首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of molecular changes occur during the process of apoptosis. Much of the recent work has focused on changes in critical cellular proteins, proteins necessary for the initiation and continuation of the apoptotic process. Given the fact that numerous membrane changes occur throughout the apoptotic process, we initiated an investigation aimed at determining the major lipid changes that occurred during programmed cell death. When ionizing radiation was used to initiate the apoptotic process in Jurkat cells, one of the major changes that occurred within 24 h was an increase in a species with a m/z of 572 as determined by negative ion electrospray mass spectrometry. This particular mass ion displayed high performance liquid chromatography characteristics of a neutral lipid species. Further analysis by collision-induced-dissociation tandem mass spectrometry indicated only one daughter species indicative of a Cl adduct and therefore a parental mass of 537. Comparison to a commercial C16 ceramide yielded identical spectra by mass spectrometry (MS) and MS/MS analysis in the negative ion mode. Increases in C16 ceramide levels occurred 2 h after initiation of apoptosis by ionizing radiation, and its accumulation paralleled apoptosis as determined by cellular morphology. Interestingly, radiation-sensitive Jurkat cells displayed increased levels of long term C16 ceramide accumulation, whereas radiation-resistant K562 cells did not. These findings were supported by increases in caspase-3 activity in Jurkat cells, whereas caspase-3 activity in K562 cells remained unchanged. C16 ceramide accumulation and sensitivity to ionizing radiation was investigated further in a melanoma cell line. Only those cells that were radiation sensitive (approximately 70-75%) displayed increases in long term ceramide accumulation. Taken together, these results indicated a correlation between increases in C16 ceramide accumulation and radiation sensitivity. Increases in long term C16 ceramide accumulation were also seen in Fas-induced apoptosis, which occurred at time points greater than 2 h. Analysis of mitochondrial modifications using the mitochondrial probe nonyl acridine orange (NAO) indicated that initial increases in C16 ceramide levels closely paralleled the decrease in mitochondrial mass during Fas or radiation-induced apoptosis. Taken together, these results support a role for C16 ceramide in the effector (mitochondrial) phase of apoptosis.  相似文献   

2.
The bacterial strain MM-B16, which showed strong antifungal and antioomycete activity against some plant pathogens, was isolated from a mountain forest soil in Korea. Based on the physiological and biochemical characteristics and 16S ribosomal DNA sequence analysis, the bacterial strain MM-B16 was identical to Pseudomonas fluorescens. An antibiotic active against Colletotrichum orbiculare and Phytophthora capsici in vitro and in vivo was isolated from the culture filtrates of P. fluorescens strain MM-B16 using various chromatographic procedures. The molecular formula of the antibiotic was deduced to be C(10)H(11)NO(2)S (M(+), m/z 209.0513) by analysis of electron impact mass spectral data. Based on the nuclear magnetic resonance and infrared spectral data, the antibiotic was confirmed to have the structure of a thiazoline derivative, aerugine [4-hydroxymethyl-2-(2-hydroxyphenyl)-2-thiazoline]. C. orbiculare, P. capsici, and Pythium ultimum were most sensitive to aerugine (MICs for these organisms were approximately 10 micro g ml(-1)). However, no antimicrobial activity was found against yeasts and bacteria even at concentrations of more than 100 micro g ml(-1). Treatment with aerugine exhibited a significantly high protective activity against development of phytophthora disease on pepper and anthracnose on cucumber. However, the control efficacy of aerugine against the diseases was in general somewhat less than that of the commercial fungicides metalaxyl and chlorothalonil. This is the first study to isolate aerugine from P. fluorescens and demonstrate its in vitro and in vivo antifungal and antioomycete activities against C. orbiculare and P. capsici.  相似文献   

3.
Eight furanocoumarins, one coumarin and four acridone derivatives have been identified in the roots of Thamnosma rhodesica (Rutaceae). Rhodesiacridone, one of these acridone derivatives, is reported here for the first time. Its structure was elucidated by spectrometric methods including ESI-HR, EI, DCI mass spectrometry, 1H, 13C and 2D NMR experiments. This novel compound showed activities against the intracellular form of a human pathogen, the protozoan parasite Leishmania major. Two known acridone related compounds, gravacridonediol and 1-hydroxy-10-methylacridone, exhibited activities against the intracellular form of the same parasite and the fungus Cladosporium cucumerinum, respectively.  相似文献   

