首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 836 毫秒
1.
This work generalizes the results of studies of calcium metabolism in the participants of long-term space flights of 30 to 438 days on the Salyut and Mir orbital stations during 1978–1998. The results of pre- and postflight examination of 44 cosmonauts (18 subjects participated twice in long-term space flights) were analyzed. After space flights of medium (of 3 to 6 months) and long (of 6 to 14 months) duration, the total blood calcium content was increased, mainly due to its ionized fraction; the blood level of parathyroid hormone was significantly increased and the level of calcitonin was decreased. The content of osteocalcin was increased after space flights. Calcium kinetics was studied using stable isotopes in three cosmonauts before, during, and after the 115-day flight. During the flight, intestinal absorption of calcium and its gastrointestinal excretion were decreased, whereas its renal excretion was increased. Early postflight intestinal absorption was, on average, lower than during the flight, whereas intestinal excretion increased. Both renal and intestinal excretion of calcium were not normalized 3.5 to 4.5 months after the glight. The mathematical models used for evaluating the rates of main calcium flows revealed increased bone tissue resorption that resulted in the negative bone balance during the flight. The conclusion about the decreased rate of bone tissue remodeling and its increased resorption was confirmed by biochemical data, including endocrine markers.  相似文献   

2.
The features of metabolic reactions in five cosmonauts after long-term flights on the International Space Station (ISS) and landing along a ballistic trajectory and in the cosmonauts returning to Earth in the mode of automatic controlled descent were studied. Venous blood samples were collected, and 50 biochemical parameter values that reflect the functional state of organs and tissues and characterize the main metabolic pathways were determined. On the first day of the recovery period after ballistic descent, the activity of the myocardial, liver, and gastrointestinal enzymes in the blood serum of cosmonauts was increased 1.3- to 2.1-fold; a number of the parameter values exceeded the upper normal limit. The level of C-reactive protein increased fivefold as compared with the preflight values. Marked signs of glycolysis, glycogenolysis and lipolysis activation as well as disorders of acid–base balance were observed. Changes in the biochemical parameter values in cosmonauts after landing along a ballistic trajectory differed significantly from those revealed in the same cosmonauts after long-term missions followed by automatic controlled descent to Earth. Negative metabolic changes tendency after landing along a ballistic trajectory remained for at least 14 days of the recovery period. It was concluded that changes in the metabolic reactions of cosmonauts after long-term missions to the ISS depend on the flights final stage conditions. After landing on Soyuz spaceships in the ballistic descent mode, the cosmonauts had adverse prognosis changes in the biochemical values characterizing the state of the cardiovascular system and marked shifts in the activity of the liver and gastrointestinal constellation enzymes. The dynamics of carbohydrate, lipid, and protein metabolism as well as acid–base balance indicates a significant tension of all body systems and exhaustion of its functional reserves.  相似文献   

3.
Bioimpedance measurement was used to study dynamics of human hydration status and body composition on board the International space station (ISS). At different stages of 100- to 200-day flights of 12 cosmonauts, the volume of their body liquid was reduced: the overall, intra-, and extracellular volumes became on average 5.2 to 10.4% less per group as compared to the baseline level. The in-flight changes in the body composition of the cosmonauts were also consistent: while the lean mass loss determined by impedance measurement was insignificant (on average, from 1.9 to 4.0%), the gain of the fatty mass ranged from 4.6 to 8.2% during the first three months of the flight. Thus, hydration of a human body decreased during the long-term space flight, which was accompanied by reduction of the muscular mass and the gain in fatty mass.  相似文献   

4.
It is known that long-term space flights lead to dysregulation of the cardiovascular system, and the endothelium is the most important functional element of such dysregulation. In order to find the signs of endothelial dysfunction in cosmonauts who have been in long-term space flights, we collected urine samples from 21 cosmonauts before the flight and on the first and seventh days after landing. The urine samples were investigated by chromatography–mass spectrometry analysis. Proteins were identified using the MaxQuant software and the SwissProt database. The software package Perseus was used for semi-quantitative analysis. The reconstruction of associative molecular networks was performed using the ANDSystem software. We identified 200 different proteins in urine samples of 21 Russian cosmonauts. The ANDSystem software made it possible to determine seven processes related to endothelium functioning. These processes had direct relations to 17 urine proteins, which were functionally associated with the endothelium. At the same time, eight proteins (such as serotransferrin, prostate-specific antigen, fibrinogen gamma chain, UFO tyrosine kinase receptor, aminopeptidase N, vascular cell adhesion molecule 1, osteopontin, and syndecan-4) were significantly changed (p < 0.01) at different points of the recovery period (the first and seventh days). Thus, we performed the first study of the urine protein composition in cosmonauts for the evaluation of signs of endothelial dysfunction after space flight using proteomics methods.  相似文献   

