首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influenza represents a substantial global healthcare burden, with annual epidemics resulting in 3–5 million cases of severe illness with a significant associated mortality. In addition, the risk of a virulent and lethal influenza pandemic has generated widespread and warranted concern. Currently licensed influenza vaccines are limited in their ability to induce efficacious and long-lasting herd immunity. In addition, and as evidenced by the H1N1 pandemic in 2009, there can be a significant delay between the emergence of a pandemic influenza and an effective, antibody-inducing vaccine. There is, therefore, a continued need for new, efficacious vaccines conferring cross-clade protection—obviating the need for biannual reformulation of seasonal influenza vaccines. Development of such a vaccine would yield enormous health benefits to society and also greatly reduce the associated global healthcare burden. There are a number of alternative influenza vaccine technologies being assessed both preclinically and clinically. In this review we discuss viral vectored vaccines, either recombinant live-attenuated or replication-deficient viruses, which are current lead candidates for inducing efficacious and long-lasting immunity toward influenza viruses. These alternate influenza vaccines offer real promise to deliver viable alternatives to currently deployed vaccines and more importantly may confer long-lasting and universal protection against influenza viral infection.  相似文献   

2.
Current split influenza virus vaccines that induce strain-specific neutralising antibodies provide some degree of protection against influenza infection but there is a clear need to improve their effectiveness. The constant antigenic drift of influenza viruses means that vaccines are often not an exact match to the circulating strain and so levels of relevant antibodies may not be sufficiently high to afford protection. In the situation where the emergent influenza virus is completely novel, as is the case with pandemic strains, existing vaccines may provide no benefit. In this study we tested the concept of a combination vaccine consisting of sub-optimal doses of split influenza virus vaccine mixed with a cross-protective T-cell inducing lipopeptide containing the TLR2 ligand Pam2Cys. Mice immunised with combination vaccines showed superior levels of lung viral clearance after challenge compared to either split virus or lipopeptide alone, mediated through activation of enhanced humoral and/or additional cellular responses. The mechanism of action of these vaccines was dependent on the route of administration, with intranasal administration being superior to subcutaneous and intramuscular routes, potentially through the induction of memory CD8+ T cells in the lungs. This immunisation strategy not only provides a mechanism for minimising the dose of split virus antigen but also, through the induction of cross-protective CD8+ T cells, proves a breadth of immunity to provide potential benefit upon encounter with serologically diverse influenza isolates.  相似文献   

3.
Traditional vaccines consisting of whole attenuated micro-organisms, or microbial components administered with adjuvant, have been demonstrated as one of the most cost-effective and successful public health interventions. Their use in large scale immunisation programs has lead to the eradication of smallpox, reduced morbidity and mortality from many once common diseases, and reduced strain on health services. However, problems associated with these vaccines including risk of infection, adverse effects, and the requirement for refrigerated transport and storage have led to the investigation of alternative vaccine technologies. Peptide vaccines, consisting of either whole proteins or individual peptide epitopes, have attracted much interest, as they may be synthesised to high purity and induce highly specific immune responses. However, problems including difficulties stimulating long lasting immunity, and population MHC diversity necessitating multiepitopic vaccines and/or HLA tissue typing of patients complicate their development. Furthermore, toxic adjuvants are necessary to render them immunogenic, and as such non-toxic human-compatible adjuvants need to be developed. Lipidation has been demonstrated as a human compatible adjuvant for peptide vaccines. The lipid-core-peptide (LCP) system, incorporating lipid adjuvant, carrier, and peptide epitopes, exhibits promise as a lipid-based peptide vaccine adjuvant. The studies reviewed herein investigate the use of the LCP system for developing vaccines to protect against group A streptococcal (GAS) infection. The studies demonstrate that LCP-based GAS vaccines are capable of inducing high-titres of antigen specific IgG antibodies. Furthermore, mice immunised with an LCP-based GAS vaccine were protected against challenge with 8830 strain GAS.  相似文献   

