosphatidylserine synthesis. Inositol also contributed to the regulation of phosphatidylinositol and phosphatidylserine synthesis by having a direct affect on phosphatidylserine synthase activity. Kinetic experiments with pure phosphatidylserine synthase showed that inositol was a noncompetitive inhibitor of the enzyme with a Ki of 65 microM.  相似文献   

3.
The membrane-associated phospholipid biosynthetic enzyme CDP-diacylglycerol synthase (CTP:phosphatidate cytidylyltransferase, EC 2.7.7.41) was purified 2,300-fold from Saccharomyces cerevisiae. The purification procedure included Triton X-100 solubilization of mitochondrial membranes, CDP-diacylglycerol-Sepharose affinity chromatography, and hydroxylapatite chromatography. The procedure resulted in a nearly homogeneous enzyme preparation as determined by native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Radiation inactivation of mitochondrial associated and purified CDP-diacylglycerol synthase suggested that the molecular weight of the native enzyme was 114,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme preparation yielded two subunits with molecular weights of 56,000 and 54,000. Antibodies prepared against the purified enzyme immunoprecipitated CDP-diacylglycerol synthase activity and subunits. CDP-diacylglycerol synthase activity was dependent on magnesium ions and Triton X-100 at pH 6.5. Thio-reactive agents inhibited activity. The activation energy for the reaction was 9 kcal/mol, and the enzyme was thermally labile above 30 degrees C. The Km values for CTP and phosphatidate were 1 and 0.5 mM, respectively, and the Vmax was 4,700 nmol/min/mg. Results of kinetic and isotopic exchange reactions suggested that the enzyme catalyzes a sequential Bi Bi reaction mechanism.  相似文献   

4.
Thiophosphatidic acid (1,2-diacyl-sn-glycero-3-phosphorothioate; thioPA) was chemically synthesized from egg phosphatidylcholine-derived 1,2-diacylglycerol and PSCl3 and tested for its effects on enzymes which utilize phosphatidic acid (PA) in phospholipid biosynthesis. The compound was not a substrate for rat liver cytosolic PA phosphatase and strongly inhibited this enzyme activity. ThioPA was also a potent inhibitor of purified membrane-associated PA phosphatase from Saccharomyces cerevisiae in a competitive manner and exhibited an apparent Ki = 60 microM. In contrast, purified CDPdiacylglycerol synthase (PA:CTP cytidylyltransferase) from this organism was able to convert thioPA to CDP-diacylglycerol. The apparent Vmax for thioPA was 7-fold lower than that for PA, whereas the apparent Km for thioPA (70 microM) was 4-fold lower than that for PA. Calculation of the specificity constant (Vmax/Km) demonstrated that PA was the preferred substrate. These properties of thioPA indicate that this substance may prove useful in studies of phospholipid metabolism and function.  相似文献   

5.
Phosphatidylglycerophosphate synthase activity in Saccharomyces cerevisiae   总被引:4,自引:0,他引:4  
Cytidine 5'-diphospho-1,2-diacyl-sn-glycerol (CDP-diacylglycerol): sn-glycerol-3-phosphate phosphatidyltransferase (phosphatidylglycerophosphate synthase, EC 2.7.8.5) activity was characterized from the mitochondrial fraction of Saccharomyces cerevisiae. The pH optimum for the reaction was 7.0. Maximum activity was dependent on manganese (0.1 mM), magnesium (0.3 mM), or cobalt (1 mM) ions and the nonionic detergent Triton X-100 (1 mM). The apparent Km values for CDP-diacylglycerol and glycerol-3-phosphate were 33 and 27 microM, respectively. Optimal activity was at 30 degrees C with an energy of activation of 5.4 kcal/mol (1 cal = 4.1868 J). Phosphatidylglycerophosphate synthase activity was thermally labile above 40 degrees C. p-Chloromecuriphenylsulfonic acid, N-ethylmaleimide, and mercurous ions inhibited activity. Phosphatidylglycerophosphate synthase activity was partially solubilized from the mitochondrial fraction with 1% Triton X-100.  相似文献   

