首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preferential HLA usage in the influenza virus-specific CTL response   总被引:5,自引:0,他引:5  
To study whether individual HLA class I alleles are used preferentially or equally in human virus-specific CTL responses, the contribution of individual HLA-A and -B alleles to the human influenza virus-specific CTL response was investigated. To this end, PBMC were obtained from three groups of HLA-A and -B identical blood donors and stimulated with influenza virus. In the virus-specific CD8(+) T cell population, the proportion of IFN-gamma- and TNF-alpha-producing cells, restricted by individual HLA-A and -B alleles, was determined using virus-infected C1R cells expressing a single HLA-A or -B allele for restimulation of these cells. In HLA-B*2705- and HLA-B*3501-positive individuals, these alleles were preferentially used in the influenza A virus-specific CTL response, while the contribution of HLA-B*0801 and HLA-A*0101 was minor in these donors. The magnitude of the HLA-B*0801-restricted response was even lower in the presence of HLA-B*2705. C1R cells expressing HLA-B*2705, HLA-A*0101, or HLA-A*0201 were preferentially lysed by virus-specific CD8(+) T cells. In contrast, the CTL response to influenza B virus was mainly directed toward HLA-B*0801-restricted epitopes. Thus, the preferential use of HLA alleles depended on the virus studied.  相似文献   

2.
The repertoire of human cytotoxic T-lymphocytes (CTL) in response to influenza A viruses has been shown to be directed towards multiple epitopes, with a dominant response to the HLA-A2-restricted M1(58-66) epitope. These studies, however, were performed with peripheral blood mononuclear cells (PBMC) of individuals selected randomly with respect to HLA phenotype or selected for the expression of one HLA allele without considering an influence of other HLA molecules. In addition, little information is available on the influence of HLA makeup on the overall CTL response against influenza viruses. Here, the influenza A virus-specific CTL response was investigated in groups of HLA-A and -B identical individuals. Between groups the individuals shared two or three of the four HLA-A and -B alleles. After in vitro stimulation of PBMC with influenza virus, the highest CTL activity was found in HLA-A2(+) donors. A similar pattern was observed for the precursor frequency of virus-specific CTL (CTLp) ex vivo, with a higher CTLp frequency in HLA-A2-positive donors than in HLA-A2-negative donors, which were unable to recognize the immunodominant M1(58-66) epitope. In addition, CTL activity and frequency of CTLp for the individual influenza virus epitopes were determined. The frequency of CTLp specific for the HLA-B8-restricted epitope NP(380-388) was threefold lower in HLA-B27-positive donors than in HLA-B27-negative donors. In addition, the frequency of CTLp specific for the HLA-A1-restricted epitope NP(44-52) was threefold higher in HLA-A1-, -A2-, -B8-, and -B35-positive donors than in other donors, which was confirmed by measuring the CTL activity in vitro. These findings indicate that the epitope specificity of the CTL response is related to the phenotype of the other HLA molecules. Furthermore, the magnitude of the influenza virus-specific CTL response seems dependent on the HLA-A and -B phenotypes.  相似文献   

3.
We previously showed that the known HLA-B27-restricted influenza A epitope identified from human studies, NP.383-391, was recognized by CTLs following influenza A infection of transgenic (Tg) HLA-B27/H2 class I-deficient (H2 DKO) mice. Here, we examined the kinetics of the primary NP.383-391-specific response in Tg HLA-B27/H2 DKO mice at the site of respiratory infection, along with the profile of additional influenza A epitopes recognized. While the temporal kinetics of the Tg HLA-B27/NP.383-391-specific CD8+ T cell response paralleled the H2-D(b)/NP.366-374-specific response of non-Tg H2b mice, the magnitude was less. Using epitope prediction programs, we identified three novel B27-restricted influenza A epitopes, PB2.702-710, PB1.571-579, and PB2.368-376, recognized during both the primary and secondary response to infection. Although the secondary NP.383-391-specific response was dominant, PB1.571-579 and PB2.368-376 stimulated stronger proliferative expansion in memory T cells. Our results indicate a broader B27/influenza A CTL repertoire than previously known. Together with results for other HLA class I alleles, this information will become important in improving vaccine strategies for influenza A and other human pathogens.  相似文献   

4.
Influenza A viruses (H3N2) isolated in 1998 in Nagasaki, Japan, carried a mutation (384R --> G) in one of the anchor amino acids of the HLA-B27-restricted cytotoxic T lymphocyte (CTL) epitope of NP (383-391). Phylogenetic analysis revealed that these viruses have been isolated only in Japan to date and belong to the unique lineages.  相似文献   

