首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The spectral reflectance of differently coloured Australian native plant flowers and foliage was measured and plotted in a colour triangle to represent the colour space of the honeybee. Spectral variations in illumination are shown to significantly change plant colours for bee vision without colour constancy. A model of chromatic adaptation based upon the von Kries coefficient law shows a reduction in plant colour shift, with the degree of correction depending upon position in colour space. A set of artificial reflectances is used to map relative colour shift caused by spectrally variable illumination for the entire colour space of the honeybee. The rarity of some flower colours in nature shows a correlation to a larger colour shift for these colours when illuminated by spectrally variable radiation. The model of chromatic adaptation is applied to illuminations used in a behavioural study on honeybee colour constancy by Neumeyer 1981. Surface colours used by Neumeyer are plotted in colour space for the various illuminations. The results show that an illumination-dependent colour shift correlates to a decrease in the frequency of bees correctly choosing a colour to which it was trained. Accepted: 23 February 1998  相似文献   

2.
Necessary and sufficient spectral conditions are presented for Von Kries chromatic adaptation to give color constancy. Von-Kries-invariant reflectance spectra are computed for illuminant spectral power distributions that are arbitrary linear combinations of the first three daylight phases. Experiments are suggested to test models of color constancy using computed spectra (either exact or approximate) within the illuminant-invariant framework.  相似文献   

3.
Summary In crabs, there is behavioural evidence for colour discrimination from the portunidCarcinus and severalUca species, but in the same and related species only a single visual pigment has been found in the rhabdoms by microspectrophotometry. Micro-electrode recordings of the spectral sensitivity of single portunid photoreceptors may throw some light on this apparent inconsistency. Large changes in spectral sensitivity occur with light adaptation in the crabScylla serrata. Selective adaptation experiments rule out the possibility that the changes may be caused by the presence of a number of visual pigments or of antenna pigments. The results suggest that inScylla the absorption of a single visual pigment type is modified by different coloured filters in different photoreceptors and that this makes colour discrimination possible.  相似文献   

4.
The closer the wavelength of a steady background of monochromatic light is to the peak sensitivity of a cone that is being illuminated, the stronger is the desensitization of that cone; this is chromatic adaptation. A model of the freshwater turtle retina with the neural components of chromatic adaptation via negative feedback circuits is used to simulate and study various aspects of chromatic adaptation. An internal negative feedback circuit resides solely within the cone pedicle and thereby, its adaptive effects are relatively specific, so that univariance is maintained. The cone-L-horizontal cell circuit is an external negative feedback circuit and its adaptive effects are less specific since all 3 chromatic cone types are involved, so that univariance is violated. Chromatic adaptation is the result of the decrease in the cone gain due to the dependency of the gains of the negative feedback circuits on the mean illuminance level. The results of the model are consistent with von Kries law, but the changes in gains of the cones due to chromatic adaptation are dependent on wavelength, intensity of the adapting light and size.  相似文献   

5.
The honeybee, Apis mellifera L., is one of the living creatures that has its colour vision proven through behavioural tests. Previous studies of honeybee colour vision has emphasized the relationship between the spectral sensitivities of photoreceptors and colour discrimination behaviour. The current understanding of the neural mechanisms of bee colour vision is, however, rather limited. The present study surveyed the patterns of chromatic information processing of visual neurons in the lobula of the honeybee, using intracellular recording stimulated by three light-emitting diodes, whose emission spectra approximately match the spectral sensitivity peaks of the honeybee. The recorded visual neurons can be divided into two groups: non-colour opponent cells and colour opponent cells. The non-colour opponent cells comprise six types of broad-band neurons and four response types of narrow-band neurons. The former might detect brightness of the environment or function as chromatic input channels, and the latter might supply specific chromatic input. Amongst the colour opponent cells, the principal neural mechanism of colour vision, eight response types were recorded. The receptive fields of these neurons were not centre surround as observed in primates. Some recorded neurons with tonic post-stimulus responses were observed, however, suggesting temporal defined spectral opponency may be part of the colour-coding mechanisms.  相似文献   

