首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nucleotide-binding oligomerization domain 2 (Nod2) is a cytosolic sensor for muramyl dipeptide, a component of bacterial peptidoglycan. In this study, we have examined whether Nod2 mediates the immune response of macrophages against Yersinia enterocolitica. Bone-marrow-derived macrophages (BMDMs) were isolated from WT and Nod2-deficient mice and were infected with various strains of Y. enterocolitica. ELISA showed that the production of IL-6 and TNF-α in BMDMs infected with Y. enterocolitica was not affected by the Nod2 deficiency. iNOS mRNA expression was induced in both WT and Nod2-deficienct BMDMs in response to Y. enterocolitica, beginning 2 h after infection. Nitric oxide (NO) production by Y. enterocolitica did not differ between WT and Nod2-deficient BMDMs. Western blot analysis revealed that Y. enterocolitica induces activation of NF-κB, p38, and ERK MAPK through a Nod2-independent pathway. Neither LDH release by Y. enterocolitica nor the phagocytic activity of the macrophages was altered by Nod2 deficiency. An in vivo experiment showed that bacterial clearance ability and production of IL-6 and KC in serum were comparable in WT and Nod2-deficient mice infected with Y. enterocolitica. These findings suggest that Nod2 may not be critical for initiating the innate immune response of macrophages against Yersinia infection.  相似文献   

3.
Successful establishment of Yersinia infections requires the type III machinery, a protein transporter that injects virulence factors (Yops) into macrophages. It is reported here that the Yersinia type III pathway responds to environmental signals by transporting proteins to distinct locations. Yersinia enterocolitica cells sense an increase in extracellular amino acids (glutamate, glutamine, aspartate, and asparagine) that results in the activation of the type III pathway. Another signal, provided by serum proteins such as albumin, triggers the secretion of YopD into the extracellular medium. The third signal, a decrease in calcium concentration, appears to be provided by host cells and causes Y. enterocolitica to transport YopE and presumably other virulence factors across the eukaryotic plasma membrane. Mutations in several genes encoding regulatory molecules (lcrG, lcrH, tyeA, yopD, yopN, yscM1, and yscM2) bypass the signal requirement of the type III pathway. Together these results suggest that yersiniae may have evolved distinct secretion reactions in response to environmental signals.  相似文献   

4.
5.
As a first approach to establishing a three-dimensional culture infection model, we studied the growth behavior of the extracellular pathogen Yersinia enterocolitica in three-dimensional collagen gels (3D-CoG). Surprisingly, we observed that plasmidless Y. enterocolitica was motile in the 3D-CoG in contrast to its growth in traditional motility agar at 37 degrees C. Motility at 37 degrees C was abrogated in the presence of the virulence plasmid pYV or the exclusive expression of the pYV-located Yersinia adhesion gene yadA. YadA-producing yersiniae formed densely packed (dp) microcolonies, whereas pYVDelta yadA-carrying yersiniae formed loosely packed microcolonies at 37 degrees C in 3D-CoG. Furthermore, we demonstrated that the packing density of the microcolonies was dependent on the head domain of YadA. Moreover, dp microcolony formation did not depend on the capacity of YadA to bind to collagen fibers, as demonstrated by the use of yersiniae producing collagen nonbinding YadA. By using a yopE-gfp reporter, we demonstrated Ca(2+)-dependent expression of this pYV-localized virulence gene by yersiniae in 3D-CoG. In conclusion, this study revealed unique plasmid-dependent growth behavior of yersiniae in a three-dimensional matrix environment that resembles the behavior of yersiniae (e.g., formation of microcolonies) in infected mouse tissue. Thus, this 3D-CoG model may be a first step to a more complex level of in vitro infection models that mimic living tissue, enabling us to study the dynamics of pathogen-host cell interactions.  相似文献   