5.
This paper presents the results from testing the vestibular function on return from repeated space flights (SF) in 32 cosmonauts of the International Space Station that were in long SFs of 125–215 days. The cosmonauts were tested twice before the flight (baseline data collection) and on days 1–2, 4–5, and 8–9 after landing. The testing was made using two methods for recording eye movements (with simultaneous recording of head movements): electro-oculography and video-oculography. It is shown that the repeated stay in the long SF leads to a considerable statistically significant reduction in the de-adaptation period. Atypical vestibular disorders and changed patterns of the otolith-semicircular canal interaction are observed mostly in the cosmonauts who have made their maiden flights to microgravity.  相似文献   

6.
An analysis was performed of unstable chromosomal aberrations in peripheral blood of 36 cosmonauts after long-term space missions on "Mir" orbital station. 25 cosmonauts were examined before their flights to score spontaneous yields of cytogenetical damage. In all cases the doses absorbed by crews during space flights did not exceed permissible levels of irradiation, adopted for cosmonauts. The frequencies of chromosomal-type aberrations after space missions were found to increase significantly compared to the pre-flight levels. The yields of dicentrics and centric rings on the average were as high as 0.12 +/- 0.02 and 0.47 +/- 0.06% before and after the 1st flight, 0.18 +/- 0.05 and 0.71 +/- 0.11% before and after the 2nd flight respectively. During the inter-flight periods, usually lasted 1.5-2 years, the yields of chromosome damage lowered, but did not reach their spontaneous values. After each next flight the yields of chromosome aberrations increased again. The cytogenetical damage detected in cosmonauts' peripheral blood lymphocytes after chronic action of low doses of space radiation points out a possible increase in risks of stochastic effects in distant future for crews after long-term space missions.  相似文献   

7.
We studied three Russian cosmonauts to better understand how long-term exposure to microgravity affects autonomic cardiovascular control. We recorded the electrocardiogram, finger photoplethysmographic pressure, and respiratory flow before, during, and after two 9-mo missions to the Russian space station Mir. Measurements were made during four modes of breathing: 1) uncontrolled spontaneous breathing; 2) stepwise breathing at six different frequencies; 3) fixed-frequency breathing; and 4) random-frequency breathing. R wave-to-R wave (R-R) interval standard deviations decreased in all and respiratory frequency R-R interval spectral power decreased in two cosmonauts in space. Two weeks after the cosmonauts returned to Earth, R-R interval spectral power was decreased, and systolic pressure spectral power was increased in all. The transfer function between systolic pressures and R-R intervals was reduced in-flight, was reduced further the day after landing, and had not returned to preflight levels by 14 days after landing. Our results suggest that long-duration spaceflight reduces vagal-cardiac nerve traffic and decreases vagal baroreflex gain and that these changes may persist as long as 2 wk after return to Earth.  相似文献   

8.
The study of serum samples, obtained from 15 cosmonauts before and after space flights, with the use of the indirect fluorescent method showed that in 7 cosmonauts antibodies to different elements of the human heart muscle appeared after flights. Strong and very strong luminescence of the elements of heart muscle tissue was detected in the cosmonauts after the third space flight. When studying the sera on sections of bovine heart muscle tissue, the reactions of the sera taken before and after flights were found to have no essential differences.  相似文献   

