首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Horseradish peroxide (HRP) was covalently coupled to three-dimensional (3D) silk fibroin scaffolds using water-soluble carbodiimide. Stable, bilaterally symmetrical immobilized HRP gradient patterns were generated within 3D silk fibroin scaffolds using the principles of diffusion. Gradients of immobilized HRP activity were controlled using variables of volume and concentration of HRP solution activated by the carbodiimide. The method developed can be extended to immobilize a variety of proteins and small molecules on several types of porous, interconnected materials. This technique of patterning enzymes and proteins in a gradient manner offers new options in the field of chemotaxis, tissue engineering, and biosensors.  相似文献   

2.
Horseradish peroxidase (HRP) and soybean peroxidase (SBP) were covalently immobilized onto aldehyde glass through their amine groups. The activity yield and the protein content for the immobilized SBP were higher than for the immobilized HRP. When free and immobilized peroxidases were tested for their ability to remove 4-chlorophenol from aqueous solutions, the removal percentages were higher with immobilized HRP than with free HRP, whereas immobilized SBP needs more enzyme to reach the same conversion than free enzyme. In the present paper the two immobilized derivatives are compared. It was found that at an immobilized enzyme concentration in the reactor of 15 mg l(-1), SBP removed 5% more of 4-chlorophenol than HRP, and that a shorter treatment was necessary. Since immobilized SBP was less susceptible to inactivation than HRP and provided higher 4-chlorophenol elimination, this derivative was chosen for further inactivation studies. The protective effect of the immobilization against the enzyme inactivation by hydrogen peroxide was demonstrated.  相似文献   

3.
A novel sol-gel immobilization method employing a detergentless micro-emulsion system that consisted ofn-hexane/iso-propanol/water was developed and used to immobilize a horseradish peroxidase (HRP). Micro-sized gel powder containing enzymes was generated in the ternary solution without drying and grinding steps or the addition of detergent, therefore, the method described in this study is a simple and straightforward process for the manufacture of gel powder. The gel powder made in this study was able to retain 84% of its initial enzyme activity, which is higher than gel powders produced through other immobilization methods. Furthermore, the HRP immobilized using this method, was able to maintain its activity at or above 95% of its initial activity for 48h, whereas the enzyme activities of free HRP and HRP that was immobilized using the other sol-gel method decreased dramatically. In addition, even when in the presence of excess hydrogen peroxide, the enzyme immobilized using the novel sol-gel method described here was more stable than enzymes immobilized using the other method.  相似文献   

4.
A nonradioactive assay for type IV collagen degradation   总被引:1,自引:0,他引:1  
A sensitive assay for type IV collagen degradation using an avidin-biotin sandwich technique is described. Biotinylated type IV collagen is allowed to bind to an avidin-coated microtiter plate. The solution to be assayed is incubated with the biotinylated collagen bound to the avidin plate. Collagen degraded by the solution is released into the supernatant and transferred to a second plate coated with avidin. By addition of biotinylated horseradish peroxidase to this second plate, the amount of collagen degraded is determined. Our assay requires only 0.5 microgram of type IV collagen per microtiter plate and detects nanogram quantities of bacterial collagenase activity.  相似文献   