4.
Improving vaccines against tuberculosis   总被引:31,自引:0,他引:31  
Tuberculosis remains a major cause of mortality and physical and economic deprivation worldwide. There have been significant recent advances in our understanding of the Mycobacterium tuberculosis genome, mycobacterial genetics and the host determinants of protective immunity. Nevertheless, the challenge is to harness this information to develop a more effective vaccine than BCG, the attenuated strain of Mycobacterium bovis derived by Calmette and Guérin nearly 90 years ago. Some of the limitations of BCG include the waning of the protective immunity with time, reduced effectiveness against pulmonary tuberculosis compared to disseminated disease, and the problems of a live vaccine in immuno-compromised subjects. Two broad approaches to vaccine development are being pursued. New live vaccines include either attenuated strains of Mycobacterium tuberculosis produced by random mutagenesis or targeted deletion of putative virulence factors, or by genetic manipulation of BCG to express new antigens or cytokines. The second approach utilizes non-viable subunit vaccines to deliver immunodominant mycobacterial antigens. Both protein and DNA vaccines induce partial protection against experimental tuberculosis infection in mice, however, their efficacy has generally been equivalent to or less than that of BCG. The comparative effects of cytokine adjuvants and vaccines targeting antigen presenting cells on enhancing protection will be discussed. Coimmunization with plasmid interleukin-12 and a DNA vaccine expressing Antigen 85B, a major secreted protein, was as protective as BCG. The combination of priming with DNA-85B and boosting with BCG was superior to BCG alone. Therefore it is possible to achieve a greater level of protection against tuberculosis than with BCG, and this highlights the potential for new tuberculosis vaccines in humans.  相似文献   

5.
In preparing for the threat of a pandemic of avian H5N1 influenza virus, we need to consider the significant delay (4 to 6 months) necessary to produce a strain-matched vaccine. As some degree of cross-reactivity between seasonal influenza vaccines and H5N1 virus has been reported, this was further explored in the ferret model to determine the targets of protective immunity. Ferrets were vaccinated with two intramuscular inoculations of trivalent inactivated split influenza vaccine or subcomponent vaccines, with and without adjuvant, and later challenged with a lethal dose of A/Vietnam/1203/2004 (H5N1) influenza virus. We confirmed that vaccination with seasonal influenza vaccine afforded partial protection against lethal H5N1 challenge and showed that use of either AlPO4 or Iscomatrix adjuvant with the vaccine resulted in complete protection against disease and death. The protection was due exclusively to the H1N1 vaccine component, and although the hemagglutinin contributed to protection, the dominant protective response was targeted toward the neuraminidase (NA) and correlated with sialic acid cleavage-inhibiting antibody titers. Purified heterologous NA formulated with Iscomatrix adjuvant was also protective. These results suggest that adjuvanted seasonal trivalent vaccine could be used as an interim measure to decrease morbidity and mortality from H5N1 prior to the availability of a specific vaccine. The data also highlight that an inducer of cross-protective immunity is the NA, a protein whose levels are not normally monitored in vaccines and whose capacity to induce immunity in recipients is not normally assessed.  相似文献   

6.
The induction of mucosal immunity is very important in conferring protection against pathogens that typically invade via mucosal surfaces. Delivery of a vaccine to a mucosal surface optimizes the induction of mucosal immunity. The apparent linked nature of the mucosal immune system allows delivery to any mucosal surface to potentially induce immunity at others. Oral administration is a very straightforward and inexpensive approach to deliver a vaccine to the mucosal lining of the gut. However, vaccines administered by this route are subject to proteolysis in the gastrointestinal tract. Thus, dose levels for protein subunit vaccines are likely to be very high and the antigen may need to be protected from proteolysis for oral delivery to be efficacious. Expression of candidate vaccine antigens in edible recombinant plant material offers an inexpensive means to deliver large doses of vaccines in encapsulated forms. Certain plant tissues can also stably store antigens for extensive periods of time at ambient temperatures, obviating the need for a cold-chain during vaccine storage and distribution, and so further limiting costs. Antigens can be expressed from transgenes stably incorporated into a host plant's nuclear or plastid genome, or from engineered plant viruses infected into plant tissues. Molecular approaches can serve to boost expression levels and target the expressed protein for appropriate post-translational modification. There is a wide range of options for processing plant tissues to allow for oral delivery of a palatable product. Alternatively, the expressed antigen can be enriched or purified prior to formulation in a tablet or capsule for oral delivery. Fusions to carrier molecules can stabilize the expressed antigen, aid in antigen enrichment or purification strategies, and facilitate delivery to effector sites in the gastrointestinal tract. Many antigens have been expressed in plants. In a few cases, vaccine candidates have entered into early phase clinical trials, and in the case of farmed animal vaccines into relevant animal trials.  相似文献   