5.
Viruses exploit different strategies to escape immune surveillance, including the introduction of mutations in cytotoxic T-lymphocyte (CTL) epitopes. The sequence of these epitopes is critical for their binding to major histocompatibility complex (MHC) class I molecules and recognition by specific CTLs, both of which interactions may be lost by mutation. Sequence analysis of the nucleoprotein gene of influenza A viruses (H3N2) isolated in The Netherlands from 1989 to 1999 revealed two independent amino acid mutations at the anchor residue of the HLA-B27-specific CTL epitope SRYWAIRTR (383 to 391). A R384K mutation was found in influenza A viruses isolated during the influenza season 1989-1990 but not in subsequent seasons. In the influenza season 1993-1994, a novel mutation in the same CTL epitope at the same position was introduced. This R384G mutation proved to be conserved in all influenza A viruses isolated from 1993 onwards. Both mutations R384K and R384G abrogated MHC class I presentation and allowed escape from recognition by specific CTLs.  相似文献   

6.
We examined the memory cytotoxic T-lymphocytic (CTL) responses of peripheral blood mononuclear cells (PBMC) obtained from patients in Thailand 12 months after natural symptomatic secondary dengue virus infection. In all four patients analyzed, CTLs were detected in bulk culture PBMC against nonstructural dengue virus proteins. Numerous CD4+ and CD8+ CTL lines were generated from the bulk cultures of two patients, KPP94-037 and KPP94-024, which were specific for NS1.2a (NS1 and NS2a collectively) and NS3 proteins, respectively. All CTL lines derived from both patients were cross-reactive with other serotypes of dengue virus. The CD8+ NS1.2a-specific lines from patient KPP94-037 were HLA B57 restricted, and the CD8+ NS3-specific lines from patient KPP94-024 were HLA B7 restricted. The CD4+ CTL lines from patient KPP94-037 were HLA DR7 restricted. A majority of the CD8+ CTLs isolated from patient KPP94-024 were found to recognize amino acids 221 to 232 on NS3. These results demonstrate that in Thai patients after symptomatic secondary natural dengue infections, CTLs are mainly directed against nonstructural proteins and are broadly cross-reactive.  相似文献   

7.
HLA-A*11:01 is one of the most prevalent human leukocyte antigens (HLAs), especially in East Asian and Oceanian populations. It is also highly expressed in Indigenous people who are at high risk of severe influenza disease. As CD8+ T cells can provide broadly cross-reactive immunity to distinct influenza strains and subtypes, including influenza A, B and C viruses, understanding CD8+ T cell immunity to influenza viruses across prominent HLA types is needed to rationally design a universal influenza vaccine and generate protective immunity especially for high-risk populations. As only a handful of HLA-A*11:01-restricted CD8+ T cell epitopes have been described for influenza A viruses (IAVs) and epitopes for influenza B viruses (IBVs) were still unknown, we embarked on an epitope discovery study to define a CD8+ T cell landscape for HLA-A*11:01-expressing Indigenous and non-Indigenous Australian people. Using mass-spectrometry, we identified IAV- and IBV-derived peptides presented by HLA-A*11:01 during infection. 79 IAV and 57 IBV peptides were subsequently screened for immunogenicity in vitro with peripheral blood mononuclear cells from HLA-A*11:01-expressing Indigenous and non-Indigenous Australian donors. CD8+ T cell immunogenicity screening revealed two immunogenic IAV epitopes (A11/PB2320-331 and A11/PB2323-331) and the first HLA-A*11:01-restricted IBV epitopes (A11/M41-49, A11/NS1186-195 and A11/NP511-520). The immunogenic IAV- and IBV-derived peptides were >90% conserved among their respective influenza viruses. Identification of novel immunogenic HLA-A*11:01-restricted CD8+ T cell epitopes has implications for understanding how CD8+ T cell immunity is generated towards IAVs and IBVs. These findings can inform the development of rationally designed, broadly cross-reactive influenza vaccines to ensure protection from severe influenza disease in HLA-A*11:01-expressing individuals.  相似文献   

