首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
D Acosta  C P Li 《In vitro》1979,15(11):929-934
Primary cultures of rat heart endothelial cells were subjected to simulated conditions of ischemia: hyposia and glucose deprivation for 4 and 24 hr. Cellular injury was evaluated by measuring changes in viability, total protein, cellular morphology, and leakage of cytoplasmic enzymes from the cells into the culture medium. Deprivation of oxygen and glucose for 4 or 24 hr did not lethally injure the cells as noted by no change in cell viability, morphology, and total protein when compared to controls. However, reversible or non-lethal cellular injury was produced as reflected by a significant release of lactate dehydrogenase (LDH) from the cells into the medium after treatment with hypoxia and glucose deprivation for 4 or 24 hr. When the cultures were deprived of glucose, but were oxygenated, cellular injury was not evident after 24 hr. Deprivation of oxygen but not glucose resulted in significant loss of LDH after 4 or 24 hr. When the cultures were allowed to recover after oxygen and glucose deprivation in complete medium containing 1000 mg glucose per 1 and a normal atmosphere of 20% O2, they had levels of LDH leakage comparable to those of control cultures.  相似文献   

2.
Summary An in vitro model to study myocardial cell injury was developed with primary monolayer cultures of rat myocardial cells. Two important conditions associated with myocardial ischemia were simulated by depriving the cultures of oxygen and glucose for a specified period of time. Cellular injury caused by hypoxia and glucose deprivation resulted in significant leakage of lactate dehydrogenase (LDH) from the cells into the culture medium. The cells were not lethally injured by treatments as reflected by a lack of change in cell viability and protein content when compared to controls. Pretreatment of cultures with methylprednisolone for 24 hr provided protection to the cells when challenged by hypoxia and glucose deprivation. Methylprednisolone exhibited a dose-response effect in reducing LDH leakage in cultures, which were subsequently deprived of oxygen and glucose for 4 hr. Similar pretreatment with hydrocortisone had no effect in limiting cellular injury in hypoxic and glucose-deprived cultures. The research was supported by Grant HL 18647 from the National Heart, Lung, and Blood Institute and by a National Chicano Council on Higher Education Post-Doctoral Fellowship awarded to D. Acosta from the Ford Foundation. Additional support was provided to D. Acosta by a Faculty Research Assignment Award from the University of Texas Research Institute.  相似文献   

3.
Summary An in vitro model of myocardial ischemia has been established with primary monolayer cultures of postnatal rat myocardial cells. Ischemic conditions were simulated in vitro by subjecting the myocardial cell cultures to various levels of oxygen and glucose deprivation. The experimental protocol consisted of treatment with 20% or 0% O2 and 1000, 500 or 0 mg glucose per 1 of medium for 4 or 24 hr. Control cultures were treated with 20% O2 and 1000 mg glucose. After the ischemic treatments, cultures of beating muscle (M) cells were evaluated for signs of injury, i.e. leakage of cytoplasmic enzymes into the culture medium. Differences were found in leakage of lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) from the cultures that were exposed to partial ischemia of glucose deprivation and from those cultures that were exposed to total ischemia of oxygen and glucose deprivation. Glucose deprivation alone resulted in a slight-to-moderate loss of LDH and CPK from the cells, whereas total ischemia resulted in a significant release of the two cytoplasmic enzymes. When the cultures were allowed to recover after ischemic treatment in complete medium (1000 mg glucose) and a normal atmosphere of 20% O2, they had levels of LDH leakage comparable to those of control cultures. Cell viability and total protein content of the ischemic cultures did not differ significantly from controls. This study was supported by Research Grant HL 18647 from the National Heart, Lung, and Blood Institute.  相似文献   

4.
Three indexes of partial oxygen deprivation, i.e. hypoxanthine, alpha HBDH and CK, were investigated in rat heart cell cultures, 7 day-old. Enzyme release in the medium and hypoxanthine uptake by the cells pointed out both oxygen and glucose deprivation, which modelized ischemia. Conversely, hypoxanthine release pointed out oxygen deprivation, in the presence of glucose however, which modelized hypoxia, whereas there was no enzyme leakage in the latter condition.  相似文献   