7.
The availability of effective vaccines has had the most profound positive effect on improving the quality of public health by preventing infectious diseases. Despite many successful vaccines, there are still old and new emerging pathogens against which there is no vaccine available. A better understanding of how vaccines work for providing protection will help to improve current vaccines as well as to develop effective vaccines against pathogens for which we do not have a proper means to control. Recent studies have focused on innate immunity as the first line of host defense and its role in inducing adaptive immunity; such studies have been an intense area of research, which will reveal the immunological mechanisms how vaccines work for protection. Toll-like receptors (TLRs), a family of receptors for pathogen-associated molecular patterns on cells of the innate immune system, play a critical role in detecting and responding to microbial infections. Importantly, the innate immune system modulates the quantity and quality of longterm T and B cell memory and protective immune responses to pathogens. Limited studies suggest that vaccines which mimic natural infection and/or the structure of pathogens seem to be effective in inducing long-term protective immunity. A better understanding of the similarities and differences of the molecular and cellular events in host responses to vaccination and pathogen infection would enable the rationale for design of novel preventive measures against many challenging pathogens.  相似文献   

8.
Perspectives for malaria vaccination   总被引:4,自引:0,他引:4  
The need for vaccines to relieve the current global resurgence of malaria is apparent. Immunity is specific for each species of human malaria and for each stage in the life cycle. Once protective immunogens have been identified for one species, the homologous molecules in other species may lead to protection. The usefulness of a particular immunogen will be determined, in part, by its antigenic diversity in the population and the potential for boosting during natural infection. Successful immunization with malarial antigens may require adjuvants to induce effective, long-lived immunity. If different vaccines become available against each stage in the life cycle, then the composition of a particular vaccine may be tailored for different objectives: protection for short periods (for example, during epidemics and for tourists), decrease in disease and death, and malaria eradication.  相似文献   

9.
Several vaccines are now routinely used since fifty years in different developed countries. Their principal impact has been to decrease morbidity and mortality of the infectious diseases they are targeting. One disease, smallpox, is eradicated, poliomyelitis will be soon, diphteria is controlled in several countries but pertussis is still endemic although an efficacious vaccine was used. Why? Pertussis is an example of an infection for which the immunity of the population has changed after the introduction of generalized vaccination with killed whole cell pertussis vaccines, from a natural immunity due to infection to different types of vaccine-induced immunity. These different types of immunity have changed the protection against infection, disease and transmission. The impact of the generalized vaccination in a human population has been an important change in the epidemiology of the disease. In fact, a child-to-child transmission observed before the introduction of vaccination is now replaced by an adolescent-adult to infant transmission. The major consequence is an increase in the mortality and morbidity in non vaccinated infants mostly contaminated by their parents. Researches undertaken on the agent of the disease, the bacterium, Bordetella pertussis, conducted to the development of subunits vaccines, efficacious and better tolerated by infants than whole-cell vaccines. Many developed countries decided to change vaccines but also to add vaccine boosters for adolescents and adults in order to stop the transmission of the disease to infants. However, even after 15 years of studies in many countries, pertussis is still underestimated in adults and generalized adult vaccination remains difficult. The new goal now is to give information to medical students and health care workers in general in order to increase adolescent and adult's vaccination coverage.  相似文献   