6.
7.
Epithelial cells express genes whose products signal the presence of pathogenic microorganisms to the immune system. Pathogenicity factors of enteric bacteria modulate host cell gene expression. Using microarray technology we have profiled epithelial cell gene expression upon interaction with Yersinia enterocolitica. Yersinia enterocolitica wild-type and isogenic mutant strains were used to identify host genes modulated by invasin protein (Inv), which is involved in enteroinvasion, and Yersinia outer protein P (YopP) which inhibits innate immune responses. Among 22 283 probesets (14,239 unique genes), we found 193 probesets (165 genes) to be regulated by Yersinia infection. The majority of these genes were induced by Inv, whose recognition leads to expression of NF-kappa B-regulated factors such as cytokines and adhesion molecules. Yersinia virulence plasmid (pYV)-encoded factors counter regulated Inv-induced gene expression. Thus, YopP repressed Inv-induced NF-kappa B regulated genes at 2 h post infection whereas other pYV-encoded factors repressed host cell genes at 4 and 8 h post infection. Chromosomally encoded factors of Yersinia, other than Inv, induced expression of genes known to be induced by TGF-beta receptor signalling. These genes were also repressed by pYV-encoded factors. Only a few host genes were exclusively induced by pYV-encoded factors. We hypothesize that some of these genes may contribute to pYV-mediated silencing of host cells. In conclusion, the data demonstrates that epithelial cells express a limited number of genes upon interaction with enteric Yersinia. Both Inv and YopP appear to modulate gene expression in order to subvert epithelial cell functions involved in innate immunity.  相似文献   

8.
9.
The virulence-associated V Ag (LcrV) of pathogenic Yersinia species is part of the translocation apparatus, required to deliver antihost effector proteins (Yersinia outer proteins) into host cells. An orthologous protein (denoted as PcrV) has also been identified in the ExoS regulon of Pseudomonas aeruginosa. Additionally, it is known that LcrV is released by yersiniae into the environment and that LcrV causes an immunosuppressive effect when injected into mice. In this study, we demonstrate for the first time that rLcrV, but not PcrV, is capable of suppressing TNF-alpha production in zymosan A-stimulated mouse macrophages and the human monocytic Mono-Mac-6 cell line. The underlying mechanism of TNF-alpha suppression could be assigned to LcrV-mediated IL (IL)-10 production, because 1) LcrV induces IL-10 release in macrophages, 2) anti-IL-10 Ab treatment completely abrogated TNF-alpha suppression, and 3) TNF-alpha suppression was absent in LcrV-treated macrophages of IL-10-deficient (IL-10-/-) mice. The relevance of LcrV-mediated immunosuppression for the pathogenicity of yersiniae became evident by experimental infection of mice; in contrast to wild-type mice, IL-10-/- mice were highly resistant against Yersinia infection, as shown by lower bacterial load in spleen and liver, absent abscess formation in these organs, and survival.  相似文献   

10.
This study compared the immunomodulating properties of viable and killed Yersinia enterocolitica O9 in BALB/c mice. At 10 days after infection by the intragastric route, ex vivo assays showed a suppression of spleen cell proliferation in response to Salmonella lipopolysaccharide, concanavalin A and heat-killed yersiniae. Mice infected with Y. enterocolitica O9 for 10 days resisted the challenge with a lethal dose of Listeria monocytogenes. In contrast, intravenous administration of heat-killed yersiniae did not modify the ability of spleen cells to proliferate in response to lipopolysaccharide or concanavalin A, and proliferation in response to killed yersiniae was significantly increased. By 3 days after administration of a single dose of heat-killed yersiniae, the resistance of mice to L. monocytogenes challenge was significantly increased. Our findings show profound differences in immunomodulation by viable and heat-killed yersiniae, but suggest that killed yersiniae retain interesting immunomodulating properties.  相似文献   

11.
Yersinia enterocolitica target effector Yop proteins into the cytosol of eukaryotic cells by a mechanism requiring the type III machinery. LcrG and LcrV have been suggested to fulfill essential functions during the type III targeting of effector Yops. It is reported here that knockout mutations of lcrG caused mutant yersiniae to prematurely secrete Yops into the extracellular medium without abolishing the type III targeting mechanism (Los phenotype [loss of type III targeting specificity]). Knockout mutations in lcrV reduced type III targeting of mutant yersiniae but did not promote secretion into the extracellular medium (Not [no type III targeting]). However, knockout mutations in both genes caused DeltalcrGV yersiniae to display a Los phenotype similar to that of strains carrying knockout mutations in lcrG alone. LcrG binding to LcrV resulted in the formation of soluble LcrGV complexes in the bacterial cytoplasm. Membrane-associated, bacterial-surface-displayed or -secreted LcrG could not be detected. Most of LcrV was located in the bacterial cytoplasm; however, small amounts were secreted into the extracellular medium. These data support a model whereby LcrG may act as a negative regulator of type III targeting in the bacterial cytoplasm, an activity that is modulated by LcrG binding to LcrV. No support could be gathered for the hypothesis whereby LcrG and LcrV may act as a bacterial surface receptor for host cells, allowing effector Yop translocation across the eukaryotic plasma membrane.  相似文献   