6.
When the illumination on a scene changes, so do the visual signals elicited by that scene. In spite of these changes, the objects within a scene tend to remain constant in their apparent colour. We start this review by discussing the psychophysical procedures that have been used to quantify colour constancy. The transformation imposed on the visual signals by a change in illumination dictates what the visual system must 'undo' to achieve constancy. The problem is mathematically underdetermined, and can be solved only by exploiting regularities of the visual world. The last decade has seen a substantial increase in our knowledge of such regularities as technical advances have made it possible to make empirical measurements of large numbers of environmental scenes and illuminants. This review provides a taxonomy of models of human colour constancy based first on the assumptions they make about how the inverse transformation might be simplified, and second, on how the parameters of the inverse transformation might be set by elements of a complex scene. Candidate algorithms for human colour constancy are represented graphically and pictorially, and the availability and utility of an accurate estimate of the illuminant is discussed. Throughout this review, we consider both the information that is, in principle, available and empirical assessments of what information the visual system actually uses. In the final section we discuss where in our visual systems these computations might be implemented.  相似文献   

7.
The visual system continually adjusts its sensitivity to the statistical properties of the environment through an adaptation process that starts in the retina. Colour perception and processing is commonly thought to occur mainly in high visual areas, and indeed most evidence for chromatic colour contrast adaptation comes from cortical studies. We show that colour contrast adaptation starts in the retina where ganglion cells adjust their responses to the spectral properties of the environment. We demonstrate that the ganglion cells match their responses to red-blue stimulus combinations according to the relative contrast of each of the input channels by rotating their functional response properties in colour space. Using measurements of the chromatic statistics of natural environments, we show that the retina balances inputs from the two (red and blue) stimulated colour channels, as would be expected from theoretical optimal behaviour. Our results suggest that colour is encoded in the retina based on the efficient processing of spectral information that matches spectral combinations in natural scenes on the colour processing level.  相似文献   

8.
9.
Colour constancy is the perceptual phenomenon that the colour of an object appears largely unchanged, even if the spectral composition of the illuminating light changes. Colour constancy has been found in all insect species so far tested. Especially the pollinating insects offer a remarkable opportunity to study the ecological significance of colour constancy since they spend much of their adult lives identifying and choosing between colour targets (flowers) under continuously changing ambient lighting conditions. In bees, whose colour vision is best studied among the insects, the compensation provided by colour constancy is only partial and its efficiency depends on the area of colour space. There is no evidence for complete ‘discounting’ of the illuminant in bees, and the spectral composition of the light can itself be used as adaptive information. In patchy illumination, bees adjust their spatial foraging to minimise transitions between variously illuminated zones. Modelling allows the quantification of the adaptive benefits of various colour constancy mechanisms in the economy of nature. We also discuss the neural mechanisms and cognitive operations that might underpin colour constancy in insects.  相似文献   

10.
Photoreceptor adaptation ensures appropriate visual responses during changing light conditions and contributes to colour constancy. We used behavioural tests to compare UV-sensitivity of budgerigars after adaptation to UV-rich and UV-poor backgrounds. In the latter case, we found lower UV-sensitivity than expected, which could be the result of photon-shot noise corrupting cone signal robustness or nonlinear background adaptation. We suggest that nonlinear adaptation may be necessary for allowing cones to discriminate UV-rich signals, such as bird plumage colours, against UV-poor natural backgrounds.  相似文献   