10.
Mucosal immunity and vaccination   总被引:7,自引:0,他引:7  
Abstract The gut mucosal immune system is a critical component of the body's defense against pathogenic organisms, especially those responsible for enteric infections associated with diarrhoeal disease. Attempts to vaccinate against infections of mucosal tissues have been less successful than vaccination against systematic infections, to a large extent reflecting a still incomplete knowledge about the most efficient means for inducing protective local immune responses at these sites. Secretory IgA (SIgA) is the predominating immunoglobulin along mucosal surfaces, and SIgA antibodies generated in gastrointestinal, respiratory or genito-urinary mucosal tissues can confer protection against infections affecting or originating in these sites. An efficacious intestinal SIgA immunity-inducing oral vaccine against cholera has been developed recently, and development of oral vaccines against other enteric infections such as those caused by enterotoxigenic Escherichia coli, Shigella and rotaviruses is in progress as well. Based on the concept of a common mucosal immune system through which activated lymphocytes from the gut can disseminate immunity to other mucosal and glandular tissues, there is currently also much interest in the possibility of developing oral vaccines against infections in the respiratory and urogenital tracts. However, the large and repeated antigen doses often required to achieve a protective immune response still makes this vaccination approach impractical for many purified antigens. There is, therefore, a great need to develop strategies for enhancing delivery of antigen to the mucosal immune system as well as to identify mucosa-active immunostimulating agents (adjuvants). These and other aspects of mucosal immunity in relation to immunization and vaccine development are discussed in this short review article.  相似文献   

11.
Mucosal immunity and vaccination.   总被引:1,自引:0,他引:1  
The gut mucosal immune system is a critical component of the body's defense against pathogenic organisms, especially those responsible for enteric infections associated with diarrhoeal disease. Attempts to vaccinate against infections of mucosal tissues have been less successful than vaccination against systemic infections, to a large extent reflecting a still incomplete knowledge about the most efficient means for inducing protective local immune responses at these sites. Secretory IgA (SIgA) is the predominating immunoglobulin along mucosal surfaces, and SIgA antibodies generated in gastrointestinal, respiratory or genito-urinary mucosal tissues can confer protection against infections affecting or originating in these sites. An efficacious intestinal SIgA immunity-inducing oral vaccine against cholera has been developed recently, and development of oral vaccines against other enteric infections such as those caused by enterotoxigenic Escherichia coli, Shigella and rotaviruses is in progress as well. Based on the concept of a common mucosal immune system through which activated lymphocytes from the gut can disseminate immunity to other mucosal and glandular tissues, there is currently also much interest in the possibility of developing oral vaccines against infections in the respiratory and urogenital tracts. However, the large and repeated antigen doses often required to achieve a protective immune response still makes this vaccination approach impractical for many purified antigens. There is, therefore, a great need to develop strategies for enhancing delivery of antigen to the mucosal immune system as well as to identify mucosa-active immunostimulating agents (adjuvants). These and other aspects of mucosal immunity in relation to immunization and vaccine development are discussed in this short review article.  相似文献   

12.
Rapid development and successful use of vaccines against SARS-CoV-2 might hold the key to curb the ongoing pandemic of COVID-19. Emergence of vaccine-evasive SARS-CoV-2 variants of concern (VOCs) has posed a new challenge to vaccine design and development. One urgent need is to determine what types of variant-specific and bivalent vaccines should be developed. Here, we compared homotypic and heterotypic protection against SARS-CoV-2 infection of hamsters with monovalent and bivalent whole-virion inactivated vaccines derived from representative VOCs. In addition to the ancestral SARS-CoV-2 Wuhan strain, Delta (B.1.617.2; δ) and Theta (P.3; θ) variants were used in vaccine preparation. Additional VOCs including Omicron (B.1.1.529) and Alpha (B.1.1.7) variants were employed in the challenge experiment. Consistent with previous findings, Omicron variant exhibited the highest degree of immune evasion, rendering all different forms of inactivated vaccines substantially less efficacious. Notably, monovalent and bivalent Delta variant-specific inactivated vaccines provided optimal protection against challenge with Delta variant. Yet, some cross-variant protection against Omicron and Alpha variants was seen with all monovalent and bivalent inactivated vaccines tested. Taken together, our findings support the notion that an optimal next-generation inactivated vaccine against SARS-CoV-2 should contain the predominant VOC in circulation. Further investigations are underway to test whether a bivalent vaccine for Delta and Omicron variants can serve this purpose.  相似文献   