4.
Frank S  van Die I  Geyer R 《Glycobiology》2012,22(5):676-695
Immune responses induced by glycans upon infection with Schistosoma mansoni may be mediated by either schistosomal glycoproteins or glycosphingolipids. In this study, we have elucidated the structural features of both carbohydrate moieties and respective ceramide units of complex glycosphingolipids from adult S. mansoni. Obtained data revealed a vast structural heterogeneity due to manifold combinations of different oligosaccharides and ceramide entities. Observed carbohydrate moieties included Lewis(X) (Le(X); Gal(β1-4)[Fuc(α1-3)]GlcNAc) as well as, in part, multiply fucosylated LacdiNAc (LDN; GalNAc(β1-4)GlcNAc) carbohydrate epitopes. Corresponding lipid portions comprised predominantly C18-sphingosine as well as C18- and C20-phytosphingosine derivatives. Intriguingly, glycosphingolipids carrying an Le(X) epitope contained predominantly C18-sphingosine, whereas LDN-based species exhibited mostly phytosphingosine derivatives, in addition to C18-sphingosine, indicating that the two classes of glycosphingolipids might be synthesized via different biosynthetic routes. Compared with literature data, adult worm glycosphingolipids with Le(X) epitopes revealed clear structural differences in comparison to corresponding cercarial species which have been shown to exhibit mainly sphinganine bases with 18-21 carbon atoms. Therefore, it may be hypothesized that the divergent structural features of the respective ceramide moieties are responsible for the published observation that only adult worm, but not cercarial glycosphingolipids are able to induce dendritic cell activation skewing the T-cell response toward a Th1 profile.  相似文献   

5.
Gangliosides are particularly abundant in the central nervous system (CNS) and thought to play important roles in memory formation, neuritogenesis, synaptic transmission, and other neural functions. Although several molecular species of gangliosides have been characterized and their individual functions elucidated, their differential distribution in the CNS are not well understood. In particular, whether the different molecular species show different distribution patterns in the brain remains unclear. We report the distinct and characteristic distributions of ganglioside molecular species, as revealed by imaging mass spectrometry (IMS). This technique can discriminate the molecular species, raised from both oligosaccharide and ceramide structure by determining the difference of the mass-to-charge ratio, and structural analysis by tandem mass spectrometry. Gangliosides in the CNS are characterized by the structure of the long-chain base (LCB) in the ceramide moiety. The LCB of the main ganglioside species has either 18 or 20 carbons (i.e., C18- or C20-sphingosine); we found that these 2 types of gangliosides are differentially distributed in the mouse brain. While the C18-species was widely distributed throughout the frontal brain, the C20-species selectively localized along the entorhinal-hippocampus projections, especially in the molecular layer (ML) of the dentate gyrus (DG). We revealed development- and aging-related accumulation of the C-20 species in the ML-DG. Thus it is possible to consider that this brain-region specific regulation of LCB chain length is particularly important for the distinct function in cells of CNS.  相似文献   

6.
Fluorescent D-erythro-sphingosines bearing the diphenyl-1,3,5-hexatrienyl group (DPH) as fluorophore were synthesized for the first time. Two isomers, the DPH-4(E)- and DPH-4(Z)-sphingosine [(2S,3R)-2-amino-6-(p-(18-phenyl)-13,15,17(E,E,E)-hexatrienyl)phenylh ex- 4(E/Z)-en-1,3-diol], and the N-hexanoyl derivative of DPH-4(E)-sphingosine (C6-DPH-ceramide) were studied for their distribution and metabolism in cultured human skin fibroblasts. Both DPH-sphingosines (4-trans and 4-cis) were not significantly acylated to ceramide in living cells, but converted to ceramide in vitro by microsomal protein from mouse brain, although slower than natural D-erythro-sphingosine. DPH-4(Z)-sphingosine showed the same Km like D-erythro-sphingosine (155 microM), but had a lower Vmax value, 0.85 instead of 1.9 nmol/mgh. An even poorer substrate was DPH-4(E)-sphingosine with a Km of 220 microM and a Vmax of 0.81 nmol/mgh. In cultured human fibroblasts, C6-DPH-ceramide was rapidly anabolized mainly to sphingomyelin. In addition, small quantities of glucosylceramide were also formed. DPH-sphingosines were easily incorporated into plasma membranes of cultured fibroblasts and are likely to undergo flip flop since intracellular membranes also became labeled, when endocytosis was blocked at low temperature (7 degrees C). The N-hexanoyl-DPH-trans-sphingosine, C6-DPH-ceramide, like NBD-C6-ceramide (Lipsky, N. G., R. E. Pagano: Science 228, 745-747 (1985)) labeled intracellular membranes at 7 degrees C and predominantly Golgi membranes at 37 degrees C. Like NBD-C6-ceramide (Pagano, R. E., M. A. Sepanski, O. C. Martin: J. Cell Biol. 109, 2067-2079 (1989)) the C6-DPH-ceramide also stained the Golgi complex in prefixed cells whereas DPH-trans- and DPH-cis-sphingosine did not, indicating that it is the ceramide structure rather than the fluorophore itself which is responsible for this staining. DPH-sphingosine opens a way for chemical synthesis of DPH-glycolipids and DPH-sphingomyelin which would well serve as donors in fluorescence energy transfer experiments to study possible sphingolipid clustering in biological membranes.  相似文献   