5.
“构象记忆”的辣根过氧化物酶的微水相共价固定化   总被引:1,自引:0,他引:1  
本研究利用酶在微水溶剂中的"构象记忆"特性,以壳聚糖微球为载体,以辣根过氧化物酶(Horseradish peroxidase,HRP)为研究对象,将HRP于活性构象下冻干"固定"后,在二氧六环:水=99:1(V/V)微水介质中与载体进行共价交联,同时与传统水介质中共价交联固定化的HRP进行比较。结果发现,两种介质中固定化HRP的最适温度都提高到60°C,最适pH均为6.5,而微水相中固定的酶活力损失较低,酶活比传统水相中固定的酶高6倍以上;70°C保温30min后,微水相中固定的酶保留75.42%的活力,而水相中固定的HRP仅存15.4%的活力;微水相中固定的HRP具有更好的操作稳定性和热稳定性,60°C下连续操作5次之后,微水相固定的HRP保留77.69%的酶活,而水相固定的HRP仅存16.67%的酶活;微水相中固定的HRP在苯酚的去除中表现得更具优势;微水相中共价交联制备的CS-HRP-SWCNTs/Au酶修饰电极对H2O2的响应信号比水相中共价固定的酶电极强2.5倍,灵敏度更高。本研究表明利用酶的"构象记忆"在微水介质中进行共价交联是固定化酶的一种可行方法,所制备的固定化酶具有更优良的性质。  相似文献   

6.
BSA和PEG可以有效地提高固定化辣根过氧化物酶(HRP)在有机相中的活力。固定化酶活力的提高与试剂加入的顺序有密切的联系;不同载体对酶的影响不同,Gelite,alumina,XAD-7,Kiselgel和Florisil为载体,分别以吸附法制备固定化酶。实验表明固定化过程中保护剂和酶的加入顺序与国家化酶活力密切相关,而这些载体的固定化效果又以Celite最佳,Florisil最差。Floris  相似文献   

7.
Horseradish peroxidase (HRP) was immobilized on the polyaniline (PANI) grafted polyacrylonitrile (PAN) films. The maximum HRP immobilization capacity of the PAN-g-PANI-3 film was 221?μg/cm(2). The HRP-immobilized PAN-g-PANI-3 film retained 79?% of the activity of the same quantity free enzyme. The HRP-immobilized PAN-g-PANI-3 film was operated for the decolorization of two different benzidine-based dyes in the presence of hydrogen peroxide. The maximum decolorization grade was obtained at pH 6.0 for both dyes. The HRP-immobilized PAN-g-PANI-3 film was very effective for removal of Direct Blue-53 compared to Direct Black-38 from aqueous solutions. The immobilized HRP exhibited high resistance to proteolysis by trypsin compared to the free counterpart. Immobilized HRP preserved 83?% of its original activity even after 8?weeks of storage at 4?°C, while the free enzyme lost its initial activity after 3?weeks of storage period.  相似文献   

8.
Horseradish peroxidase (HRP) was immobilized on carboxylated multi-wall carbon nanotubes in the presence of a coupling reagent, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. The immobilized HRP maintained its oxidative activity for guaiacol over a broad range of pH values (4–9). An electrode of graphite rod, 6 mm diam. was fabricated using the immobilized HRP. Cyclic voltammetry of the enzyme electrode confirmed electron transfer between the immobilized HRP and the electrode in the presence of H2O2 but without an added mediator or a reducing substrate.  相似文献   

9.
A non-modified and modified with NaOH and ethylenediamine ultrafiltration membranes prepared from AN copolymer have been used as carriers for the immobilization of horseradish peroxidase (HRP) enzyme. The amount of bound protein onto the membranes and the activity of the immobilized enzyme have been investigated as well as the pH and thermal optimum, and the thermal stability of the free and immobilized HRP. The experiments have proved that the modified membrane is a better support for the immobilization of HRP enzyme. The latter has shown a greater thermal stability than the free enzyme.A possible application has been studied for reducing phenol concentration in water solutions through oxidation of phenol by hydrogen peroxide, in the presence of free and immobilized HRP enzyme on modified AN copolymer membranes. A higher degree of the phenol oxidation has been observed in the presence of the immobilized enzyme. A total removal of phenol has been achieved in the presence of immobilized HRP at concentration of the hydrogen peroxide 0.5 mmol L?1 and concentration of the phenol in the model solutions within the interval 5–40 mg L?1. A high degree of phenol oxidation (95.4%) has been achieved in phenol solution with 100 mg L?1 concentration in the presence of hydrogen peroxide and immobilized HRP, which demonstrates the promising opportunity of using the enzyme for bioremediation of waste waters, containing phenol.The immobilized HRP has shown good operational stability. Deactivation of the immobilized enzyme to 50% of the initial activity has been observed after the 20th day of the enzyme operation.  相似文献   