12.
13.
14.
Pathogenic yersiniae employ a type III secretion system for translocating up to six effector proteins (Yersinia outer proteins (Yops)) into eukaryotic target cells. YopT is a cysteine protease that was shown to remove the C-terminal isoprenoid group of RhoA, Rac, and CDC42Hs. Here we characterized the cell biological and biochemical activities of YopT in cells infected with pathogenic Yersinia enterocolitica. Bacterially injected YopT located to cell membranes from which it released RhoA but not Rac or CDC42Hs. In the infected cells RhoA was dissociated from guanine nucleotide dissociation inhibitor-1 (GDI-1) and accumulated as a monomeric protein in the cytosol, whereas Rac and CDC42Hs remained GDI-bound. Direct transfer of isoprenylated RhoA to YopT and RhoA modification could be reconstituted in vitro by guanosine 5'-3-O-(thio)triphosphate loading of a recombinant RhoA.GDI-1 complex. Finally, in macrophages infected with a Yersinia strain selectively translocating YopT podosomal adhesion structures required for chemotaxis as well as phagocytic cups mediating uptake of yersiniae were disrupted. These findings indicate that bacterially translocated YopT acts on membrane-bound and GDI-complexed RhoA but not Rac or CDC42, and this is sufficient for disruption of macrophage immune functions.  相似文献   

15.
The Yersinia outer protein YopE belongs to the translocated effector proteins of pathogenic yersiniae. We constructed various truncated yopE genes fused to gfp (encoding the green fluorescent protein) to study yopE gene expression and YopE-GFP translocation of Y. enterocolitica in cell culture and mouse infection models. The hybrid gene fusions were co-expressed in Y. enterocolitica (i) on a low-copy plasmid in the presence of the virulence plasmid pYV08 (in trans configuration) and (ii) after co-integration by homologous recombination of a yopE-gfp-carrying suicide plasmid into pYV08 (co-integrate configuration). After 30min of infection of HEp-2 cell monolayers, extracellularly located yersiniae began to emit green fluorescence after excitation. In contrast, internalized bacteria were weakly fluorescent. Translocation of YopE-GFP into HEp-2 cells by attached yersiniae was visualized by optical sectioning of fluorescent HEp-2 cells using confocal laser scanning microscopy and was confirmed by immunoprecipitation of cytosolic YopE-GFP from selectively solubilized HEp-2 cells. The co-translocation of other Yops was not significantly impaired by YopE-GFP as shown by YopH/YopE-mediated suppression of the oxidative burst of infected neutrophils. The time course of yopE-gfp expression (in trans as well as in the co-integrate configuration) in the HEp-2 cell infection model as well as after in vitro induction was studied using a highly sensitive CCD camera and a flow cytometer. Similar results were obtained with a YopE-LUC (firefly luciferase) protein fusion as reporter. After intraperitoneal, intravenous and orogastrical infection of Balb/c mice with the recombinant yersiniae strains, green fluorescing bacteria could be visualized microscopically in the peritoneum, the spleen, the liver and in the Peyer's patches. However, only weakly fluorescent yersiniae were observed in the intestinal lumen. These results were quantified by flow cytometric measurements. The application of gfp as a reporter gene turned out to be promising for the study of protein translocation by protein type III secretion systems and differential virulence gene expression in vivo.  相似文献   

16.
Yersinia enterocolitica cross the intestinal epithelium via translocation through M cells, which are located in the follicle-associated epithelium (FAE) of Peyer's patches (PP). To investigate the molecular basis of this process, studies were performed using a recently developed in vitro model, in which the enterocyte-like cell line Caco-2 and PP lymphocytes are co-cultured in order to establish FAE-like structures including M cells. Here, we demonstrate that Y. enterocolitica does not adhere significantly to the apical membrane of differentiated enterocyte-like Caco-2 cells that express binding sites for Ulex europaeus agglutinin (UEA)-1. In contrast, Y. enterocolitica adhered to, and was internalized by, cells that lacked UEA-1 binding sites and displayed a disorganized brush border. These cells were considered to be converted to M-like cells. Further analysis revealed that part of these cells expressed β1 integrins at their apical surface and, as revealed by comparison of wild-type and mutant strains, interacted with invasin of Y. enterocolitica . Consistently, anti-β1 integrin antibodies significantly inhibited internalization of inv -expressing yersiniae. Experiments with Yersinia mutant strains deficient in YadA or Yop secretion revealed that these virulence factors play a minor role in this process. After internalization, yersiniae were transported within LAMP-1-negative vacuoles to, and released at, the basal surface. Internalization and transport of yersiniae was inhibited by cytochalasin D, suggesting that F-actin assembly is required for this process. These results provide direct evidence that expression of β1 integrins at the apical surface of M cells enables interaction with the invasin of Y. enterocolitica , and thereby initiates internalization and translocation of bacteria.  相似文献   