5.
Cerebellar granule neurons were incubated with or without glucose (3 mM) in the presence or absence of citrate (20 mM) using normoxic and/or hypoxic incubation conditions. During 4 h of hypoglycemia and also during hypoxia plus hypoglycemia, citrate increased lactate dehydrogenase (LDH) leakage from the cells and decreased mitochondrial activity, the latter was also the case in the presence of glucose. After 24 h of hypoglycemia, however, citrate decreased LDH leakage slightly, possibly due to its metabolism in the tricarboxylic acid cycle under these conditions. It should be noted that during mild hypoxia plus hypoglycemia a reduced LDH leakage was observed when compared to hypoglycemia alone. The 4 h low oxygen period did protect the neurons also during the 20 h re-oxygenation period. The present study might indicate that incubation of brain cell cultures in an atmosphere of air (30% oxygen) and 5% CO2, which is used in most laboratories, can be toxic and that oxygen concentration should be lowered considerably to mimic conditions in the brain.  相似文献   

6.
The effects of hypoxia and reoxygenation on action potentials (AP), contractions, and certain biochemical parameters were studied in isolated rat ventricular myocytes in monolayer culture in the presence and absence of glucose. Substrate deprivation alone had no influence on the basal properties. In the presence of glucose, a 4-h hypoxic treatment caused only a moderate decrease in AP amplitude and rate. In substrate-free conditions, hypoxia induced a gradual decline in plateau potential level and in AP duration and rate, followed by rhythm abnormalities and a failure of the electromechanical coupling. Spontaneous AP generation then ceased, and the resting potential decreased with increased duration of hypoxia. These alterations were associated with a decrease in ATP content, an increase in the lactate production, and a leakage of about 50% of the total cellular lactate dehydrogenase (LDH). Cells reoxygenated after 150 min hypoxia recovered near-normal function, while the ATP depletion ceased and the rate of lactate and LDH loss was diminished. Conversely, cells reoxygenated after 4 h hypoxia exhibited a further decrease of the residual resting polarization and no change in the decline of intracellular ATP and in the efflux of cytosolic lactate and LDH. The results of this study indicate that (1) the sequence and the extent of functional alterations are dependent on the duration of hypoxia in the absence of exogenous substrate and (2) ATP depletion and the amount of lactate and LDH released during hypoxia are related to the shift from reversibly to irreversibly damaged cells.  相似文献   

7.
Many of the differentiated functions of hepatocytes are lost in culture, yet addition of certain medium supplements can aid in the retention of differentiated character. Therefore, the effect of time in monolayer culture on rat hepatocyte glutathione (GSH) synthesis and sensitivity to the GSH detoxicated xenobiotic ethacrynic acid was examined in cultures with and without medium supplementation by transferrin and sodium selenite. GSH content was found to be about 12 nmol/µg DNA at 4 hr in culture and to approximately triple by 24 hr. Intracellular GSH levels continued to increase in transferrin/sodium selenite-supplemented cultures, from 32 to 41.6 nmol/µg DNA, while GSH levels in unsupplemented cultures declined to 18 nmol/µg DNA. However, the rate of GSH synthesis after diethylmaleate depletion was found to decrease from 4.2 to 2.8 nmol/hr/µg DNA at 4 and 24 hr after inoculation, respectively. GSH repletion rate increased to 3.9 nmol/hr/µg DNA at 48 hr. The GSH accumulation rate after depletion in supplemented cultures did not vary significantly over the initial 48 hr. Incubation for 3 hr with 100 µM ethacrynic acid (EA) did not elicit an increase in LDH leakage in hepatocyte monolayers after 4 or 48 hr in culture or in cultures with supplemented medium at any time point tested. Cultures 24 hr in medium without transferrin/sodium selenite supplementation exhibited significant LDH leakage after 3 hr of EA treatment. Over the 3 hr EA treatment, intracellular GSH content was decreased in all cultures. Only in the 24 hr unsupplemented cultures did GSH depletion exceed the 90% level previously associated with depletion of the mitochondrial pool of GSH and EA toxicity in hepatocytes. The experiments show that during the redifferentiation of hepatocytes in culture, a transient period occurs when apparent GSH synthesis is depressed and enhanced sensitivity to GSH-detoxicated compounds is observed. This period of increased sensitivity is prevented or at least delayed by inclusion of supplemental transferrin and sodium selenite, suggesting that redifferentiation can be regulated by extracellular influences.Abbreviations CYSSG cysteine-glutathione mixed disulfide - DEM diethyl maleate - EA ethacrynic acid - GSH reduced glutathione - GSSG oxidized glutathione - HBS HEPES buffered saline - HWME hepatocyte Williams' Medium E (WME with insulin, corticosterone and 0.5 mM methionine) - LDH lactate dehydrogenase - TS-HWME transferrin/sodium selenite-supplemented HWME - WME Williams' Medium E  相似文献   