10.
A procedure is described for intensifying histochemical reactions by amplification of biotinylated sites. This is achieved by deposition of biotinylated tyramine on the tissue through the enzymatic action of horseradish peroxidase (HRP). The amplified biotin sites are subsequently visualized by binding them to avidin, to which a marker is attached. This amplification greatly increases the sensitivity of staining procedures that employ HRP (and/or biotin) in tissue. For neuroanatomical pathway tracing methods, the procedure greatly increases the detectability of the injected tracer. For lectin histochemistry and immunohistochemistry, the amplification requires that the lectin or primary antibody be greatly diluted. This dilution results in less background staining and yet strong signals are produced even when very dilute reagents are used. Alternatively, the amplification permits much shorter incubations in primary antibodies when dilutions are used that would ordinarily be used with conventional bridge techniques. The procedure is also useful for amplifying very weak signals, such as those of immunoreactions in glutaraldehyde-fixed tissue. The amplification procedure, together with the availability of avidin probes labeled with fluorochromes, colloidal gold, or enzyme systems other than HRP, provides a means of greatly increasing the versatility of a variety of histochemical reactions, including those for detecting in situ hybridization probes, in addition to increasing the sensitivity of the reactions.  相似文献   

11.
Having been activated with glutaraldehyde, modified poly(ethylene terephthalate) grafted acrylamide fiber was used for the immobilization of horseradish peroxidase (HRP). Both the free HRP and the immobilized HRP were characterized by determining the activity profile as a function of pH, temperature, thermal stability, effect of organic solvent and storage stability. The optimum pH values of the enzyme activity were found as 8 and 7 for the free HRP and the immobilized HRP respectively. The temperature profile of the free HRP and the immobilized HRP revealed a similar behaviour, although the immobilized HRP exhibited higher relative activity in the range from 50 to 60 °C. The immobilized HRP showed higher storage stability than the free HRP.  相似文献   

12.
Organic peroxides, t-butyl hydroperoxide, 2-butanone peroxide, cumene hydroperoxide and t-butyl peracetate, were determined by an amperometric enzyme electrode. The enzyme electrode was prepared through electrostatic immobilization of horseradish peroxidase (HRP) in a polyvinylferrocenium (PVF) film. A PVF(+)ClO(4)(-) film was coated on a Pt foil at +0.70 V by electrooxidation of polyvinylferrocene in methylene chloride with 0.1 M tetrabutylammonium perchlorate (TBAP). The enzyme modified electrode PVF(+)HRP(-) was prepared by anion-exchange in a solution of HRP(-) in 0.05 M phosphate buffer at pH 8.5. FTIR spectroscopy was used to identify PVF, PVF(+)ClO(4)(-), and PVF(+)HRP(-). The immobilized amount of the enzyme in the film was determined by UV spectroscopy. The effects of the polymeric film thickness, bulk enzyme concentration used in the immobilization treatment and the temperature on the performance of enzyme electrode were investigated. The inhibitory effect of oxygen was also examined. Linearities, lower detection limits, active life times and sensitivities of the electrode were determined for each peroxide.  相似文献   

13.
Horseradish peroxidase (HRP) is a highly specific enzyme with great potential for use in the decolorization of synthetic dyes. A comprehensive study of HRP immobilization using various techniques such as adsorption and covalent immobilization on the novel carrier Purolite® A109 with a special focus on enzymatic decolorization and toxicity of artificially colored wastewater. The immobilized preparations with an activity of 156.21 ± 1.41 U g−1 and 85.71 ± 1.62 U g−1 after the HRP adsorption and covalent immobilization, respectively, were obtained. Stability and reusability of the immobilized preparations were also evaluated. A noteworthy decolorization level (~90%) with immobilized HRP was achieved. Phytotoxicity testing using Mung bean seeds and acute toxicity assay with Artemia salina has confirmed the applicability of the obtained immobilized preparation in industrial wastewater plants for the treatment of colored wastewater.  相似文献   