9.
Calcium metabolism characteristics in microgravity]   总被引:2,自引:0,他引:2  
The results of research of calcium exchange parameters at cosmonauts taken part in long space flights (SF) onboard of orbital stations "SALUT" and "MIR" within 1978-1998 were generalized. The analysis of data received during observation of 44 cosmonauts (18 of them have taken part in long SF twice) was done. The observation was carried out before and after SF by duration 30-438 days. The content of a total calcium in blood serum was increased basically by the increase of its ionized fraction after flights of moderate (3-6 months) and large duration (6-14 months) along with the significant increase of PTH and decrease of calcitonin levels. The content of osteocalcin after SF was increased. Three cosmonauts participated in research of calcium kinetics using stable isotopes before, in time and after a 115-day SF. Reduction of intestinal absorption, excretion through a gastrointestinal tract, and increase of calcium excretion with urine were marked in time of SF. In early postflight period a level of intestinal absorption, on the average, was much lower than in SF, and the calcium removal through intestine was increased. Both renal and intestinal excretion of calcium were not normalized in 3.5-4.5 months after end of SF. Increase of resorbtive processes in bone tissues which induced negative bone balance during flight was observed in all test subjects, proceeding from estimations of speed of the basic calcium flows made on the basis of mathematical modeling. The conclusion about decrease in speed of bone tissue remodeling and strengthening of its resorption proves to be true by data of research of biochemical and endocrine markers.  相似文献   

10.
Analysis of alterations in the cardiac activity on the basis of electrocardiographic (ECG) findings in 29 cosmonauts of flight and ground professions aged from 29 to 61 years after 34 short (8–30 days) space flights (SFs) between 1982 and 2006 has been carried out. The ECG data at the stage of clinical selection, clinical-physiological examination (CPE) before a SF, at the stage of the launch of a spacecraft (SC) into orbit and its landing on Earth and at the stage of postflight CPE have been analyzed. The analysis of cardiac activity parameters on the basis of ECG data at different stages of observations has led to the identification of three groups of cosmonauts. There were no significant changes or negative tendencies in the alteration of ECG data in the first group (55.2% of the total number of cosmonauts) during the observation period from selection to the end of the SF. The changes that later became more pronounced during the landing on Earth and were retained during postflight CPE have been found in the second group of cosmonauts (in 34.5% cases) at the time of selection and preflight CPE. Considerable disturbances in cardiac activity that are dangerous for human health have been found in ECGs in the third group (10.3%) during the descent from orbit. The data from the study are the first step in the investigation of possible medical risks for the development and improvement of requirements for the medical selection of crews and the admission of subjects with partial health insufficiency on SFs.  相似文献   

11.
The results of the Russian-Austrian space experiment Monimir, which was a part of the international space program Austromir, are presented. The characteristics of the horizontal gaze fixation reaction (hGFR) to the visual targets were studied during long-term space flights. Seven crewmembers of the space station Mir participated in our experiment. The subjects were tested four times before the flight, five times during the flight, and three to four times after landing. During the flight and after accomplishing, the characteristics of gaze fixation reaction changed regularly: the reaction time and coefficient of the gain of vestibular-ocular reflex increased; the velocities of eye-head movements increased and decreased. These changes were indicative of a disturbed control of the vestibular-ocular reflex under microgravity conditions because of variability of the vestibular input activity. The cosmonauts that had flight and non-flight professional specializations differed in strategies of their adaptation to the microgravity conditions. In the former, exposure to microgravity was accompanied by gaze hypermetry and inhibition of head movements; conversely, in the latter, the velocity of head movements increased, whereas that of saccades decreased.  相似文献   

12.
Cluster analysis of the following parameters was performed in 13 cosmonauts: the duration (min), amount (m), and speed (km/h) of physical locomotor exercise (PLE) including running, and total locomotion (running + walking). These activities were the part of the program of long-term missions on board the International Space Station. The cosmonauts were divided into three groups, which included two, five, and six subjects, respectively. The parameters of the PLE amount and speed significantly increased (p < 0.03) when going from the first to the third group. There was no significant difference in the duration of PLE between the groups (p < 0.125). It is concluded that cluster analysis is an appropriate method for fitness evaluation of cosmonauts during long-term space flights.  相似文献   