8.
The association between HLA-B*2705 and the immune control of human immunodeficiency virus type 1 (HIV-1) has previously been linked to the targeting of the HLA-B*2705-restricted Gag epitope KRWIILGLNK (KK10) by CD8+ T cells. In order to better define the mechanisms of the HLA-B*2705 immune control of HIV, we first characterized the CD8+ T-cell responses of nine highly active antiretroviral therapy (HAART)-naïve B*2705-positive subjects. Unexpectedly, we observed a strong response to an HLA-B*2705-restricted Pol epitope, KRKGGIGGY (KY9), in 8/9 subjects. The magnitude of the KY9 response was only marginally lower than that of the KK10-specific response (median, 695 versus 867 spot-forming cells [SFC]/million peripheral blood mononuclear cells [PBMCs]; not significant [NS]), and viral escape mutants were observed in both KY9 and KK10, resulting from selection pressure driven by the respective CD8+ T-cell response. By comparing inhibitions of viral replication by CD8+ T cells specific for the Gag KK10, Pol KY9, and Vpr VL9 HLA-B*2705-restricted epitopes, we observed a consistent hierarchy of antiviral efficacy (Gag KK10 > Pol KY9 > Vpr VL9). This hierarchy was associated with early recognition of HIV-1-infected cells, within 6 h of infection, by KK10- and KY9-specific CD8+ T cells but not until 18 h postinfection by VL9-specific CD8+ T cells. There was no association between antiviral efficacy and proliferative capacity, cytotoxicity, polyfunctionality, or T-cell receptor (TCR) avidity. These data are consistent with previous studies indicating an important role for the B*2705-Gag KK10 response in the control of HIV but also suggest a previously unrecognized role played by the subdominant Pol-specific KY9 response in HLA-B*2705-mediated control of HIV and that the recognition of HIV-infected cells by CD8+ T cells early in the viral life cycle may be important for viral containment in HIV-infected individuals.Current human immunodeficiency virus (HIV) vaccine strategies are focused on emulating the protective effect observed for HIV-infected individuals carrying alleles such as B*2705 by inducing the virus-specific CD8+ T-cell responses that are thought to be responsible for delaying or preventing disease progression. Understanding why such alleles confer protection facilitates a rational approach to vaccine design. It has been hypothesized that the slow progression to AIDS exhibited by HLA-B*2705-positive (HLA-B*2705+) HIV-infected individuals is due to the immunodominant B*27-restricted CD8+ T-cell response toward the p24 Gag epitope KRWIILGLNK (KK10) (Gag residues 263 to 272). Escape from this epitope typically occurs late in infection and is associated with rapid progression to AIDS (14, 16). The commonly selected mutation R264K abrogates CD8+ T-cell recognition but also confers a substantial fitness cost to the virus, and the selection of compensatory mutations is required to restore viral replicative capacity (19, 29, 30). This has prompted the hypothesis that CD8+ T-cell responses that can drive escape mutations that reduce viral fitness are a contributing factor in the immune control of HIV, either by promoting the outgrowth of a viral quasispecies with a lower replicative capacity or by delaying the selection of escape mutations, both of which may slow the onset of AIDS (11, 21, 25).To better understand how CD8+ T cells can be most effective against HIV, recent studies have directly assessed the antiviral activity of CD8+ T cells via the viral suppression of HIV-infected CD4+ T cells during coculture. Such studies indicated that Gag-specific CD8+ T cells have a higher potency for viral suppression than Env-specific CD8+ T cells (10), supporting previous data indicating that broad CD8+ T-cell targeting of Gag epitopes was associated a with lower viral set point and, hence, slower progression to AIDS (20). A recent study of simian immunodeficiency virus (SIV) suggested that the protective effect of Gag-specific CD8+ T cells is mediated by the early presentation of Gag epitopes, processed from the viral Gag protein from incoming virions during infection, which can sensitize target cells for lysis by Gag-specific CD8+ T cells within 6 h of infection (26, 27). In addition, it was proposed previously that the ability of CD8+ T cells to secrete multiple cytokines may also be an important correlate of immune protection (6), and a further recent study demonstrated a more polyfunctional cytokine profile of Gag-specific B*2705-KK10 CD8+ T-cell responses than those of other HIV-specific CD8+ T-cell responses (1). The ability of CD8+ T cells to proliferate in response to the cognate epitope peptide has also been associated with immune control (1, 12). Other studies demonstrated the importance of lytic granule loading of CD8+ T cells for the effective elimination of HIV-infected cells (6, 22). However, the induction of a Gag KK10-specific CD8+ T-cell vaccine response in a B*2705-positive vaccinee did not protect against rapid progression following subsequent HIV-1 infection (5). This anecdotal case suggests the possibility that HLA-B*2705-associated immune control of HIV-1 may not be dependent on the Gag KK10-specific CD8+ T-cell response alone.Since current vaccine strategies hope to induce a protective effect, such as that observed for HLA-B*2705+ HIV-infected individuals, the study of the functional and phenotypic characteristics of B*2705-specific CD8+ T cells provides an opportunity to redefine the proposed correlates of immune protection essential for rational vaccine design. In this study we analyze three different specificities of HLA-B*2705-restricted CD8+ T cells from chronically HIV-infected individuals in order to directly compare antiviral activity with potential correlates of immune protection, including the kinetics of viral inhibition, cytokine profile, granzyme production, proliferative capacity, and cytotoxicity.  相似文献   