17.
Immunological and electron microscopy investigations of the phagocytic and killing activities of peritoneal macrophages from rats and mice against Yersinia enterocolitica serotype O:8 cells were performed. The effect of in vivo application of cytoplasmic membranes (CM) from the stable Escherichia coli WF+ L-form on macrophage activity was also studied. It was established that rat macrophages more actively phagocytosed the plasmidless pYV(-) Y. enterocolitica cells, compared to the plasmid-bearing pYV(+) Y. enterocolitica cells. The killing ability against both variants of the Y. enterocolitica strain was significantly enhanced in macrophages from CM-treated rats after 2 h, 4 h, and 24 h incubation. The CM treatment enhanced the phagocytic activity of the macrophages. The in vitro interaction of normal and immunostimulated rat macrophages with both pYV(+) and pYV(-) variants of Y. enterocolitica did not lead to any additional apoptotic and necrotic changes in macrophages compared to control macrophages, which were cultivated without Y. enterocolitica. Electron-microscopic investigation showed that mouse macrophages eliminated Y. enterocolitica pYV(+) cells in vivo after 24 h. No engulfed or digested bacterial cells were observed. Activation of cell surfaces and vacuolization of macrophage cytoplasm, both of CM-treated non-infected and infected mice, were observed. The experimental results showed that Y. enterocolitica pYV(+) cells could be eliminated by peritoneal macrophages.  相似文献   

18.
Many bacterial responses to environmental stimuli are mediated by response regulators which coordinately regulate genes involved in particular adaptive responses. Degenerate oligonucleotide primers were used to amplify by the polymerase chain reaction (PCR), fragments from genes encoding eleven novel response regulators. Sequence and phylogenetic analysis revealed that phoB, phoP and creB gene fragments had been amplified from Yersinia enterocolitica and Yersinia pseudotuberculosis, and that a creB sequence had been amplified from Campylobacter jejuni. Four amplified fragments from C. jejuni, Listeria monocytogenes, Mycobacterium tuberculosis and Escherichia coli clearly came from response regulator genes, but were not closely related to any of the known genes. Mutagenesis of the newly identified genes should allow us to determine their function and the genes under their control.  相似文献   

19.
20.
Pathogenic Yersinia species use a virulence-plasmid encoded type III secretion pathway to escape the innate immune response and to establish infections in lymphoid tissues. At least 22 secretion machinery components are required for type III transport of 14 different Yop proteins, and 10 regulatory factors are responsible for activating this pathway in response to environmental signals. Although the genes for these products are located on the 70-kb virulence plasmid of Yersinia, this extrachromosomal element does not appear to harbor genes that provide for the sensing of environmental signals, such as calcium-, glutamate-, or serum-sensing proteins. To identify such genes, we screened transposon insertion mutants of Y. enterocolitica W22703 for defects in type III secretion and identified ttsA, a chromosomal gene encoding a polytopic membrane protein. ttsA mutant yersiniae synthesize reduced amounts of Yops and display a defect in low-calcium-induced type III secretion of Yop proteins. ttsA mutants are also severely impaired in bacterial motility, a phenotype which is likely due to the reduced expression of flagellar genes. All of these defects were restored by complementation with plasmid-encoded wild-type ttsA. LcrG is a repressor of the Yersinia type III pathway that is activated by an environmental calcium signal. Mutation of the lcrG gene in a ttsA mutant strain restored the type III secretion of Yop proteins, although the double mutant strain secreted Yops in the presence and absence of calcium, similar to the case for mutants that are defective in lcrG gene function alone. To examine the role of ttsA in the establishment of infection, we measured the bacterial dose required to produce an acute lethal disease following intraperitoneal infection of mice. The ttsA insertion caused a greater-than-3-log-unit reduction in virulence compared to that of the parental strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号