7.
Glycosphingolipids of Schistosoma mansoni adults, cercariae and eggs comprise ceramide monohexosides (CMH) with glucose or galactose and ceramide dihexosides (CDH) with the schistosome-specific structure GalNAc(beta1-4)Glc(1-1)ceramide. Ceramide analysis revealed C18- and C20-phytosphingosines in egg CMH, C18-sphinganine as well as C18-, C19- and C20-phytosphingosines in cercarial CMH, and C18- and C20-phytosphingosines as well as C18-sphingosine and C18-sphinganine in adult CMH. For all three life cycle stages, the predominant fatty acid was C16h:0. As a characteristic feature, a range of saturated, unsaturated and hydroxylated long-chain fatty acids with 24-28 carbon atoms were additionally found in minor cercarial CMH species. The corresponding ceramides represented major constituents in cercarial CDH, while adult and egg CDH were dominated by ceramides with short fatty acid chains. The resultant ceramide patterns could be correlated with the differential expression of carbohydrate antigens on schistosomal glycolipids at various stages. A possible impact of ceramide structure on the biosynthesis of the carbohydrate moieties is discussed.  相似文献   

8.
Structural studies on the cerebroside isolated from the yeast form of a dimorphic pathogen, Candida albicans were carried out using fast atom bombardment mass spectrometry (FAB/MS), proton magnetic resonance spectrometry, gas chromatography-mass spectrometry and usual chemical methods. The component sugar was only glucose attached to ceramide in a beta-configuration. The major fatty acid was 2-hydroxystearic acid (62%). The predominant long chain base was identified as 9-methyl-C18-sphinga-4,8-dienine which is widely distributed in fungi and reported to be essential to the fruit-inducing activity of fungi. Therefore, the structure of the main molecular species of the cerebroside was determined to be N-2-hydroxystearoyl-1-O-beta-glucosyl-9-methyl-C18-sphinga-4 ,8-dienine. Cerebroside prepared from the mycelial form of C. albicans has the same structure.  相似文献   

9.
Two acidic glycosphingolipids (gangliosides) derived from mouse macrophage membranes and separated by thin-layer chromatography have a strong cytostatic effect on human and mouse tumor cells. The structure of the two gangliosides, named M phi G1 and M phi G2, was elucidated by application of physicochemical and immunochemical methods. Gas chromatography and mass spectrometry of M phi G1 and M phi G2 classified them as isomeric monosialogangliosides with ceramide moieties composed of sphingosine as the long-chain base, C16 and C18 fatty acids, respectively, and a lacto-tetraose backbone. For M phi G1, additional immunochemical findings led to the proposed structure IV3NeuAc-nLcOse4Cer. The immunochemical reactions of M phi G2 suggest a branched structure for the oligosaccharide moiety.  相似文献   