8.
Breast cancer cells can survive and proliferate under harsh conditions of nutrient deprivation, including limited oxygen and glucose availability. We hypothesized that such environments trigger metabolic adaptations of mitochondria, which promote tumor progression. Here, we mimicked aglycemia and hypoxia in vitro and compared the mitochondrial and cellular bioenergetic adaptations of human breast cancer (HTB-126) and non-cancer (HTB-125) cells that originate from breast tissue. Using high-resolution respirometry and western blot analyses, we demonstrated that 4 days of glucose deprivation elevated oxidative phosphorylation five-fold, increased the spread of the mitochondrial network without changing its shape, and decreased the apparent affinity of oxygen in cancer cells (increase in C 50 ), whereas it remained unchanged in control cells. The substrate control ratios also remained constant following adaptation. We also observed the Crabtree effect, specifically in HTB-126 cells. Likewise, sustained hypoxia (1% oxygen during 6 days) improved cell respiration in non-cancer cells grown in glucose or glucose-deprived medium (+ 32% and +38%, respectively). Conversely, under these conditions of limited oxygen or a combination of oxygen and glucose deprivation for 6 days, routine respiration was strongly reduced in cancer cells (−36% in glucose medium, −24% in glucose-deprived medium). The data demonstrate that cancer cells behave differently than normal cells when adapting their bioenergetics to microenvironmental conditions. The differences in hypoxia and aglycemia tolerance between breast cancer cells and non-cancer cells may be important when optimizing strategies for the treatment of breast cancer.  相似文献   

9.
D Acosta  M Puckett 《In vitro》1977,13(12):818-823
An in vitro model of myocardial ischemia has been established with primary monolayer cultures of neonatal rat heart cells. Ischemic conditions were simulated in vitro by subjecting the heart cell cultures to various levels of oxygen and glucose deprivation. After the ischemic treatments, cultures of beating muscle (M) cells were evaluated for functional and morphological changes. The experimental protocol consisted of treatment with 20% or 0% O2 and 1000, 500 or 0 mg glucose per 1 of medium for 4, 12 or 24 hr. Control cultures were treated with 20% O2 and 1000 mg glucose. The morphological alterations induced by the deficiency of O2 and glucose in the medium were the formation of pseudopodia and cytoplasmic vacuoles; increased cytoplasmic granulation; and the formation of abnormal cell shapes, such as long, spindly shaped M cells. There was a time-dependent decrease in beating activity as the M cells were exposed to longer durations of ischemic conditions. However, if the cultures were replenished with complete medium (1000 mg glucose) and 20% O2, the cells regained their ability to beat.  相似文献   