14.
Electrospinning, a simple and versatile method to fabricate nanofibrous supports, has attracted attention in the field of enzyme immobilization. Biocomposite nanofibers were fabricated from mixed PVA/BSA solution and the effects of glutaraldehyde treatment, initial BSA concentration and PVA concentration on protein loading were investigated. Glutaraldehyde cross-linking significantly decreased protein release from nanofibers and BSA loading reached as high as 27.3% (w/w). In comparison with the HRP immobilized into the nascent nanofibrous membrane, a significant increase was observed in the activity retention of the enzyme immobilized into the PVA/BSA biocomposite nanofibers. The immobilized HRP was able to tolerate much higher concentrations of hydrogen peroxide than the free enzyme and thus the immobilized enzyme did not demonstrate substrate inhibition. The immobilized HRP retained ⿼50% of the free enzyme activity at 6.4 mM hydrogen peroxide and no significant variation was observed in the KM value of the enzyme for hydrogen peroxide after immobilization. In addition, reusability tests showed that the residual activity of the immobilized HRP were 73% after 11 reuse cycles. Together, these results demonstrate efficient immobilization of HRP into electrospun PVA/BSA biocomposite nanofibers and provide a promising immobilization strategy for biotechnological applications.  相似文献   

15.
Alcohol oxidase from Pichia pastoris was immobilized on nanoporous aluminium oxide membranes by silanization and activation by carbonyldiimidazole to create a flow-through enzyme reactor. Kinetic analysis of the hydrogen peroxide generation was carried out for a number of alcohols using a subsequent reaction with horseradish peroxidase and ABTS. The activity data for the immobilized enzyme showed a general similarity with literature data in solution, and the reactor could generate 80 mmol H2O2/h per litre reactor volume. Horseradish peroxidase was immobilized by the same technique to construct bienzymatic modular reactors. These were used in both single pass mode and circulating mode. Pulsed injections of methanol resulted in a linear relation between response and concentration, allowing quantitative concentration measurement. The immobilized alcohol oxidase retained 58 % of initial activity after 3 weeks of storage and repeated use.  相似文献   

16.
M R Bonen  S A Hoffman  A A García 《BioTechniques》2001,30(6):1340-4, 1346-51
Microplate wells can be coated with silver ions using glutaraldehyde as a spacer molecule and thiourea as a complexing ligand. Microwells containing surface silver ions are shown to immobilize biotin-labeled horseradish peroxidase (HRP) in active form, while showing very little affinity for the unlabeled enzyme. These plates can also immobilize biotin-labeled antibodies that exhibit bioactivity after immobilization. Silver ions are needed for the complexation of the biotinylated enzyme or antibody because microwells modified to contain surface amine or thiourea molecules do not immobilize appreciable amounts of the labeled proteins. A maximum surface coverage for biotin-labeled HRP of 40 ng/cm2 and an immobilization binding constant of Km = 8 x 10(9)/M are determined from serial dilutions in a microplate. Detection of as little as 6.7 fmol HRP is achieved using antibodies immobilized on the silver ion-modified microplates. Active antibody surface densities were estimated to be between 130 and 260 nm2/antibody molecule. Background binding of HRP to the modified silver ion microplates was very low, allowing for reasonably accurate detection between 10(-14) and 10(-11) mol HRP.  相似文献   