10.
The neutral glycosphingolipid fraction from adults of the pig parasitic nematode, Ascaris suum, was resolved into four components on thin-layer chromatography. The high-performance liquid chromatography-isolated components were structurally analysed by: methylation analysis; exoglycosidase cleavage; gas-liquid chromatography/mass spectrometry; liquid secondary-ion mass spectrometry; and, in particular, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Their chemical structures were determined as: Glc(β1-1)ceramide, Man(β1-4)Glc(β1-1)ceramide, GlcNAc(β1-3)Man(β1-4)Glc(β1-1)ceramide and Gal(α1-3)GalNAc(β1-4)GlcNAc(β1-3)Man(β1-4)Glc(β1-1)ceramide; and were characterized as belonging to the arthro-series of protostomial glycosphingolipids. No glycosphingolipid component corresponding to ceramide tetrasaccharide was detected during these analyses. The ceramide composition of the parent glycosphingolipids was dominated by the 2-(R)-hydroxy C24:0 fatty acid, cerebronic acid, and C17 sphingoid-bases: 15-methylhexadecasphing-4-enine and 15-methylhexadecaphinganine in approximately equal proportions. The component ceramide monohexoside was characterized by an additional 15-methylhexadecaphytosphingosine. Abbreviations: CDH, ceramide dihexoside; Cer, ceramide; CMH, ceramide monohexoside; CPH, ceramide pentahexoside; CTH, ceramide trihexoside; CTetH, ceramide tetrahexoside; Hex, hexose; HexNAc, N-acetylhexosamine; HPTLC, high-performance thin-layer chromatography; LSIMS, liquid secondary-ion mass spectrometry; MALDI-TOF-MS, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; N-, Nz- and A-glyco(sphingo)lipids, neutral, neutralzwitterionic and acidic glyco(sphingo)lipids, respectively This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

11.
Much discussion has centered on the biochemical mechanism by which ceramide is produced and functions as a signalling molecule in cells. To identify proteins involved in ceramide signalling, we synthesized a radioactively labelled ceramide analogue equipped with a photosensitive group: N-(p-trifluoromethyl-diazirinyl)phenyl-ethyl-2-[35S]-2-thioacetyl-d-erythro-C18-sphingosine ([35S]-TDS-ceramide). This compound was then employed in photo-affinity labelling experiments in primary cultured cerebellar neurons. Due to the hydrophobic nature of the compound, most of the cell-associated radioactivity was recovered in the lipid fraction while only about 0.1% of radioactivity was photocoupled to proteins. In order to improve protein labelling the cytosolic fraction of rapidly growing human neuroblastoma cells (SH-SY5Y) was isolated and subjected to ceramide affinity chromatography prior to photo-affinity labelling. Following electrophoresis proteins photocoupled to ceramide were identified by MALDI mass spectrometry in combination with tryptic digestion and turned out to be either cytoskeletal or stress proteins that are highly abundant in cytosol and contain at least one hydrophobic domain.  相似文献   

12.
Magnaporthe grisea is a fungal pathogen that infects rice leaves and causes rice blast, a devastating crop disease. M. grisea produces active elicitors of the hypersensitive response in rice that were previously identified as ceramide monohexosides (CMHs). Using several chromatographic approaches, mass spectrometry, and nuclear magnetic resonance, we identified ceramide mono- and dihexosides (CDH) in purified lipid extracts from M. grisea cells. As described by other authors, CMH consists of a ceramide moiety containing 9-methyl-4,8-sphingadienine in amidic linkage to 2-hydroxyoctadecenoic or 2-hydroxyhexadecenoic acids and a carbohydrate segment consisting of one residue of glucose. CDHs, however, contain beta-galactose (1-->4)-linked to beta-glucose as sugar units and phytosphingosine as the long-chain base, bound to a C24 alpha-hydroxylated fatty acid. To our knowledge, this is the first report on the occurrence of CDH in a fungal species and illustrates the existence of an alternative path of ceramide glycosylation in fungal cells.  相似文献   