11.
  • The coevolution of insect pollinators and their host plants is a typical example of natural selection; however, how insect pollinators avoid overdependence on one peculiar plant remains unclear. As most insect pollinators exhibit a diet breadth when showing flower constancy, determining the difference and similarity of most and less preferred flowers by insect pollinators may be helpful to understand their trade-off between flower constancy and overdependence.
  • This was addressed using the long-proboscid tangle-veined fly (Nemetrinus spp.). Dietary investigation indicates that the flies show constancy for the morphological characteristic of the Delphinium caeruleum, which is the most preferred plant for this Nemestrinidae fly that has blue, long-tubed flowers.
  • In a colour selection experiment, focal individuals showed obvious preference for white, which is the colour of less preferred flowers by the fly in the natural environment. In a scent selection experiment, focal individuals showed obvious preference for D. caeruleum and Dracocephalum heterophyllum but avoidance to Dasiphora fruticosa and Dasiphora davurica. This indicates that long-proboscid tangle-veined flies can forage on other flowers, despite the existing constancy for D. caeruleum, as long as they do not hate the scent. It seems that long-proboscid tangle-veined flies can maximise foraging efficiency by showing constancy for the morphological characteristic of the most preferred plant and for the scent and colour of less-preferred plants.
  • The trade-off of long-proboscid tangle-veined flies in the selection of nectar sources may be an adaptation to the risk of overdependence on one plant in evolution.
  相似文献   

12.
To test the behavioural response of winged aphid spring migrants to visual contrasts, we conducted a field trial in which water traps (painted in seven different shades of green and yellow) were set up on uncovered soil and on coloured boards (also painted in seven different colours including black, brown and various shades of green). In total, 56 trap–background combinations were tested. Out of the 4904 aphid individuals caught, 64.5% belonged to Aphis ssp. Using spectral measurements of both traps and backgrounds, as well as information on insect spectral sensitivity, an empirical colour choice model was built based on photoreceptor adaptation to the background, and colour opponency of the green and blue photoreceptor. Specifically, the visual input variable C* represents the difference between green–blue colour opponency values of the trap and the background. When C* > 0, the number of aphids linearly increased with C*. The model explained 64% of the behavioural response of the aphids. Applied to intercropping scenarios of sugar beet, the behavioural model showed a higher visual attractivity of a monocrop sugar beet than intercropped sugar beet. Implications for the use of mulches and for increasing plant diversity in cropping systems are discussed.  相似文献   

13.
(1)用视网膜电图(ERG)方法测定了9种蝗虫在黑暗、蓝光和橙光适应下的光谱敏感性。(2)9种蝗虫的碚适应光谱敏感曲线峰值均在520—546nm 之间。(3)橙光或蓝光明适应导致不同程度的峰值位移,蓝区的相对敏感性提高,这与光引起屏蔽色素移动效应有关。(4)黑背蝗和稻蝗复眼表面均没有黑白间,橙光适应时出现第二个峰值在蓝区,而蓝光适应则压抑蓝区的敏感性。可能这两种蝗虫还具有蓝敏视色素。(5)佛蝗和黄脊蝗复眼表面均有明显的黑白相间的区域,在有色光适应下这两种蝗虫的光谱敏感性变化最小,没有证据说明多于一种光敏色素。  相似文献   

14.
Bumblebee (Bombus terrestris) discrimination of targets with broadband reflectance spectra was tested using simultaneous viewing conditions, enabling an accurate determination of the perceptual limit of colour discrimination excluding confounds from memory coding (experiment 1). The level of colour discrimination in bumblebees, and honeybees (Apis mellifera) (based upon previous observations), exceeds predictions of models considering receptor noise in the honeybee. Bumblebee and honeybee photoreceptors are similar in spectral shape and spacing, but bumblebees exhibit significantly poorer colour discrimination in behavioural tests, suggesting possible differences in spatial or temporal signal processing. Detection of stimuli in a Y-maze was evaluated for bumblebees (experiment 2) and honeybees (experiment 3). Honeybees detected stimuli containing both green-receptor-contrast and colour contrast at a visual angle of approximately 5 degrees , whilst stimuli that contained only colour contrast were only detected at a visual angle of 15 degrees . Bumblebees were able to detect these stimuli at a visual angle of 2.3 degrees and 2.7 degrees , respectively. A comparison of the experiments suggests a tradeoff between colour discrimination and colour detection in these two species, limited by the need to pool colour signals to overcome receptor noise. We discuss the colour processing differences and possible adaptations to specific ecological habitats.  相似文献   