6.
Membrane-associated phosphatidate phosphatase (EC 3.1.3.4) was purified 9833-fold from the yeast Saccharomyces cerevisiae. The purification procedure included sodium cholate solubilization of total membranes followed by chromatography with DE53, Affi-Gel Blue, hydroxylapatite, Mono Q, and Superose 12. The procedure resulted in the isolation of a protein with a subunit molecular weight of 91,000 that was apparently homogeneous as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phosphatidate phosphatase activity was associated with the purified 91,000 subunit. The molecular weight of the native enzyme was estimated to be 93,000 by gel filtration chromatography with Superose 12. Maximum phosphatidate phosphatase activity was dependent on magnesium ions and Triton X-100 at pH 7. The Km value for phosphatidate was 50 microM, and the Vmax was 30 mumol/min/mg. The turnover number (molecular activity) for the enzyme was 2.7 x 10(3) min-1 at pH 7 and 30 degrees C. The activation energy for the reaction was 11.9 kcal/mol, and the enzyme was labile above 30 degrees C. Phosphatidate phosphatase activity was sensitive to thioreactive agents. Activity was inhibited by the phospholipid intermediate CDP-diacylglycerol and the neutral lipids diacylglycerol and triacylglycerol.  相似文献   

7.
Cytidine 5'-diphospho (CDP)-1,2-diacyl-sn-glycerol (CDPdiacylglycerol):sn-glycerol-3-phosphate phosphatidyltransferase (EC 2.7.8.5, phosphatidylglycero-P synthase) and CDPdiacylglycerol:L-serine O-phosphatidyltransferase (EC 2.7.8.8, phosphatidylserine synthase) activities were identified in the cell envelope fraction of the gram-positive anaerobe Clostridium perfringens. The association of phosphatidylglycero-P synthase and phosphatidylserine synthase with the cell envelope fraction of cell-free extracts was demonstrated by sucrose density gradient centrifugation, by both activities sedimenting with the 100,000 x g pellet and solubilization of both activities from the 100,000 x g pellet with Triton X-100. The pH optimum for both enzyme activities was 8.0 with tris(hydroxy-methyl)aminomethane-hydrochloride buffer. Phosphatidylglycero-P synthase activity was dependent on magnesium ions (100 mM). Phosphatidylserine synthase activity was dependent on manganese (0.1 mM) or magnesium ions (50 mM). Both enzyme activities were dependent on the addition of the nonionic detergent Triton X-100. Maximum phosphatidylglycero-P synthase and phosphatidylserine synthase activities were obtained when the molar ratio of Triton X-100 to CDP-diacylglycerol was 50:1 and 12:1, respectively. The Km for sn-glycero-3-P in the phosphatidylglycero-P synthase reaction was 0.1 mM. The Km for L-serine in the phosphatidylserine synthase reaction was 0.15 mM. Both enzyme activities were 100% stable for at least 20 min at 60 degrees C.  相似文献   

8.
The activity of phosphatidylserine (PS) synthase (CDP-1, 2-diacyl-sn-glycerol: l-serine O-phosphatidyltransferase, EC 2.7.8. 8) from Escherichia coli was studied after reconstitution with lipid vesicles of various compositions. PS synthase exhibited practically no activity in the absence of a detergent and with the substrate CDP-diacylglycerol (CDP-DAG) present only in the lipid vesicles. Inclusion of octylglucoside (OG) in the assay mixture increased the activity 20- to 1000-fold, the degree of activation depending on the lipid composition of the vesicles. Inclusion of additional CDP-DAG in the assay mixture increased the activity 5- to 25-fold. When the fraction of phosphatidylglycerol (PG) was increased from 15 to 100 mol% in the vesicles the activity increased 10-fold using the assay mixture containing OG. The highest activities were exhibited with the anionic lipids synthesized by E. coli, namely PG, diphosphatidylglycerol (DPG), and phosphatidic acid, while phosphatidylinositol gave a lower activity. Cryotransmission electron microscopy showed that transformation of the vesicles to micelles brings about an activation of the enzyme that is proportional to the degree of micellization. Thus, the activity of PS synthase is modulated by the lipid aggregate structure and by the fraction and type of anionic phospholipid in the aggregates. The increase in the activity caused by PG and DPG is physiologically relevant; it may be part of a regulatory mechanism that keeps the balance between phosphatidylethanolamine, and the sum of PG and DPG, nearly constant in wild-type E. coli cells.  相似文献   

9.
CDP-1,2-diacyl-sn-glycerol (CDP-diacylglycerol):myo-inositol phosphatidyltransferase (EC 2.7.8.11, phosphatidylinositol synthase) catalyzes the final step in the de novo synthesis of phosphatidylinositol in the endoplasmic reticulum fraction of germinating soybeans (Glycine max L. var Cutler 71). A variety of solubilization agents were examined for their ability to release phosphatidylinositol synthase activity from the microsome fraction. The most effective agent to solubilize the enzyme was the nonionic detergent Brij W-1. A 2.1-fold increase in specific activity was achieved using 1% Brij W-1 with 69% activity solubilized.  相似文献   