9.
Cytolytic T lymphocytes (CTL) play a major role in controlling human immunodeficiency virus type 1 (HIV-1) infection. To evade immune pressure, HIV-1 is selected at targeted CTL epitopes, which may consequentially alter viral replication fitness. In our longitudinal investigations of the interplay between T-cell immunity and viral evolution following acute HIV-1 infection, we observed in a treatment-naïve patient the emergence of highly avid, gamma interferon-secreting, CD8+ CTL recognizing an HLA-Cw*0102-restricted epitope, NSPTRREL (NL8). This epitope lies in the p6Pol protein, located in the transframe region of the Gag-Pol polyprotein. Over the course of infection, an unusual viral escape mutation arose within the p6Pol epitope through insertion of a 3-amino-acid repeat, NSPT(SPT)RREL, with a concomitant insertion in the p6Gag late domain, PTAPP(APP). Interestingly, this p6Pol insertion mutation is often selected in viruses with the emergence of antiretroviral drug resistance, while the p6Gag late-domain PTAPP motif binds Tsg101 to permit viral budding. These results are the first to demonstrate viral evasion of immune pressure by amino acid insertions. Moreover, this escape mutation represents a novel mechanism whereby HIV-1 can alter its sequence within both the Gag and Pol proteins with potential functional consequences for viral replication and budding.  相似文献   

10.
We have investigated the mechanisms involved in the clearance of viral infection at the epithelium level by analyzing the activity of influenza virus-specific cytotoxic T lymphocytes (CTL) against virus-infected CMT-93 intestinal epithelial cells. Epithelial cells infected with live influenza virus effectively present viral antigens and were lysed by both homotypic and heterotypic influenza virus-specific CD8+ T cells. These results shed new light on the control of viral infection through the elimination of virus-infected epithelial cells by virus-specific CTL and demonstrate that CMT-93 cells furnish an appropriate model for in vitro evaluation of CTL activity against virus-infected epithelial cells.  相似文献   