10.
Wu MJ  Lai LW  Lien YH 《Life sciences》2002,71(5):559-569
Intracellular calcium plays an important role on the pathogenesis of hypoxia-induced cellular injury. Calbindin-D(28k), a cytosolic vitamin D-dependent calcium binding protein, can serve as a buffer to limit a surge in intracellular Ca2+ concentration ([Ca2+]i) induced by various stimulations. To evaluate the possible cytoprotective effect of calbindin-D(28k) against hypoxic injury in proximal tubular cells, a plasmid containing calbindin-D(28k) cDNA under the control of CMV immediate-early gene promoter was transfected into the murine proximal tubular epithelial (MCT) cells. The expression of calbindin-D(28k) in the transfected cells was verified with Northern blot analysis, Western blot analysis, and immunofluorescent staining. The non-transfected and transfected MCT cells were subjected to chemical hypoxia induced by antimycin A (10 microM) and glucose deprivation for 30-120 min. The transfection of calbindin-D(28k) reduced lactate dehydrogenase (LDH) release by 41%, 41%, 24%, and 24%, respectively, at 30, 60, 90 and 120 min after hypoxia when compared to the non-transfected cells (all p < 0.05). Cell viability after hypoxic injury was also significantly higher in transfected cells than non-transfected cells. Transfection with the plasmid without calbindin-D(28k) cDNA did not affect LDH release or cell viability after chemical hypoxic injury. [Ca+2]i was measured ratiometrically with fura-2 after exposure to chemical hypoxia. The rate of initial rise in [Ca2+]i and final [Ca+2]i at 30-120 min were significantly lowered in transfected cells. In conclusion, this study demonstrated that transfection of calbindin-D(28k) gene into MCT cells provide protective effects against chemical hypoxic injury probably through its buffering effects on [Ca+2]i.  相似文献   

11.
Bovine adrenomedullary chromaffin (BAMC) cells, cultured in a defined medium, were used to study the mechanisms of toxicity and cellular resistance to the catecholamine neuron toxicants 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (MPP+). The viability of the cells was assessed biochemically [cellular catecholamine content and the catalytic activities of tyrosine hydroxylase (TH) and lactate dehydrogenase (LDH)] and anatomically (by electron microscopy). When cultures of BAMC cells were exposed to MPTP or MPP+ for 3 days, a marked loss of cellular catecholamines and TH activity was observed. The addition of an inhibitor of monoamine oxidase (MAO) B (Ro 19-6327), but not MAO A (clorgyline), prevented the toxicity of MPTP but not that of MPP+. In addition, the cellular toxicity of MPP+, but not MPTP, was antagonized by desmethylimipramine, an inhibitor of cellular catecholamine uptake. The toxicity of MPP+ was time dependent, with losses of TH and the release of cellular LDH occurring after 48 h in culture. Catecholamine depletion occurred somewhat sooner, being evident after 24 h of exposure to MPP+. The cellular toxicity of MPP+ was concentration dependent and significantly enhanced by inhibitors of catecholamine vesicular uptake (reserpine, tetrabenazine, or Ro 4-1284). Electron microscopic examination of cells treated with either MPP+, tetrabenazine, or their combination revealed that MPP+ damaged BAMC cells and that this damage was markedly potentiated by the inhibition of vesicular uptake by tetrabenazine. The concentration of glucose in the culture media of untreated cells slowly decreased as a function of time. The rate of glucose consumption was markedly accelerated by MPP+ treatment and the losses in cell TH and the release of LDH into the media were preceded by a 99% depletion of glucose from the media. In cultures not treated with MPP+, lactate accumulated in the media as a function of time. Addition of MPP+ to the media increased the formation of lactate, in a concentration-dependent manner. Reserpine pretreatment further enhanced the production of lactate in response to MPP+. Culturing cells in glucose-free medium greatly potentiated the effects of MPP+ on cellular TH and catecholamines. The toxicity observed after 3 days' exposure of BAMC cells to MPP+ could be prevented when the medium was replaced with fresh medium every 24 h. The effects of glucose deprivation and reserpine were observed to be additive. The ability of MPP+ to affect mitochondrial function is determined by the capacity of the storage vesicle to sequester the pyridinium, acting as a cytosolic "buffer."(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
AIM: To investigate the influence of ischemia/reperfusion on arctic ground squirrel(AGS) neuronal progenitor cells(NPCs), we subjected these cultured cells to oxygen and glucose deprivation.METHODS: AGS NPCs were expanded and differentiated into NPCs and as an ischemia vulnerable control, commercially available human NPCs(hNPCs) were seeded from thawed NPCs. NPCs, identified by expression of TUJ1 were seen at 14-21 d in vitro(DIV). Cultures were exposed to control conditions, hypoxia, oxygen and glucose deprivation or glucose deprivation alone or following return to normal conditions to model reperfusion. Cell viability and death were assessed from loss of ATP as well as from measures of alamarB lue~ and lactate dehydrogenase in the media and from counts of TUJ1 positive cells using immunocytochemistry. Dividing cells were identified by expression of Ki67 and phenotyped by double labeling with GFAP, MAP2 ab or TUJ1. RESULTS: We report that when cultured in NeuraLife~(TM), AGS cells remain viable out to 21 DIV, continue to express TUJ1 and begin to express MAP2 ab. Viability of hN PCs assessed by fluorescence alamarB lue(arbitrary units) depends on both glucose and oxygen availability [viability of hNPCs after 24 h oxygen glucose deprivation(OGD) with return of oxygen and glucose decreased from 48151 ± 4551 in control cultures to 43481 ± 2413 after OGD, P 0.05]. By contrast, when AGS NPCs are exposed to the same OGD with reperfusion at 14 DIV, cell viability assessed by alamar Blue increased from 165305 ± 11719 in control cultures to 196054 ± 13977 after OGD. Likewise AGS NPCs recovered ATP(92766 ± 6089 in control and 92907 ± 4290 after modeled reperfusion; arbitrary luminescence units), and doubled in the ratio of TUJ1 expressing neurons to total dividing cells(0.11 ± 0.04 in control cultures vs 0.22 ± 0.2 after modeled reperfusion, P 0.05). Maintaining AGS NPCs for a longer time in culture lowered resistance to injury, however, did not impair proliferation of NPCs relative to other cell lineages after oxygen deprivation followed by re-oxygenation.CONCLUSION: Ischemic-like insults decrease viability and increase cell death in cultures of human NPCs. Similar conditions have less affect on cell death and promote proliferation in AGS NPCs.  相似文献   