15.
The spectral properties of the discrimination of pattern orientation in freely flying honeybees (Apis mellifera) were examined. Bees were trained to discriminate between two random black/white gratings oriented perpendicularly to each other, one of which was associated with a reward. Subsequently the bees were tested on two-colour gratings or gratings consisting of grey and coloured stripes, providing a range of different chromatic contrasts, luminance contrasts and specific channel contrasts. The results of these experiments indicate that orientation analysis in the honeybee is mediated almost exclusively by the green receptor channel, although the bee's visual system as a whole is endowed with excellent trichromatic colour vision.  相似文献   

16.
Tetrachromacy, oil droplets and bird plumage colours   总被引:12,自引:0,他引:12  
There is a growing body of data on avian eyes, including measurements of visual pigment and oil droplet spectral absorption, and of receptor densities and their distributions across the retina. These data are sufficient to predict psychophysical colour discrimination thresholds for light-adapted eyes, and hence provide a basis for relating eye design to visual needs. We examine the advantages of coloured oil droplets, UV vision and tetrachromacy for discriminating a diverse set of avian plumage spectra under natural illumination. Discriminability is enhanced both by tetrachromacy and coloured oil droplets. Oil droplets may also improve colour constancy. Comparison of the performance of a pigeon's eye, where the shortest wavelength receptor peak is at 410 nm, with that of the passerine Leiothrix, where the ultraviolet-sensitive peak is at 365 nm, generally shows a small advantage to the latter, but this advantage depends critically on the noise level in the sensitivity mechanism and on the set of spectra being viewed. Accepted: 3 July 1998  相似文献   

17.
Colour constancy needs to be reconsidered in light of the limits imposed by metamer mismatching. Metamer mismatching refers to the fact that two objects reflecting metameric light under one illumination may reflect non-metameric light under a second; so two objects appearing as having the same colour under one illuminant can appear as having different colours under a second. Yet since Helmholtz, object colour has generally been believed to remain relatively constant. The deviations from colour constancy registered in experiments are usually thought to be small enough that they do not contradict the notion of colour constancy. However, it is important to determine how the deviations from colour constancy relate to the limits metamer mismatching imposes on constancy. Hence, we calculated metamer mismatching’s effect for the 20 Munsell papers and 8 pairs of illuminants employed in the colour constancy study by Logvinenko and Tokunaga and found it to be so extensive that the two notions—metamer mismatching and colour constancy—must be mutually exclusive. In particular, the notion of colour constancy leads to some paradoxical phenomena such as the possibility of 20 objects having the same colour under chromatic light dispersing into a hue circle of colours under neutral light. Thus, colour constancy refers to a phenomenon, which because of metamer mismatching, simply cannot exist. Moreover, it obscures the really important visual phenomenon; namely, the alteration of object colours induced by illumination change. We show that colour is not an independent, intrinsic attribute of an object, but rather an attribute of an object/light pair, and then define a concept of material colour in terms of equivalence classes of such object/light pairs. We suggest that studying the shift in material colour under a change in illuminant will be more fruitful than pursuing colour constancy’s false premise that colour is an intrinsic attribute of an object.  相似文献   