11.
To escape immune recognition, viruses acquire amino acid substitutions in class I human leukocyte antigen (HLA)-presented cytotoxic T-lymphocyte (CTL) epitopes. Such viral escape mutations may (i) prevent peptide processing, (ii) diminish class I HLA binding, or (iii) alter T-cell recognition. Because residues 418 to 426 of the hypervariable influenza A virus nucleoprotein (NP418-426) epitope are consistently bound by class I HLA and presented to CTL, we assessed the impact that intraepitope sequence variability has upon T-cell recognition. CTL elicited by intranasal influenza virus infection were tested for their cross-recognition of 20 natural NP418-426 epitope variants. Six of the variant epitopes, of both H1N1 and H3N2 origin, were cross-recognized by CTL while the remaining NP418-426 epitope variants escaped targeting. A pattern emerged whereby variability at position 5 (P5) within the epitope reduced T-cell recognition, changes at P4 or P6 enabled CTL escape, and a mutation at P8 enhanced T-cell recognition. These data demonstrate that substitutions at P4 and/or P6 facilitate influenza virus escape from T-cell recognition and provide a model for the number, nature, and location of viral mutations that influence T-cell cross-recognition.Cytotoxic T-lymphocytes (CTL) kill virus-infected cells and release antiviral cytokines upon recognition of short viral peptides displayed on the cell surface by the class I HLA molecule (36). Virus-derived peptides are processed in the cytoplasm by proteasome degradation of viral proteins (25), shuttled into the lumen of the endoplasmic reticulum (ER) by the transporter-associated protein, and loaded into the basket-like groove of the class I molecule. Class I HLA molecules await peptide loading in the ER and demonstrate specificity for viral peptides with particular anchor residues representing a good fit for the class I HLA binding groove. Once stable class I HLA-peptide complexes are formed, the class I molecule and its peptide cargo are transported via the Golgi apparatus to the cell surface, where the complex is anchored to the plasma membrane (21, 36-38). CTL then survey class I HLA-presented peptides on the cell surface. Viral peptides must therefore be processed, specifically bound by class I HLA, and presented at the plasma membrane for CTL to distinguish infected cells from uninfected tissue.A high mutation rate is one of many mechanisms utilized by viruses to escape detection by the immune system. Mutations within the genome allow viruses to accumulate and select for amino acid substitutions that (i) inhibit proteasome processing and viral peptide generation (2, 23), (ii) alter anchor residues within viral peptides to diminish class I HLA binding specificity (3, 14, 24, 32), or (iii) reduce immune recognition of the class I HLA-peptide complex by varying amino acids that come in contact with the T-cell receptor (6, 10, 27, 30, 35). While viral mutations might be advantageous for escaping immune detection, such flexibility can cost the virus in terms of replicative fitness. In order to maintain reproductive fitness and structural integrity, viruses must temper their use of genetic flexibility as a means of immune escape.Influenza viruses have the well-documented ability to escape detection by various immune epitopes (3, 10, 27). A priori, investigators often assume that variable regions of the virus represent poor immune targets because such regions will not be consistently processed, presented, or recognized (15, 20). However, we along with others continue to find that a hypervariable stretch of the influenza virus nucleoprotein consisting of residues 418 to 426 (NP418-426) is presented to CTL by different HLA-B alleles (B*0702 and B*3501) in spite of extensive viral variability within this epitope (8, 10, 27, 34). Moreover, NP418-426 is a dominant immune epitope (8, 10, 27, 34). The consistent processing and presentation of NP418-426 by class I HLA can be explained by the finding that different influenza virus isolates cannot mutate the proline located at position 2 (P2) within the epitope because elimination of this proline reduces viral fitness (4, 5). Little to no variability is found at the methionine P9 anchor as well. These facts lead to the unique observation that strain-to-strain variability does not abrogate class I HLA presentation of the influenza virus NP418-426 epitope and that CTL respond to this consistently presented viral epitope in an immunodominant fashion.In this study we took advantage of the anchor residue conservation that prompts the NP418-426 epitope to be consistently presented to CTL by investigating the functional impact that influenza virus intraepitope variability has on CTL recognition. The amino acid alignment of human influenza A (H1N1 and H3N2) virus nucleoprotein molecules identifies 20 unique NP418-426 peptide sequences which demonstrate amino acid diversity between the anchors. We infected HLA-transgenic mice intranasally with influenza virus and tested CTL from these animals for their ability to recognize each of the 20 NP418-426 variants. These 20 NP418-426 sequences represent a natural “recombinant library” of viral epitopes that the immune system has and will face. The resulting data demonstrate a gradient of viral substitutions whereby CTL recognition diminishes depending upon the number of viral substitutions and their location within the epitope. Understanding how intraepitope variability impacts CTL recognition is discussed in terms of eliciting immune responses to variants of influenza.  相似文献   

12.
We defined the epitopes recognized by three influenza A virus-specific, H-2Kd-restricted CD8+ cytotoxic T-lymphocyte (CTL) clones: H1-specific clone A-12, H2-specific clone F-4, and H1- and H2-cross-reactive clone B7-B7. The A-12 and B7-B7 clones recognized the same peptide, which comprises amino acids 533 to 541 (IYSTVASSL) of A/PR/8 hemagglutinin (HA). The F-4 and B7-B7 clones both recognized the peptide which comprise amino acids 529 to 537 (IYATVAGSL) of A/Jap HA. Amino acids 533 to 541 of A/PR/8 HA are compatible with amino acids 529 to 537 of A/Jap HA. Amino acid S at positions 3 and 7 was responsible for recognition by H1-specific clone A-12, while amino acid G at position 7 was responsible for recognition by H2-specific clone F-4. Two conserved amino acids, T at position 4 and A at position 6, were responsible for recognition by H1-, and H2-cross-reactive clone B7-B7. These results indicate that a single nine-amino-acid region is recognized by HA-specific CTL clones of three different subtype specificities and that the amino acids responsible for the recognition by the CTL clones are different.  相似文献   