10.
Solubilization of phosphatidylinositol (PtdIns) synthase (CDP-diacylglycerol: myo-inositol 3-phosphatidyltransferase, EC 2.7.8.11) from rat pituitary (GH3) tumours was investigated. PtdIns synthase activity was partially extracted from crude membranes by 3 M-KCl. Prior separation of membranes revealed that a greater proportion of plasma-membrane PtdIns synthase activity was salt-extractable than was endoplasmic reticulum activity. The activity of the salt-extracted enzyme was maximized by low concentrations of 3-(3-cholamidopropyl) dimethylammonio-1-propanesulphonate (CHAPS; 0.5 mM), Triton X-100 (0.1 mM) or a phospholipid mixture (0.05 mg/ml), but higher concentrations of detergents were inhibitory. The activity of salt-extracted PtdIns synthase was 0.25 +/- 0.08 nmol/min per mg of protein. Salt-extracted PtdIns synthase activity was dependent on Mg2+ (maximal at 0.1 mM) and Mn2+ (maximal at 5 mM), and its pH optimum was in the range 7.0-7.5. The apparent Km for myo-inositol (in the presence of 0.1 mM-CDP-diacylglycerol) was 0.06 mM, and that for CDP-diacylglycerol (at 0.1 mM-myo-inositol) was 0.21 mM. Salt-extracted PtdIns synthase activity was potently inhibited by Ca2+ (50% inhibition at 1 microM), with over 90% inhibition at 10 microM-Ca2+. These data imply the existence of two forms of membrane-associated PtdIns synthase, namely salt-extractable and salt-resistant, with different intracellular localizations. The salt-extractable form of this enzyme may be a useful preparation for further characterization and purification of mammalian PtdIns synthase.  相似文献   

11.
Membrane-associated phosphatidylserine synthase (CDP-diacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) was purified from the microsomal fraction of Saccharomyces cerevisiae strains S288C and VAL2C(YEpCHO1). VAL2C(YEpCHO1) contains a hybrid plasmid bearing the structural gene for phosphatidylserine synthase and overproduces the enzyme 6-7 fold (Letts, V. A., Klig, L. S., Bae-Lee, M., Carman, G. M., and Henry, S. A. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 7279-7283) compared to wild-type S288C. The purification procedure included Triton X-100 extraction of the microsomal membranes, CDP-diacylglycerol-Sepharose affinity chromatography, and DE-53 chromatography. The procedure yielded a preparation from each strain containing a major peptide band (Mr = 23,000) upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phosphatidylserine synthase was dependent on manganese and Triton X-100 for maximum activity at pH 8.0. The apparent Km values for serine and CDP-diacylglycerol were 0.58 mM and 60 microM, respectively. Thioreactive agents inhibited enzyme activity. The enzyme was thermally labile above 40 degrees C. Results of isotopic exchange reactions between substrates and products suggest that the enzyme catalyzes a sequential Bi Bi reaction.  相似文献   

12.
13.
The activity of phosphatidylserine (PS) synthase (CDP-1,2-diacyl-sn-glycerol: l-serine O-phosphatidyltransferase, EC 2.7.8.8) from Escherichia coli was studied after reconstitution with lipid vesicles of various compositions. PS synthase exhibited practically no activity in the absence of a detergent and with the substrate CDP-diacylglycerol (CDP-DAG) present only in the lipid vesicles. Inclusion of octylglucoside (OG) in the assay mixture increased the activity 20- to 1000-fold, the degree of activation depending on the lipid composition of the vesicles. Inclusion of additional CDP-DAG in the assay mixture increased the activity 5- to 25-fold. When the fraction of phosphatidylglycerol (PG) was increased from 15 to 100 mol% in the vesicles the activity increased 10-fold using the assay mixture containing OG. The highest activities were exhibited with the anionic lipids synthesized by E. coli, namely PG, diphosphatidylglycerol (DPG), and phosphatidic acid, while phosphatidylinositol gave a lower activity. Cryotransmission electron microscopy showed that transformation of the vesicles to micelles brings about an activation of the enzyme that is proportional to the degree of micellization. Thus, the activity of PS synthase is modulated by the lipid aggregate structure and by the fraction and type of anionic phospholipid in the aggregates. The increase in the activity caused by PG and DPG is physiologically relevant; it may be part of a regulatory mechanism that keeps the balance between phosphatidylethanolamine, and the sum of PG and DPG, nearly constant in wild-type E. coli cells.  相似文献   