13.
To investigate to time course of sensory-motor adaptation to microgravity, we tested spatially-directed voluntary head movements before, during and after short spaceflight. We also tested the re-adaptation of postural responses to sensory stimulation after space flight. The cosmonaut performed in microgravity six cycles of voluntary head rotation in pitch, roll and yaw directions. During the first days of weightlessness the angular velocity of head movements increased. Over the next days of microgravity the velocity of head movements gradually decreased. On landing day a significant decrease of head rotation velocity was observed compared to the head movement velocity before spaceflight. Re-adaptation to Earth condition measured by body sway on soft support showed similar time course, but re-adaptation measured by postural responses to vestibular galvanic stimulation was prolonged. These results showed that the angular velocity of aimed head movements of cosmonauts is a good indicator of sensory-motor adaptation in altered gravity conditions.  相似文献   

14.
A fifty-year study of water-electrolyte metabolism, the condition of the water medium of the body, and hormonal regulation during space flights and the postflight period or their on-ground modeling (hypokinesia, bed rest, immersion, etc.) has shown the important role of water-salt homeostasis in adaptation of the human and animal body to weightlessness. It has been revealed that, in weightlessness, the conditions for the development of a negative balance of a liquid (hydrohydration) and basic electrolytes are created. After termination of long space flights, attributes of the development of adaptive reactions, compensating for the loss of extracellular liquid volume come to light. In order to assess the state of the kidneys and water-electrolyte metabolism in cosmonauts and investigators, functional load tests, and special methods of diagnostics were developed. This is the basis for the research aimed at improving the scheme of correction of the water balance of the body of cosmonauts at different stages of a flight.  相似文献   

15.
Parameters of calcium homeostasis and its hormonal regulation, including biochemical markers of bone metabolism, were measured in the blood serum of Russian cosmonauts after prolonged flights on the International Space Station during the period from 2000 to 2003. The duration of the spaceflights was 129–196 days. Flight factors had an impact on calcium and bone tissue metabolism after a flight. Increased levels of osteogenesis and resorption markers were detected in the blood of the cosmonauts in the early rehabilitation period after a spaceflight. The prevalence of resorption over the formation of new bone tissue was observed in the early rehabilitation period, when the hormonal system maintaining calcium homeostasis was activated.  相似文献   

16.
Adaptation mechanisms of adrenal function related to secretion of cortisol were studied under conditions of microgravity. Parameters of diurnal rhythms of salivary cortisol were studied by Russian cosmonauts on board orbital station Mir during long-term space flights (SF). The preflight circadian rhythms of salivary cortisol in cosmonauts were characterized by the morning maximum occurring at 9∶43 a.m., the fluctuation amplitude 6.05 nmol/1, and the daily average concentration 8.79 nmol/l. The characteristics of cortisol diurnal rhythm changed under conditions of long-term space flight. On average, the rhythm measure and amplitude decreased after two months of flight. The postflight maximum concentration of free cortisol tended to occur later in the day. Evidently, the motor activity during SF, i.e., prophylactic exercises along with other factors, significantly influenced the parameters of cortisol circadian rhythm that was revealed by the individual variability of findings during the flight. After the long-term SF, individual ratios of salivary and plasma cortisol levels increased against the background of increased plasma content of the hormone, i.e., the fraction of free, physiologically active hormone in the total pool of circulating molecules decreased.  相似文献   

17.
The purpose of this study was to investigate plasma concentrations of cyclic guanosine monophosphate (cGMP) and atrial natriuretic peptide (ANP) during and after real and simulated space flight. Venous blood was obtained 3 min after the beginning and 2 min after the lower body negative pressure maneuver in two cosmonauts preflight (supine), inflight, and postflight (supine) and in five other subjects before, at the end, and 4 days after a 5-day head-down tilt (-6 degrees) bed rest. In cosmonaut 1 (10 days in space), plasma cGMP fell from preflight 4.3 to 1.4 nM on flight day 6, and was 3.0 nM on the fourth day after landing. In cosmonaut 2 (438 days in space), it fell from preflight 4.9 to 0.5 nM on on flight day 3, and stayed <0.1 nM with 5, 9, and 14 months in space, as well as on the fourth day after landing. Three months after the flight his plasma cGMP was back to normal (6.3 nM). Cosmonaut 2 also displayed relatively low inflight ANP values but returned to preflight level immediately after landing. In a ground-based simulation on five other persons, supine plasma cGMP was reduced by an average of 30% within 5 days of 6 degrees head-down tilt bed rest. The data consistently demonstrate lowered plasma cGMP with real and simulated weightlessness, and a complete disappearance of cGMP from plasma during, and shortly after long-duration space flight.  相似文献   