13.
Ceramide is a pivotal molecule in signal transduction and an essential structural component of the epidermal permeability barrier. The epidermis is marked by a high concentration of ceramide and by a unique spectrum of ceramide species: Besides the two ceramide structures commonly found in mammalian tissue, N-acylsphingosine and N-2-hydroxyacyl-sphingosine, six additional ceramides differing in the grade of hydroxylation of either the sphingosine base or the fatty acid have been identified in the epidermis. Here we report on the characterization of an IgM-enriched polyclonal mouse serum against ceramide. In dot blot assays with purified epidermal lipids the antiserum bound to a similar extent to N-acyl-sphingosine (ceramide 2), N-acyl-4-hydroxysphinganine (ceramide 3), and N-(2-hydroxyacyl)-sphingosine (ceramide 5), whereas no specific reaction was detected with glycosylceramides, sphingomyelin, free sphingosine, phospholipids, or cholesterol. In contrast, a monoclonal IgM antibody, also claimed to be specific for ceramide, was shown to bind specifically to sphingomyelin and therefore was not further investigated. In thin-layer chromatography immunostaining with purified lipids a strong and highly reproducible reaction of the antiserum with ceramide 2 and ceramide 5 was observed, whereas the reaction with ceramide 1 and ceramide 3 was weaker and more variable. Ceramide 2 and ceramide 5 were detected in the nanomolar range at serum dilutions of up to 1:100 by dot blot and thin-layer immunostaining. In thin-layer chromatography immunostaining of crude lipid extracts from human epidermis, the antiserum also reacted with N-(2-hydroxyacyl)-4-hydroxysphinganine (ceramide 6) and N-(2-hydroxyacyl)-6-hydroxysphingosine (ceramide 7). Furthermore, the suitability of the antiserum for the detection of endogenous ceramide by immunolight microscopy was demonstrated on cryoprocessed human skin tissue. Double immunofluorescence labeling experiments with the anti-ceramide antiserum and the recently described anti-glucosylceramide antiserum (Brade et al., 2000, Glycobiology 10, 629) showed that both lipids are concentrated in separate epidermal sites. Whereas anti-ceramide stained the dermal and basal epidermal cells as well as the corneocytes, anti-glucosylceramide staining was concentrated in the stratum granulosum. In conclusion, the specificity and sensitivity of the reagent will enable studies on the subcellular distribution and biological functions of endogenous ceramide.  相似文献   

14.
The late endosomal/lysosomal compartment (LE/LY) plays a key role in sphingolipid breakdown, with the last degradative step catalyzed by acid ceramidase. The released sphingosine can be converted to ceramide in the ER and transported by ceramide transfer protein (CERT) to the Golgi for conversion to sphingomyelin. The mechanism by which sphingosine exits LE/LY is unknown but Niemann-Pick C1 protein (NPC1) has been suggested to be involved. Here, we used sphingomyelin, ceramide and sphingosine labeled with [(3) H] in carbon-3 of the sphingosine backbone and targeted them to LE/LY in low-density lipoprotein (LDL) particles. These probes traced LE/LY sphingolipid degradation and recycling as suggested by (1) accumulation of [(3) H]-sphingomyelin-derived [(3) H]-ceramide and depletion of [(3) H]-sphingosine upon acid ceramidase depletion, and (2) accumulation of [(3) H]-sphingosine-derived [(3) H]-ceramide and attenuation of [(3) H]-sphingomyelin synthesis upon CERT depletion. NPC1 silencing did not result in the accumulation of [(3) H]-sphingosine derived from [(3) H]-sphingomyelin/LDL or [(3) H]-ceramide/LDL. Additional evidence against NPC1 playing a significant role in LE/LY sphingosine export was obtained in experiments using the [(3) H]-sphingolipids or a fluorescent sphingosine derivative in NPC1 knock-out cells. Instead, NPC1-deficient cells displayed an increased affinity for sphingosine independently of protein-mediated lipid transport. This likely contributes to the increased sphingosine content of NPC1 cells.  相似文献   

15.
A novel uronic acid-containing glycosphingolipid (UGL-1) was isolated from the ascidian Halocynthia roretzi. UGL-1 was prepared from chloroform-methanol extracts and purified by the use of successive column chromatography on DEAE-Sephadex, Florisil, and Iatrobeads. Chemical structural analysis was performed using methylation analysis, gas chromatography, gas chromatography-mass spectrometry, matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry, and 1H-NMR spectra. The chemical structure of UGL-1 was determined to be a glucuronic acid-containing glycosphingolipid, Galbeta1-4(Fucalpha1-3)GlcAbeta1-1Cer. The ceramide component was composed of C16:0 and C18:0 acids and C16-, C17-, and C18-phytosphingosines as major components.  相似文献   