18.
Intensity discrimination experiments are performed with individual walking honeybees trained to color stimuli (UV, blue and green) of constant intensity. The choice behavior to stimuli of identical wavelength spectrum but different intensities is tested. A graded choice behavior is found. The training intensity is chosen with the highest probability in most cases. Phototaxis as well as brightness discrimination can be excluded. The choice behavior is explained exclusively by discrimination of chromaticness (hue and saturation) according to the Bezold-Brücke shift.The bees adapt to the chromatic stimuli during their choices. From the behavioral data, it is concluded that in adaptation, adjustment in photoreceptor sensitivity in one receptor also affects the sensitivity of the other receptors (co-adaptation). The linear adaptation model corresponding to the von Kries Coefficient Law used up to now to describe adaptation to white light in the honeybee does not describe this type of adaptation.A quantitative model of adaptation to chromatic stimuli extending the linear adaptation model is developed.The most reasonable mechanism of co-adaptation is optical coupling by lateral filtering. Other mechanisms such as electrical coupling are unlikely, since their effects on color vision would lead to effects inconsistent with Graßmann's Laws.  相似文献   

19.
1. The extent to which flower colour and other visual cues influence butterfly flower choice in the field is poorly understood, especially in comparison with choices by Hymenoptera. 2. Using a novel approach to studies of visitation behaviour by butterflies, flower colour of four Asteraceae species was phenotypically manipulated to decouple the influence of that trait from others (including morphology and nectar rewards) on visitation by Lycaena heteronea, Speyeria mormonia, Cercyonis oetus, and Phyciodes campestris. 3. Flower visits were recorded to experimental flower arrays in subalpine meadows to measure (i) spontaneous preference by butterflies for particular colours and other traits and (ii) flower constancy (longer than expected strings of visits made to flowers of the same species), a behaviour that can reduce interspecific gene flow in plants. 4. Over three field seasons, 3558 individual flower visits in 1386 foraging bouts were observed for free‐flying butterflies. All four butterfly species responded to the phenotypic manipulations of flower colour, although in different ways. Speyeria mormonia and L. heteronea also exhibited preferences based on other flower traits. Lycaena heteronea responded to combinations of traits such that the other traits it preferred depended upon the context of flower colour. 5. None of the butterfly species exhibited flower constancy in any of the arrays employed. 6. The observed preferences show that butterflies, like some other pollinators, are potentially capable of exerting selection on colour and other floral traits. Moreover, these flower preferences can depend on the context of other flower traits. The absence of constancy contrasts with reports of high constancy in many bees.  相似文献   

20.
de Jager ML  Dreyer LL  Ellis AG 《Oecologia》2011,166(2):543-553
The co-occurrence of plant species within a community is influenced by local deterministic or neutral processes as well as historical regional processes. Floral trait distributions of co-flowering species that share pollinators may reflect the impact of pollinator preference and constancy on their assembly within local communities. While pollinator sharing may lead to increased visitation rates for species with similar flowers, the receipt of foreign pollen via interspecific pollinator movements can decrease seed set. We investigated the pattern of community flower colour assembly as perceived by native honeybee pollinators within 24 local assemblages of co-flowering Oxalis species within the Greater Cape Floristic Region, South Africa. To explore the influence of pollinators on trait assembly, we assessed the impact of colour similarity on pollinator choices and the cost of heterospecific pollen receipt. We show that flower colour is significantly clustered within Oxalis communities and that this is not due to historical constraint, as flower colour is evolutionarily labile within Oxalis and communities are randomly structured with respect to phylogeny. Pollinator observations reveal that the likelihood of pollinators switching between co-flowering species is low and increases with flower colour similarity. Interspecific hand pollination significantly reduced seed set in the four Oxalis species we investigated, and all were dependant on pollinators for reproduction. Together these results imply that flower colour similarity carries a potential fitness cost. However, pollinators were highly flower constant, and remained so despite the extreme similarity of flower colour as perceived by honeybees. This suggests that other floral traits facilitate discrimination between similarly coloured species, thereby likely resulting in a low incidence of interspecific pollen transfer (IPT). If colour similarity promotes pollinator attraction at the community level, the observed clustering of flower colour within communities might result from indirect facilitative interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号