13.
Tuberculosis (TB) disease caused by Mycobacterium tuberculosis (M. tb) remains one of the leading infectious causes of death and disease throughout the world. The only licensed vaccine, Mycobacterium bovis bacille Calmette-Guérin (BCG) confers highly variable protection against pulmonary disease. An effective vaccination regimen would be the most efficient way to control the epidemic. However, BCG does confer consistent and reliable protection against disseminated disease in childhood, and most TB vaccine strategies being developed incorporate BCG to retain this protection. Cellular immunity is necessary for protection against TB and all the new vaccines in development are focused on inducing a strong and durable cellular immune response. There are two main strategies being pursued in TB vaccine development. The first is to replace BCG with an improved whole organism mycobacterial priming vaccine, which is either a recombinant BCG or an attenuated strain of M. tb. The second is to develop a subunit boosting vaccine, which is designed to be administered after BCG vaccination, and to enhance the protective efficacy of BCG. This article reviews the leading candidate vaccines in development and considers the current challenges in the field with regard to efficacy testing.  相似文献   

14.
The effect was compared in CBA mice of adding Corynebacterium parvum, saponin, and Bordetella pertussis to living or killed Trypanosoma cruzi (Y strain) epimastigote vaccines on the induction of protective immunity against subcutaneous (s.c.) challenge with blood trypomastigotes. The addition of C. parvum to a low dose of T. cruzi vaccine, which alone was non-protective, generated a greater degree of protection than did saponin or B. pertussis. C. parvum alone increased resistance to infection to a variable and usually weak extent. The addition of C. parvum to larger doses of T. cruzi vaccine, which were themselves sufficient to elicit some degree of protection, improved resistance when the challenge was given 1 or 12 weeks after immunization, but lowered it at 3 weeks. It is concluded that the comparative efficacy of adjuvants for T. cruzi vaccines needs to be assessed on 3 parameters: (1) the dose of antigen, (2) the dose of adjuvant and (3) the time interval between immunization and challenge.  相似文献   

15.
Hepatitis vaccines: recent advances   总被引:12,自引:0,他引:12  
Despite the availability of hepatitis A vaccines that might provide protection for decades, hepatitis B vaccines that provides protection for at least 15 years and the recent introduction of a combined hepatitis A and B vaccine, these infections continue to spread in both the developed and developing world. Hepatitis A vaccine coverage has been limited to high-risk groups: such a selective immunisation policy is unlikely to have a major impact. If adequate immunogenicity in infants is confirmed, dosing schedules can be improved and the costs of vaccination reduced, universal paediatric immunisation with combined hepatitis A and B products is likely to result in the eventual eradication of these infections. In the interim, novel hepatitis A vaccines are being investigated and additional studies on hepatitis A vaccine immunogenicity in infants are in progress. Worldwide use of hepatitis B vaccines for the newborn, young children and high-risk groups should control this infection and obviate the need for a vaccine against hepatitis D. Newer hepatitis B vaccines that may reduce the likelihood of non-responsiveness and have immunotherapeutic value are under study. A recombinant hepatitis E vaccine for use in endemic regions is currently in clinical trials. The development of an effective hepatitis C vaccine has been agonisingly slow and many impediments have been recognised. These include the lack of a susceptible small animal, a high degree of hepatitis C virus (HCV) genomic diversity and failure to produce high quantities of HCV in tissue culture. The development of a novel HCV replicon system may be a major breakthrough. Nonetheless, it may still be exceedingly difficult to produce a vaccine that uniformly provides sterilising immunity; the possibility of developing a hepatitis C vaccine that can prevent chronic infection is an exciting concept that requires further investigation. Advances in recombinant technology, the use of novel genetic (DNA-based) vaccines, expression of hepatitis antigens in plants and improved adjuvants also hold considerable promise.  相似文献   

16.
流行性感冒(简称流感)的频频暴发严重危害人类健康和公共卫生,已引起全球范围内的高度关注。预防流感最有效和经济的措施是接种疫苗,但流感病毒的持续变异可逃逸人群已有的免疫应答,目前使用的季节性流感疫苗仅对亚型内抗原匹配较好的毒株产生免疫保护作用,难以有效应对因抗原漂移或抗原转换而产生的无法预料的流感大流行。因此,研发对流感病毒不同亚型均具有交叉免疫保护作用的广谱流感疫苗具有重要意义。近年来,流感病毒广谱中和抗体的发现、对流感病毒抗原保守区域及细胞免疫机制的深入研究、疫苗免疫策略的优化等都为广谱流感疫苗的研发提供了新思路。本文简述了近几年基于血凝素、基质蛋白、核蛋白等多种流感靶抗原的广谱流感疫苗的研究进展。  相似文献   