13.
CD4+ T-cell help enables antiviral CD8+ T cells to differentiate into fully competent memory cells and sustains CD8+ T-cell-mediated immunity during persistent virus infection. We recently reported that mice of C57BL/6 and C3H strains differ in their dependence on CD28 and CD40L costimulation for long-term control of infection by polyoma virus, a persistent mouse pathogen. In this study, we asked whether mice of these inbred strains also vary in their requirement for CD4+ T-cell help for generating and maintaining polyoma virus-specific CD8+ T cells. CD4+ T-cell-depleted C57BL/6 mice mounted a robust antiviral CD8+ T-cell response during acute infection, whereas unhelped CD8+ T-cell effectors in C3H mice were functionally impaired during acute infection and failed to expand upon antigenic challenge during persistent infection. Using (C57BL/6 × C3H)F1 mice, we found that the dispensability for CD4+ T-cell help for the H-2b-restricted polyoma virus-specific CD8+ T-cell response during acute infection extends to the H-2k-restricted antiviral CD8+ T cells. Our findings demonstrate that dependence on CD4+ T-cell help for antiviral CD8+ T-cell effector differentiation can vary among allogeneic strains of inbred mice.  相似文献   

14.
Serotype-cross-reactive dengue virus-specific cytotoxic T lymphocytes (CTL) induced during a primary dengue virus infection are thought to play a role in the immunopathogenesis of dengue hemorrhagic fever (DHF) during a secondary dengue virus infection. Although there is no animal model of DHF, we previously reported that murine dengue virus-specific CTL responses are qualitatively similar to human dengue virus-specific CTL responses. We used BALB/c mice to study the specificity of the CTL response to an immunodominant epitope on the dengue virus NS3 protein. We mapped the minimal H-2Kd-restricted CTL epitope to residues 298 to 306 of the dengue type 2 virus NS3 protein. In short-term T-cell lines and clones, the predominant CD8+ CTL to this epitope in mice immunized with dengue type 2 virus or vaccinia virus expressing the dengue type 4 virus NS3 protein were cross-reactive with dengue type 2 or type 4 virus, while broadly serotype-cross-reactive CTL were a minority population. In dengue type 3 virus-immunized mice, the predominant CTL response to this epitope was broadly serotype cross-reactive. All of the dengue virus-specific CTL clones studied also recognized the homologous NS3 sequences of one or more closely related flaviviruses, such as Kunjin virus. The critical contact residues for the CTL clones with different specificities were mapped with peptides having single amino acid substitutions. These data demonstrate that primary dengue virus infection induces a complex population of flavivirus-cross-reactive NS3-specific CTL clones in mice and suggest that CTL responses are influenced by the viral serotype. These findings suggest an additional mechanism by which the order of sequential flavivirus infections may influence disease manifestations.  相似文献   