17.
Horseradish peroxidase (HRP) immobilized by coupling the amino acid side chain amino groups or carbohydrate spikes to the matrix has been studied for its resistance to heat, urea-induced inactivation and ability to regain activity after denaturation in order to understand the influence of the nature of immobilization procedure on these processes. The various immobilized preparations were obtained and their properties studied: Sp-HRP was obtained by direct coupling of HRP to cyanogen bromide-activated Sepharose, Sp-NHHRP by coupling periodate oxidized and diamine-treated enzyme to the cyanogen bromide activated Sepharose, SpNH-COHRP by coupling periodate-treated enzyme to amino-Sepharose and SpCon A-HRP by binding of the enzyme on Con A-Sepharose. All the immobilized preparations exhibited higher stability against heat-induced inactivation as compared to the native HRP. Sp-NHHRP was most stable followed by Sp-HRP, SpNH-COHRP and SpCon A-HRP. Sp-NHHRP was also superior in its ability to regain enzyme activity after thermal denaturation, although Sp-HRP regained maximum activity after urea denaturation. Inclusion of Ca2+ was essential for the reactivation of all preparations subsequent to denaturation by urea.  相似文献   

18.
Horseradish peroxidase was modified by phthalic anhydride and glucosamine hydrochloride. The thermostabilities and removal efficiencies of phenolics by native and modified HRP were assayed. The chemical modification of horseradish peroxidase increased their thermostability (about 10- and 9-fold, respectively) and in turn also increased the removal efficiency of phenolics. The quantitative relationships between removal efficiency of phenol and reaction conditions were also investigated using modified enzyme. The optimum pH for phenol removal is 9.0 for both native and modified forms of the enzyme. Both modified enzyme could suffer from higher temperature than native enzyme in phenol removal reaction. The optimum molar ratio of hydrogen peroxide to phenol was 2.0. The phthalic anhydride modified enzyme required lower dose of enzyme than native horseradish peroxidase to obtain the same removal efficiency. Both modified horseradish peroxidase show greater affinity and specificity of phenol.  相似文献   

19.
A sensitive staining procedure for glucose oxidase (GOD) as marker in immunohistology is described. The cytochemical procedure involves a two-step enzyme method in which GOD and horseradish peroxidase (HRP) are coimmobilized onto the same cellular sites by immunological bridging or by the principle of avidin-biotin interaction. In this coupled enzyme technique, H2O2 generated during GOD reaction is the substrate for HRP and is utilized for the oxidation of chromogens such as 3,3'-diaminobenzidine or 3-amino-9-ethylcarbazole. Due to the immobilization of the capture enzyme HRP in close proximity to the marker enzyme (GOD), more intense and specific staining is produced than can be obtained with soluble HRP as coupling enzyme in the substrate medium. Indirect antibody labelled and antibody bridge techniques including the avidin (streptavidin)-biotin principle have proven the usefulness of this GOD labelling procedure for antigen localization in paraffin sections. Antigens such as IgA in tonsil, alpha-fetoprotein in liver and tissue polypeptide antigen in mammary gland served as models. The immobilized two-step enzyme procedures have the same order of sensitivity and specificity as comparable immunoperoxidase methods. The coupled GOD-HRP principle can be superior to conventional immunoperoxidase labelling for the localization of biomolecules in tissue preparations rich in endogenous peroxidase activities.  相似文献   

20.
The immobilization of horseradish peroxidase by covalent coupling within an expanded poly(acryloyl morpholine) gel network is described. The activity of the immobilized horseradish peroxidase was compared with that of the native enzyme in aqueous buffer and in buffered mixtures of dimethyl-formamide/water, ethanediol/water, methanol/water and tetrahydrofuran/water of varying solvent ratios at pH 6.1. On increasing the organic solvent concentration in the substrate solution, active immobilized enzyme retained its activity much better than an equivalent amount of the native enzyme. The oxidation of ferrocene (water-insoluble) and ferrocene derivatives to the corresponding ferricinium ions, was accomplished efficiently by the immobilized enzyme in buffered 50% methanol/water solution. The immobilized enzyme exhibited superior resistance to thermal denaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号