18.
We tested the hypothesis that sympathoadrenal activity in humans is low during spaceflight and that this effect can be simulated by head-down bed rest (HDBR). Platelet norepinephrine and epinephrine were measured as indexes of long-term changes in sympathoadrenal activity. Ten normal healthy subjects were studied before and during HDBR of 2-wk duration, as well as during an ambulatory study period of a similar length. Platelet norepinephrine concentrations (half-life = 2 days) were studied in five cosmonauts, 2 wk before launch, within 12 h after landing after 11-12 days of flight, and at least 2 wk after return to Earth. Because of the long half-life of platelet norepinephrine, data obtained early after landing would still reflect the microgravity state. Platelet norepinephrine decreased markedly during HDBR (P < 0.001), whereas there were no significant changes when subjects were ambulatory. Platelet epinephrine did not change during HDBR. During microgravity, platelet norepinephrine and epinephrine increased in four of the five cosmonauts. Platelet norepinephrine concentrations expressed in percentage of preflight and pre-HDBR values, respectively, were significantly different during microgravity compared with HDBR [153 +/- 28% (mean +/- SE) vs. 60 +/- 6%, P < 0.004]. Corresponding values for platelet epinephrine were also significant (293 +/- 85 vs. 90 +/- 12%, P < 0.01). The mechanism of the platelet norepinephrine and epinephrine response during spaceflight flight is most likely related to the concomitant decrease in plasma volume. HDBR cannot be applied to simulate changes in sympathoadrenal activity during microgravity.  相似文献   

19.
Cytotoxic activity of non-major histocompatibility complex-restricted (CD56+) (NMHC) killer cells and cell surface marker expression of peripheral blood mononuclear cells were determined before and after spaceflight. Ten astronauts (9 men, 1 woman) from two space shuttle missions (9- and 10-day duration) participated in the study. Blood samples were collected 10 days before launch, within 3 h after landing, and 3 days after landing. All peripheral blood mononuclear cell preparations were cryopreserved and analyzed simultaneously in a 4-h cytotoxicity (51)Cr release assay using K562 target cells. NMHC killer cell lytic activity was normalized per 1,000 CD56+ cells. When all 10 subjects were considered as one study group, NMHC killer cell numbers did not change significantly during the three sampling periods, but at landing lytic activity had decreased by approximately 40% (P < 0.05) from preflight values. Nine of ten astronauts had decreased lytic activity immediately after flight. NMHC killer cell cytotoxicity of only three astronauts returned toward preflight values by 3 days after landing. Consistent with decreased NMHC killer cell cytotoxicity, urinary cortisol significantly increased after landing compared with preflight levels. Plasma cortisol and ACTH levels at landing were not significantly different from preflight values. No correlation of changes in NMHC killer cell function or hormone levels with factors such as age, gender, mission, or spaceflight experience was found. After landing, expression of the major lymphocyte surface markers (CD3, CD4, CD8, CD14, CD16, CD56), as determined by flow cytometric analysis, did not show any consistent changes from measurements made before flight.  相似文献   

20.
The values of 11 diagnostically significant hemostasis system indices were determined during the preflight (30–45 days before start) clinical and physiological examination of 39 cosmonauts aged 35 to 54 years, who were the members of the main and backup crews of missions to the International Space Station (ISS) during the period from 2007 to 2014. Since most of the cosmonauts performed several flights over this period and were repeatedly included in backup crews, each of them underwent examinations one to five times. The reference values were calculated for each of the studied indices. It was found that the reference ranges for the parameters indicative of the integral pro- and anticoagulant and fibrinolytic blood plasma potential were somewhat narrowed and close to the boundaries of general population ranges, which indicates that the cosmonauts had a relatively decreased procoagulant potential and increased regulative potential of the hemostasis system. This was probably due to the criteria of selection, physical training status, and emotional status of crew members during the preflight professional activity, when adaptive changes against stressinducing effects occur in the body. The cosmonauts who underwent strict medical examination may also have some genetic features in which they differ from the general population and which provide higher body resistance and more rapid adaptation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号