15.
Despite many efforts to develop AIDS vaccines eliciting virus-specific T-cell responses, whether induction of these memory T cells by vaccination before human immunodeficiency virus (HIV) exposure can actually contribute to effective T-cell responses postinfection remains unclear. In particular, induction of HIV-specific memory CD4+ T cells may increase the target cell pool for HIV infection because the virus preferentially infects HIV-specific CD4+ T cells. However, virus-specific CD4+ helper T-cell responses are thought to be important for functional CD8+ cytotoxic-T-lymphocyte (CTL) induction in HIV infection, and it has remained unknown whether HIV-specific memory CD8+ T cells induced by vaccination without HIV-specific CD4+ T-cell help can exert effective responses after virus exposure. Here we show the impact of CD8+ T-cell memory induction without virus-specific CD4+ T-cell help on the control of a simian immunodeficiency virus (SIV) challenge in rhesus macaques. We developed a prophylactic vaccine by using a Sendai virus (SeV) vector expressing a single SIV Gag241-249 CTL epitope fused with enhanced green fluorescent protein (EGFP). Vaccination resulted in induction of SeV-EGFP-specific CD4+ T-cell and Gag241-249-specific CD8+ T-cell responses. After a SIV challenge, the vaccinees showed dominant Gag241-249-specific CD8+ T-cell responses with higher effector memory frequencies in the acute phase and exhibited significantly reduced viral loads. These results demonstrate that virus-specific memory CD8+ T cells induced by vaccination without virus-specific CD4+ T-cell help could indeed facilitate SIV control after virus exposure, indicating the benefit of prophylactic vaccination eliciting virus-specific CTL memory with non-virus-specific CD4+ T-cell responses for HIV control.Virus-specific T-cell responses are crucial for controlling human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication (3, 4, 12, 20, 28, 36, 37). Therefore, a great deal of effort has been exerted to develop AIDS vaccines eliciting virus-specific T-cell responses (23, 27, 30, 47), but whether this approach actually results in HIV control remains unclear (1, 6). It is important to determine which T-cell responses need to be induced by prophylactic vaccination for HIV control after virus exposure.Because HIV preferentially infects HIV-specific CD4+ T cells (5), induction of HIV-specific memory CD4+ T cells by vaccination may increase the target cell pool for HIV infection and could enhance viral replication (42). However, CD4+ helper T-cell responses are important for functional CD8+ cytotoxic-T-lymphocyte (CTL) induction (11, 40, 43, 46), and it has remained unknown whether HIV-specific memory CD8+ T cells induced by vaccination with non-virus-specific CD4+ T-cell help (but without HIV-specific CD4+ T-cell help) can exert effective responses after virus exposure. Indeed, the real impact of prophylactic induction of CTL memory itself on HIV replication has not been well documented thus far.We previously developed a prophylactic AIDS vaccine consisting of DNA priming followed by boosting with a recombinant Sendai virus (SeV) vector expressing SIVmac239 Gag (26). Evaluation of this vaccine''s efficacy against a SIVmac239 challenge in Burmese rhesus macaques showed that some vaccinees contained SIV replication whereas unvaccinated animals developed AIDS (15, 27). In particular, vaccination consistently resulted in control of SIV replication in those animals possessing the major histocompatibility complex class I (MHC-I) haplotype 90-120-Ia. Gag206-216 (IINEEAADWDL) and Gag241-249 (SSVDEQIQW) epitope-specific CD8+ T-cell responses were shown to be involved in SIV control in these vaccinated macaques (14, 16).In the present study, focusing on CD8+ T-cell responses directed against one of these epitopes, we have evaluated the efficacy of a vaccine expressing the Gag241-249 epitope fused with enhanced green fluorescent protein (EGFP) against a SIVmac239 challenge in 90-120-Ia-positive rhesus macaques. The animals exhibited this single-epitope-specific CD8+ T-cell response and SeV-EGFP-specific CD4+ T-cell responses after vaccination and showed rapid, dominant induction of potent secondary Gag241-249-specific CD8+ T-cell responses after a SIV challenge. Plasma viral loads in these vaccinees were significantly reduced compared to those of naive controls. These results indicate that induction of CD8+ T-cell memory without virus-specific CD4+ T-cell help by prophylactic vaccination can result in effective CD8+ T-cell responses after virus exposure.  相似文献   

16.
Recently it was shown that influenza A viruses can accumulate mutations in epitopes associated with escape from recognition by human virus-specific cytotoxic T lymphocytes (CTL). It is unclear what drives diversification of CTL epitopes and why certain epitopes are variable and others remain conserved. It has been shown that simian immunodeficiency virus-specific CTL that recognize their epitope with high functional avidity eliminate virus-infected cells efficiently and drive diversification of CTL epitopes. T-cell functional avidity is defined by the density of major histocompatibility complex class I peptide complexes required to activate specific CTL. We hypothesized that functional avidity of CTL contributes to epitope diversification and escape from CTL also for influenza viruses. To test this hypothesis, the functional avidity of polyclonal CTL populations specific for nine individual epitopes was determined. To this end, peripheral blood mononuclear cells from HLA-A- and -B-genotyped individuals were stimulated in vitro with influenza virus-infected cells to allow expansion of virus-specific CTL, which were used to determine the functional avidity of CTL specific for nine individual epitopes in enzyme-linked immunospot assays. We found that the functional avidity for the respective epitopes varied widely. Furthermore, the functional avidity of CTL specific for the hypervariable NP(418-426) epitope was significantly higher than that of CTL recognizing other epitopes (P < 0.01). It was speculated that the high functional avidity of NP(418-426)-specific CTL was responsible for the diversification of this influenza A virus CTL epitope.  相似文献   