14.
The membrane-associated phospholipid biosynthetic enzyme cytidine 5'-diphospho-1,2-diacyl-sn-glycerol:L-serine O-phosphatidyltransferase (phosphatidylserine synthase; EC 2.7.8.8) was partially purified 337-fold from a cell-free extract of the gram-positive pathogenic anaerobe Clostridium perfringens (ATCC 3624). The purification procedure included extraction from the cell envelope with the nonionic detergent Triton X-100, followed by affinity chromatography on cytidine 5'-diphosphate-diacylglycerol-Sepharose. When the partially purified enzyme was subjected to polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, two major bands were evident with apparent minimum molecular weights of 39,000 and 31,000. Activity of phosphatidylserine synthase was dependent on the addition of manganese ions (3 mM) and Triton X-100 (2.7 mM) for maximum activity. The rate of catalysis was maximal at 40 degrees C (with rapid thermal inactivation above this temperature), and the pH optimum was 8.5. The apparent Km values for cytidine 5'-diphosphate-diacylglycerol and L-serine were 0.24 and 0.26 mM, respectively. The synthetic (forward) reaction was favored, as indicated by an equilibrium constant of 82, and the energy of activation was found to be 18 kcal/mol (75,362 J/mol).  相似文献   

15.
Rat liver dolichyl-phosphomannose synthase is optimally active when the enzyme is reconstituted with lipids that prefer a nonlamellar macroscopic organization in isolation, such as phosphatidylethanolamine (PE), but the enzyme is only negligibly active in the presence of lipids that normally form stable bilayers, such as phosphatidylcholine (PC) [Jensen, J.W., & Schutzbach, J.S. (1985) Eur. J. Biochem. 153, 41-48]. We now report that the activity of the synthase can be modulated by incorporating diacylglycerol and lysophosphatidylcholine into the lipid matrix. Enzyme activity in PC bilayers was stimulated by the presence of diacylglycerol, a lipid that has a conical dynamic molecular shape and disrupts bilayer stability. In PC/diacylglycerol mixtures the apparent Km for dolichyl-P was 30-fold lower than the apparent Km for the polyprenol acceptor in PC membranes. Enzyme activity was also stimulated when diacylglycerol was generated in situ by incubation of PC vesicles with phospholipase C. In contrast, the activity of enzyme reconstituted in PE dispersions, or in PE/PC bilayers, was markedly inhibited by the presence of lysophospholipids. Enzyme activity was also reduced by the in situ generation of lysophospholipids in PE/PC vesicles by incubation with phospholipase A2. Since lysophospholipids and diacylglycerols arise in vivo as products of phospholipid metabolism, modulation of enzyme activity by these compounds may represent a potential regulatory mechanism for the synthesis of oligosaccharide lipids.  相似文献   

16.
The effect of growth phase on the membrane-associated phospholipid biosynthetic enzymes CDP-diacylglycerol synthase, phosphatidylserine synthase, phosphatidylinositol synthase, and the phospholipid N-methyltransferases in wild-type Saccharomyces cerevisiae was examined. Maximum activities were found in the exponential phase of cells grown in complete synthetic medium. As cells entered the stationary phase of growth, the activities of the CDP-diacylglycerol synthase, phosphatidylserine synthase, and the phospholipid N-methyltransferases decreased 2.5- to 5-fold. The subunit levels of phosphatidylserine synthase and the cytoplasmic-associated enzyme inositol-1-phosphate synthase were not significantly affected by the growth phase. When grown in medium supplemented with inositol-choline, cells in the exponential phase of growth had reduced CDP-diacylglycerol synthase, phosphatidylserine synthase, and phospholipid N-methyltransferase activities, with repressed subunit levels of phosphatidylserine synthase and inositol-1-phosphate synthase compared with cells grown without inositol-choline. Enzyme activity levels remained reduced in the stationary phase of growth of cells supplemented with inositol-choline. The phosphatidylserine synthase and inositol-1-phosphate synthase subunit levels, however, were depressed. Phosphatidylinositol synthase (activity and subunit) was not affected by growth in medium supplemented with or without inositol-choline or the growth phase of the culture. The phospholipid composition of cells in the exponential and stationary phase of growth was also examined. The phosphatidylinositol to phosphatidylserine ratio doubled in stationary-phase cells. The phosphatidylcholine to phosphatidylethanolamine ratio was not significantly affected by the growth phase of cells.  相似文献   