13.
grp75对细胞缺糖损伤的保护作用   总被引:8,自引:0,他引:8  
为研究grp75的功能,对过表达grp75的CHL细胞进行了无糖培养以施加能量代谢应激,运用台盼蓝染色计数、LDH释放测定和流式细胞术等方法评估其损伤程序。结果显示,无糖培养5h,过表达grp75细胞和对照组细胞比较,细胞活率、亚二倍体细胞率均无明显差别;无糖培养10h,过表达grp75细胞的活率高于对照组(P〈0.01),亚二倍体细胞率低于对照组(P〈0.05);无糖培养至20h,两组细胞活率和  相似文献   

14.
He F  Wu LX  Liu FY  Yang LJ  Zhang Y  Zhang HF  Zhou X  Huang BS  Deng XL 《生理学报》2008,60(2):235-242
本文旨在探讨肝细胞生长因子(hepatocyte growth factor,HGF)对神经元氧糖剥夺/再灌注损伤的影响。取原代培养12d的Sprague-Dawley大鼠大脑皮层神经元,无糖、无氧(95%N2+5%CO2)孵育2h后,换含25mmol/L葡萄糖的培养液、常氧培养0-24h,以MTT比色法检测细胞活力、乳酸脱氢酶(lactate dehydrogenase,LDH)漏出率作为细胞损伤指标,建立体外氧糖剥夺/再灌注损伤细胞模型;用流式细胞仪和Hoechst33258染色分析细胞凋亡率;用RT-PCR和Western blot分别检测大鼠脑皮层神经元HGF受体c-Met mRNA和蛋白的表达。于氧糖剥夺2h/再灌注24h处理前2h,加入不同终浓度(5-120ng/mL)的HGF,观察HGF对皮层神经元的影响。结果显示,c-Met表达于皮层神经元,氧糖剥夺2h/再灌注24h后,c-Met mRNA和蛋白表达均显著上调,神经元细胞活力明显降低,LDH漏出率和细胞凋亡率显著增高。HGF预处理明显促进氧糖剥夺/再灌注损伤神经元的存活,降低LDH漏出率,最大效应剂量为80ng/mL。流式细胞术和Hoechst33258染色结果均显示,HGF(80ng/mL)显著降低氧糖剥夺/再灌注神经元的细胞凋亡率。此外,c-Met抑制剂SU11274(5μmol/L)完全阻断HGF的神经保护作用。结果表明,HGF对皮层神经元氧糖剥夺/再灌注损伤具有直接的保护作用,呈一定的剂量依赖关系,并能有效对抗神经元凋亡。  相似文献   