16.
Heterocyclic analogs of ceramide as 3-alkanoyl or benzoyl-4-(1-hydroxy-2-enyl)-oxazolidin-2-ones were designed by binding of primary alcohol and amide in sphinogosine backbone as a carbamate. They were synthesized by addition of acyl halide to the common ring 4-(1-t-butyldimethylsilyloxyhexadec-2-enyl)-oxazolidin-2-one which was elaborated from chiral aziridine-2-carboxylate including stereoselective reduction and ring opening reactions as key steps. Other analogs with different carbon frame at C4 position which is corresponding to the sphingoid backbone were prepared from 3-cyclopentanecarbonyl-4-(1-t-butyldimethylsilyloxybut-2-enyl)-oxazolidin-2-one and straight and cyclic alkenes by cross metathesis. All compounds were tested as antileukemic drugs against human leukemia HL-60 cells. Many of them including propionyl, cyclopentanoyl and p-nitrobenzoyl-4-(1-hydroxyhexadec-2-enyl)-oxazolidin-2-ones showed better antileukemic activities than natural C2-ceramide with good correlation between cell death and DNA fragmentation. There is a drastic change of the activities by the carbon chain lengths at C4 position. Cytotoxicity was induced by caspase activation without significant accumulation of endogenous ceramide concentration or any perturbation of ceramide metabolism.  相似文献   

17.
The potent sphingolipid metabolite sphingosine 1-phosphate is produced by phosphorylation of sphingosine catalyzed by sphingosine kinase (SphK) types 1 and 2. In contrast to pro-survival SphK1, the putative BH3-only protein SphK2 inhibits cell growth and enhances apoptosis. Here we show that SphK2 catalytic activity also contributes to its ability to induce apoptosis. Overexpressed SphK2 also increased cytosolic free calcium induced by serum starvation. Transfer of calcium to mitochondria was required for SphK2-induced apoptosis, as cell death and cytochrome c release was abrogated by inhibition of the mitochondrial Ca(2+) transporter. Serum starvation increased the proportion of SphK2 in the endoplasmic reticulum and targeting SphK1 to the endoplasmic reticulum converted it from anti-apoptotic to pro-apoptotic. Overexpression of SphK2 increased incorporation of [(3)H]palmitate, a substrate for both serine palmitoyltransferase and ceramide synthase, into C16-ceramide, whereas SphK1 decreased it. Electrospray ionizationmass spectrometry/mass spectrometry also revealed an opposite effect on ceramide mass levels. Importantly, specific down-regulation of SphK2 reduced conversion of sphingosine to ceramide in the recycling pathway and conversely, down-regulation of SphK1 increased it. Our results demonstrate that SphK1 and SphK2 have opposing roles in the regulation of ceramide biosynthesis and suggest that the location of sphingosine 1-phosphate production dictates its functions.  相似文献   

18.
To investigate in detail the expression of glycosphingolipids (GSLs) on endothelial cells, 4.85 x 10(9) human umbilical vein endothelial cells (HUVECs) were cultivated in a 2 l bioreactor using microcarriers as a support for anchorage dependent growing cells. Neutral GSLs and gangliosides were isolated and their structures were determined by TLC immunostaining, fast atom bombardment-mass spectrometry (FAB-MS) of the native GSLs, and gas chromatography-electron impact mass spectrometry (GC-EIMS) of partially methylated alditol acetates. GbOse4Cer, GbOse3Cer, and LacCer, all carrying mainly C24- and C16-fatty acid beside C18-sphingosine, were detected as the major neutral GSLs (36%, 23%, and 15% of the total orcinol stain, respectively); GlcCer, nLcOse4Cer, and nLcOse6Cer were expressed to substantial minor amounts (9%, 12%, and 5% of the total orcinol stain, respectively). TLC immunostaining revealed the presence of lipid bound Lewisx antigen, whereas the isomeric Lewisa structure was detectable only in very low quantities. GM3(Neu5Ac) with C18-sphingosine was the major ganglioside constituting about 90% of the whole ganglioside fraction. The fatty acid composition was determined by GC-MS of fatty acid methyl esters, indicating the predominance of C24- and C16-substituted GM3(Neu5Ac), followed by C18- and C22-substituted species. Terminally alpha2-3 sialylated neolacto-series ganglioside IV3Neu5Ac-nLcOse4Cer was the second most abundant ganglioside in HUVECs (8% of the total resorcinol stain), and IV6Neu5Ac-nLcOse4Cer and VI3Neu5Ac-nLcOse6Cer (together less than 2% of total resorcinol stain) were found in minor quantities. Lipid bound sialyl Lewisx antigen with poly-N-acetyllactosaminyl chains, and traces of gangliotetraose-type gangliosides GM1 and GD1a were identified by TLC immunostaining. The expression of dominant neutral GSLs LacCer, GbOse3Cer, and GbOse4Cer, and of ganglioside GM3(Neu5Ac) was assayed by indirect immunofluorescence microscopy of cell layers grown in chamber slides, each showing different plasma membrane and subcellular distribution patterns. The complete structural characterization of GSLs from HUVECs contributes to our understanding about their functional role, not only of the carbohydrate but also of the lipid moiety, as receptors for bacterial toxins, as cell surface antigens of cellular interaction and as receptors for blood components and macromolecules of the extracellular matrix.  相似文献   