17.
Biosynthesis of Cardiolipin in Plant Mitochondria   总被引:2,自引:1,他引:1       下载免费PDF全文
Frentzen M  Griebau R 《Plant physiology》1994,106(4):1527-1532
The properties of cardiolipin synthase were investigated in mitochondria and submitochondrial fractions from etiolated mung bean (Vigna radiata L.) seedlings. Direct evidence is presented that the enzyme utilizes CDP-diacylglycerol in addition to phosphatidylglycerol for the synthesis of cardiolipin. Cardiolipin synthase had an alkaline pH optimum of about 9 and required divalent cations for activity. Maximal activity was obtained in the presence of 16 mM MnCl2. The apparent Km values for CDP-diacylglycerol and phosphatidylglycerol were 0.8 and 50 [mu]M, respectively. Cardiolipin synthase was localized predominantly in the inner membrane of mung bean mitochondria and displayed a substrate species specificity. Highest activities were measured with the dioleoyl species of both CDP-diacylglycerol and phosphatidylglycerol, and somewhat lower activities were measured with mixed species of the two substrates containing a palmitoyl and an oleoyl group. On the other hand, the cardiolipin synthase hardly used the dipalmitoyl species and strongly discriminated against CDP-dipalmitoylglycerol from a mixture with CDP-dioleoylglycerol.  相似文献   

18.
The Saccharomyces cerevisiae DGK1 gene encodes a diacylglycerol kinase enzyme that catalyzes the formation of phosphatidate from diacylglycerol. Unlike the diacylglycerol kinases from bacteria, plants, and animals, the yeast enzyme utilizes CTP, instead of ATP, as the phosphate donor in the reaction. Dgk1p contains a CTP transferase domain that is present in the SEC59-encoded dolichol kinase and CDS1-encoded CDP-diacylglycerol synthase enzymes. Deletion analysis showed that the CTP transferase domain was sufficient for diacylglycerol kinase activity. Point mutations (R76A, K77A, D177A, and G184A) of conserved residues within the CTP transferase domain caused a loss of diacylglycerol kinase activity. Analysis of DGK1 alleles showed that the in vivo functions of Dgk1p were specifically due to its diacylglycerol kinase activity. The DGK1-encoded enzyme had a pH optimum at 7.0-7.5, required Ca(2+) or Mg(2+) ions for activity, was potently inhibited by N-ethylmaleimide, and was labile at temperatures above 40 degrees C. The enzyme exhibited positive cooperative (Hill number = 2.5) kinetics with respect to diacylglycerol (apparent K(m) = 6.5 mol %) and saturation kinetics with respect to CTP (apparent K(m) = 0.3 mm). dCTP was both a substrate (apparent K(m) = 0.4 mm) and competitive inhibitor (apparent K(i) = 0.4 mm) of the enzyme. Diacylglycerol kinase activity was stimulated by major membrane phospholipids and was inhibited by CDP-diacylglycerol and sphingoid bases.  相似文献   

19.
Cytidine diphosphate (CDP)-diacylglycerol synthase (cytidine triphosphate:phosphatidate cytihyltransferase, EC 2.7.7.41) catalyzes the formation of CDP-diacylglycerol, which is the precursor of phosphatidylinositol, phosphatidylglycerol, and cardiolipin. We report the first cloning, to our knowledge, of two plant cDNAs, StCDS1 and AtCDS1, coding for CDP-diacylglycerol synthase from potato (Solanum tuberosum) and Arabidopsis thaliana, respectively. The two proteins belong to the eukaryotic type of CDP-diacylglycerol synthase and contain eight predicted transmembrane-spanning domains. We analyzed gene expression in shoot and root tissues of potato plants and demonstrated enzyme activity by expression of N-terminally truncated, recombinant StCDS1 in Escherichia coli.  相似文献   

20.
Plasma-membrane fractions were prepared from the livers of rats injected with 0.15 M-NaCl (controls) or vasopressin (1 nmol/kg body wt.). When assayed in the presence of deoxycholate, vasopressin increased the Vmax. of plasma-membrane diacylglycerol kinase 2-4-fold, and the apparent Km of the enzyme for 1,2-dioleoyl-sn-glycerol was doubled. The effect of vasopressin on the Vmax. of plasma-membrane diacylglycerol kinase was twice as great between pH 7 and 8.5 than at pH 6 or 6.5. Vasopressin doubled the activity of diacylglycerol kinase in the plasma-membrane fraction when the enzyme was assayed with phosphatidylserine rather than deoxycholate as stimulator, and when either 1-stearoyl-2-arachidonoyl-sn-glycerol or 1,2-dioleoyl-sn-glycerol was the substrate. In perfused livers vasopressin (10 nM) increased the Vmax. of plasma-membrane diacylglycerol kinase 2-fold, and phenylephrine (3 microM) gave a similar effect. Vasopressin doubled diacylglycerol kinase activity in hepatocytes that had been preincubated for 55 min, but not in cells that had only been preincubated for 15 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号