15.
The effects of raised brain lactate levels on neuronal survival following hypoxia or ischemia is still a source of controversy among basic and clinical scientists. We have sought to address this controversy by studying the effects of glucose and lactate on neuronal survival in acute and cultured hippocampal slices. Following a 1-h hypoxic episode, neuronal survival in cultured hippocampal slices was significantly higher if glucose was present in the medium compared with lactate. However, when the energy substrate during the hypoxic period was glucose and then switched to lactate during the normoxic recovery period, the level of cell damage in the CA1 region of organotypic cultures was significantly improved from 64.3 +/- 2.1 to 74.6 +/- 2.1% compared with cultures receiving glucose during and after hypoxia. Extracellular field potentials recorded from the CA1 region of acute slices were abolished during oxygen deprivation for 20 min, but recovered almost fully to baseline levels with either glucose (82.6 +/- 10.0%) or lactate present in the reperfusion medium (108.1 +/- 8.3%). These results suggest that lactate alone cannot support neuronal survival during oxygen deprivation, but a combination of glucose followed by lactate provides for better neuroprotection than either substrate alone.  相似文献   

16.
1. The neuroprotective effect of cactus polysaccharide (CP) on oxygen and glucose deprivation (OGD) and reoxygenation (REO)-induced damage in the cortical and hippocampal slices of rat brain was investigated. 2. Cell viability was evaluated by using the 2, 3, 5-triphenyl tetrazolium chloride (TTC) method. The fluorescence of propidium iodide (PI) staining was used for quantification of cellular survival, and lactate dehydrogenase (LDH) activity in incubation medium was assessed by LDH assay to evaluate the degree of injury. 3. The OGD ischemic condition significantly decreased cellular viability and increased LDH release in the incubation medium. CP (0.2 mg/l∼2 mg/l) protected brain slices from OGD injury in a dosage dependent manner as demonstrated by increased A 490 value of TTC, decreased PI intensity and LDH release. At the above concentration, CP also prevented the increase of nitric oxide (NO) content and inducible nitric oxide synthase (iNOS) activity induced by OGD. 4. CP can protect the brain slices (cortical and hippocampus) against injury induced by OGD. Its neuroprotective effect may be partly mediated by the NO/iNOS system induced by OGD insult. Xianju Huang and Qin Li have contributed equally to this article.  相似文献   

17.
Flavonoids are naturally occurring polyphenolic compounds that have many biological properties, including antioxidative, anti-inflammatory and neuroprotective effects. Here, we report that amentoflavone significantly reduced cell death induced by staurosporine, etoposide and sodium nitroprusside in neuroblastoma SH-SY5Y cells. In post-natal day 7 rats, hypoxic-ischemic (H-I) brain damage induced by unilateral carotid ligation and hypoxia resulted in distinct features of neuronal cell death including apoptosis and necrosis. In this model, a systemic administration of amentoflavone (30 mg/kg) markedly reduced the H-I-induced brain tissue loss with a wide therapeutic time window up to 6 h after the onset of hypoxia. Amentoflavone blocked the activation of caspase 3, characteristic of apoptosis, and the proteolytic cleavage of its substrates following H-I injury. Amentoflavone also reduced the excitotoxic/necrotic cell death after H-I injury in vivo and after oxygen/glucose deprivation in mouse mixed cultures in vitro. Treatment of mouse microglial cells with amentoflavone resulted in a significant decrease in the lipopolysaccharide-induced production of nitric oxide and induction of inducible nitric oxide synthase and cyclo-oxygenase-2. Furthermore, amentoflavone decreased the inflammatory activation of microglia after H-I injury when assessed by the microglial-specific marker OX-42. These data demonstrate for the first time that amentoflavone strongly protects the neonatal brain from H-I injury by blocking multiple cellular events leading to brain damage.  相似文献   