19.
Increased cellular ceramide accounts in part for UVB irradiation-induced apoptosis in cultured human keratinocytes with concurrent increased glucosylceramide but not sphingomyelin generation in these cells. Given that conversion of ceramide to non-apoptotic metabolites such as sphingomyelin and glucosylceramide protects cells from ceramide-induced apoptosis, we hypothesized that failed up-regulation of sphingomyelin generation contributes to ceramide accumulation following UVB irradiation. Because both sphingomyelin synthase and glucosylceramide synthase activities were significantly decreased in UVB-irradiated keratinocytes, we investigated whether alteration(s) in the function of ceramide transport protein (or CERT) required for sphingomyelin synthesis occur(s) in UVB-irradiated cells. Fluorescently labeled N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-d-erythro-sphingosine (C(5)-DMB-ceramide) relocation to the Golgi was diminished after irradiation, consistent with decreased CERT function, whereas the CERT inhibitor N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide (1R,3R isomer) (HPA-12) produced an equivalent effect. UVB irradiation also induced the rapid formation of a stable CERT homotrimer complex in keratinocytes as determined by Western immunoblot and mass spectrometry analyses, a finding replicated in HeLa, HEK293T, and HaCaT cells and in murine epidermis. Ceramide binding activity was decreased in recombinant CERT proteins containing the UVB-induced homotrimer. The middle region domain of the CERT protein was required for the homotrimer formation, whereas neither the pleckstrin homology (Golgi-binding) nor the START (ceramide-binding) domains were involved. Finally like UVB-treated keratinocytes, HPA-12 blockade of CERT function increased keratinocyte apoptosis, decreased sphingomyelin synthesis, and led to accumulation of ceramide. Thus, UVB-induced CERT homotrimer formation accounts, at least in part, for apoptosis and failed up-regulation of sphingomyelin synthesis following UVB irradiation, revealing that inactive CERT can attenuate a key metabolic protective mechanism against ceramide-induced apoptosis in keratinocytes.  相似文献   

20.
An enzymatic method to quantify the mass levels of free sphingosine in cellular lipid extracts was developed. The assay is based upon the observation that ceramide is phosphorylated by Escherichia coli diacylglycerol kinase. Although sphingosine is not recognized by the enzyme, it can be converted to a substrate by acylation with hexanoic anhydride. Using a mixed micellar assay, previously reported for the mass quantification of diacylglycerol, the short-chain ceramide (N-C6-sphingosine), generated by acylation, is quantitatively phosphorylated to N-C6-[32P]sphingosine phosphate. This assay allows quantification of sphingosine over a broad range from 25 to 5000 pmol. When this assay was applied to standard compounds, reverse-phase thin-layer chromatography of the reaction products was adequate to separate the phosphorylated derivatives of long-chain ceramide and N-C6-sphingosine. However, the presence of other lipids in extracts from biological samples (mainly monoalkylglycerols which are also a substrate for the diacylglycerol kinase) interfered and necessitated an additional purification step. The most efficient purification step devised was a combination of anion- and cation-exchange chromatography. The mass levels of free sphingoid bases in different cultured cells were quantified using this assay. Levels varied between 8 to 20 pmol/10(6) cells. When normalized to phospholipids, sphingosine levels varied between 0.01 and 0.04 mol%. The lowest levels were found in L929 cells, while Schwann cells derived from Twitcher mice contained the highest levels. These levels were significantly higher than those of Schwann cells derived from normal mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号