17.
During secondary immune responses to influenza virus, virus-specific T memory cells are a major source of gamma interferon (IFN-γ). We assessed the contribution of IFN-γ to heterologous protection against the A/WSN/33 (H1N1) virus of wild-type and IFN-γ−/− mice previously immunized with the A/HK/68 (H3N2) virus. The IFN-γ−/− mice displayed significantly reduced survival rates subsequent to a challenge with various doses of the A/WSN/33 virus. This was associated with an impaired ability of the IFN-γ−/− mice to completely clear the pulmonary virus by day 7 after the challenge, although significant reduction of the virus titers was noted. However, the IFN-γ−/− mice developed type A influenza virus cross-reactive cytotoxic T lymphocytes (CTLs) similar to the wild-type mice, as demonstrated by both cytotoxicity and a limiting-dilution assay for the estimation of CTL precursor frequency. The pulmonary recruitment of T cells in IFN-γ−/− mice was not dramatically affected, and the percentage of CD4+ and CD8+ T cells was similar to that of wild-type mice. The T cells from IFN-γ−/− mice did not display a significant switch toward a Th2 profile. Furthermore, the IFN-γ−/− mice retained the ability to mount significant titers of WSN and HK virus-specific hemagglutination-inhibiting antibodies. Together, these results are consistent with a protective role of IFN-γ during the heterologous response against influenza virus independently of the generation and local recruitment of cross-reactive CTLs.  相似文献   

18.
19.

Background

As tumor antigen-specific CD4+ T cells can mediate strong therapeutic anti-tumor responses in melanoma patients we set out to establish a comprehensive screening strategy for the identification of tumor-specific CD4+ T cell epitopes suitable for detection, isolation and expansion of tumor-reactive T cells from patients.

Methods and Findings

To scan the human melanoma differentiation antigens TRP-1 and TRP-2 for HLA-DRB1*0301-restricted CD4+ T cell epitopes we applied the following methodology: Splenocytes of HLA-DRB1*0301-transgenic mice immunized with recombinant adenovirus encoding TRP-1 (Ad5.TRP-1) or TRP-2 (Ad5.TRP-2) were tested for their T cell reactivity against combinatorial TRP-1- and TRP-2-specific peptide libraries. CD4+ T cell epitopes thus identified were validated in the human system by stimulation of peripheral blood mononuclear cells (PBMC) from healthy donors and melanoma patients. Using this strategy we observed that recombinant Ad5 induced strong CD4+ T cell responses against the heterologous tumor antigens. In Ad5.TRP-2-immunized mice CD4+ T cell reactivity was detected against the known HLA-DRB1*0301-restricted TRP-260–74 epitope and against the new epitope TRP-2149–163. Importantly, human T cells specifically recognizing target cells loaded with the TRP-2149–163-containing library peptide or infected with Ad5.TRP-2 were obtained from healthy individuals, and short term in vitro stimulation of PBMC revealed the presence of epitope-reactive CD4+ T cells in melanoma patients. Similarly, immunization of mice with Ad5.TRP-1 induced CD4+ T cell responses against TRP-1-derived peptides that turned out to be recognized also by human T cells, resulting in the identification of TRP-1284–298 as a new HLA-DRB1*0301-restricted CD4+ T cell epitope.

Conclusions

Our screening approach identified new HLA-DRB1*0301-restricted CD4+ T cell epitopes derived from melanoma antigens. This strategy is generally applicable to target antigens of other tumor entities and to different HLA class II molecules even without prior characterization of their peptide binding motives.  相似文献   

20.
Human Cytotoxic T-Lymphocyte Repertoire to Influenza A Viruses   总被引:11,自引:0,他引:11       下载免费PDF全文
The murine CD8+ cytotoxic-T-lymphocyte (CTL) repertoire appears to be quite limited in response to influenza A viruses. The CTL responses to influenza A virus in humans were examined to determine if the CTL repertoire is also very limited. Bulk cultures revealed that a number of virus proteins were recognized in CTL assays. CTL lines were isolated from three donors for detailed study and found to be specific for epitopes on numerous influenza A viral proteins. Eight distinct CD8+ CTL lines were isolated from donor 1. The proteins recognized by these cell lines included the nucleoprotein (NP), matrix protein (M1), nonstructural protein 1 (NS1), polymerases (PB1 and PB2), and hemagglutinin (HA). Two CD4+ cell lines, one specific for neuraminidase (NA) and the other specific for M1, were also characterized. These CTL results were confirmed by precursor frequency analysis of peptide-specific gamma interferon-producing cells detected by ELISPOT. The epitopes recognized by 6 of these 10 cell lines have not been previously described; 8 of the 10 cell lines were cross-reactive to subtype H1N1, H2N2, and H3N2 viruses, 1 cell line was cross-reactive to subtypes H1N1 and H2N2, and 1 cell line was subtype H1N1 specific. A broad CTL repertoire was detected in the two other donors, and cell lines specific for the NP, NA, HA, M1, NS1, and M2 viral proteins were isolated. These findings indicate that the human memory CTL response to influenza A virus is broadly directed to epitopes on a wide variety of proteins, unlike the limited response observed following infection of mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号