18.
Summary A method for preparing primary monolayer cultures of postnatal rat hepatocytes has been developed in our laboratory. Growing cultures in arginine-deficient medium inhibits fibroblast overgrowth, and relatively pure cultures of parenchymal hepatocytes are obtained. This cell culture system has been used to study the cytotoxicity of two hepatotoxic agents, tetracycline and norethindrone. Caffeine was evaluated as an agent thought to be relatively nontoxic to liver. Cytotoxicity was evaluated by phase-contrast microscopy of cellular morphology and by measurement of leakage of intracellular enzymes [arginosuccinate lyase (ASAL), lactate dehydrogenase (LDH), glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), and acid phosphatase (AP)] into the culture medium. Hepatic cultures were treated with each of the agents in concentrations ranging from 5×10−6 to 1×10−3 m and for durations from 1 to 24 hr. ASAL was found to be the most sensitive in predicting early cell injury and AP the least sensitive; the other three enzymes tested were intermittent in value and equally sensitive in evaluating cytotoxicity. Treatment of the cultures with tetracycline (5×10−4 m) for 6 hr resulted in ASAL leakage that was 400% of control values; and norethindrone (5×10−4 m) for 6 hr caused a 250% increase relative to controls. The hepatotoxic agents demonstrated a dose- and timedependence of cytotoxicity in the cultures. In contrast, caffeine was relatively nontoxic to the cultures. Part of this investigation was presented orally at the 17th Annual Meeting of the Society of Toxicology, San Francisco, March 13, 1978.  相似文献   

19.
In order to study the astroglial contribution to hypoxic injury on brain tissue metabolism, modifications of glutamine synthetase (GS) lactate dehydrogenase (LDH) enolase and malate dehydrogenase activity produced by reduced oxygen supply have been determined in primary cultures of astrocytes prepared from newborn rat cerebral cortex. Enzymatic activities were measured immediately after the hypoxic treatment (9 h) and during post injury recovery. GS level is significantly decreased in response to low oxygen pressure and increased above control value during the post hypoxic recovery period. The magnitude of GS reduction by hypoxia depends on the age of the cells in culture. Lactate dehydrogenase and enolase levels were significantly enhanced during the two periods considered. No modification of the MDH level was observed. The synthesis of LDH isoenzymes containing mainly M subunits is specifically induced by hypoxia. Our results suggest that astroglial cells may represent a particularly sensitive target toward hypoxia injury in brain tissue. Low oxygen pressure available may modify some fundamental metabolical functions of these cells such as glutamate turnover and lactic acid accumulation.  相似文献   

20.
The involvement of NMDA glutamate receptors in the effects of glucose/oxygen deprivation (in vitro ischaemia) on spontaneous endogenous acetylcholine and glutamate overflow from the guinea pig ileum was studied. Neurotransmitter overflow was measured by HPLC. Deprivation of glucose in the medium slightly reduced acetylcholine overflow, and did not significantly influence glutamate overflow. During oxygen deprivation and glucose/oxygen deprivation, acetylcholine overflow augmented with a biphasic modality: an early peak was followed by a long lasting increase, whereas glutamate overflow increased with a rapid and sustained modality. The effects of glucose/oxygen deprivation on both acetylcholine and glutamate overflow were abolished after reperfusion with normal oxygenated medium. Acetylcholine and glutamate overflow induced by glucose/oxygen deprivation were significantly reduced in the absence of external Ca(2+) as well as by the addition of the mitochondrial Na(+)-Ca(2+) exchanger blocker, CGP 37157, and of the endoplasmic reticulum Ca(2+)/ATPase blocker, thapsigargin. +/-AP5, an NMDA receptor antagonist, and 5,7-diCl-kynurenic acid, an antagonist of the glycine site associated to NMDA receptor, markedly depressed glucose/oxygen deprivation-induced acetylcholine and glutamate overflow as well. Our results suggest that in vitro simulated ischaemia evokes acetylcholine and glutamate overflow from the guinea pig ileum, which is partly linked to an increase in intracellular Ca(2+) concentration dependent on both Ca(2+) influx from the extracellular space and Ca(2+) mobilization from the endoplasmic reticulum and mitochondrial stores. During glucose/oxygen deprivation, ionotropic glutamate receptors of the NMDA type exert both a positive feedback modulation of glutamate output and contribute to increased acetylcholine overflow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号