17.
To develop safe vaccines for inducing mucosal immunity to major pulmonary bacterial infections, appropriate vaccine antigens (Ags), delivery systems and nontoxic molecular adjuvants must be considered. Such vaccine constructs can induce Ag‐specific immune responses that protect against mucosal infections. In particular, it has been shown that simply mixing the adjuvant with the bacterial Ag is a relatively easy means of constructing adjuvant‐based mucosal vaccine preparations; the resulting vaccines can elicit protective immunity. DNA‐based nasal adjuvants targeting mucosal DCs have been studied in order to induce Ag‐specific mucosal and systemic immune responses that provide essential protection against microbial pathogens that invade mucosal surfaces. In this review, initially a plasmid encoding the cDNA of Flt3 ligand (pFL), a molecule that is a growth factor for DCs, as an effective adjuvant for mucosal immunity to pneumococcal infections, is introduced. Next, the potential of adding unmethylated CpG oligodeoxynucleotide and pFL together with a pneumococcal Ag to induce protection from pneumococcal infections is discussed. Pneumococcal surface protein A has been used as vaccine for restoring mucosal immunity in older persons. Further, our nasal pFL adjuvant system with phosphorylcholine‐keyhole limpet hemocyanin (PC‐KLH) has also been used in pneumococcal vaccine development to induce complete protection from nasal carriage by Streptococcus pneumoniae . Finally, the possibility that anti‐PC antibodies induced by nasal delivery of pFL plus PC‐KLH may play a protective role in prevention of atherogenesis and thus block subsequent development of cardiovascular disease is discussed.
  相似文献   

18.
This review attempts to synthesize the new knowledge of pathogenesis of bacterial enteric infections and relate this information to vaccine development. Discussion focuses on human infections and to those in which significant strides have been made. As a general theme in the pathogenesis of bacterial enteric infections, pathogens can be characterized into 5 groups on the basis of their degree of ultimate invasiveness after ingestion by a susceptible hose: mucosal adherence and enterotoxin production; mucosal adherence and brush border dissolution -- enteropathogenic E. coli (EPEC) of "classical" serotypes; mucosal invasion and intraepithelial cell proliferation; mucosal translocation followed by bacterial proliferation in the lamina propria and mesenteric lymph nodes; and mucosal translocation followed by generalized infection. The review covers cholera (motility and chemotaxis, mucosal adhesion, flagellar sheath protein, hemagglutinins, outer membrane proteins, enterotoxin production, quality and duration of infection derived immunity, immune response in humans, LPS, flagellar sheath protein, cholera lectin, other cholera hemagglutinins, outer membrane protein, previous cholera vaccines, killer whole cell vaccines, toxoids, combination vaccines, attenuated versus cholerae vaccines): enterotoxigenic Escherichia coli (ETEC) (entertoxins, O:H serotypes and enterotoxin phenotypes, colonization factors, immune response in humans, vaccines against ETEC, and toxiods); EPEC (vaccines against EPEC); Shigella (smooth LPS O antigen, epithelial cell invasiveness, Shigella toxin, and Shigella vaccines); and typhoid fever (caccines against typhoid fever). The major attraction of a nonliving oral cholera vaccine is its safety. A review of available information leads to the conclusion that an oral vaccine consisting of a combination of antigens, intending to stimulate both antibacterial and antitoxic immunity, would be most likely to succeed. Current approaches to immunoprophylaxis of ETEC infection involve vaccines that stimulate antitoxic or antiadhesion immunity or both by means of killed antigens or attenuated strains. It is likely that the most effective vaccines will contain appropriate antigens intended to simultaneously stimulate both antibacterial and antitoxic immunity, thereby leading to a synergistic protective effect. Now that the speical enteroadhesive properties of EPEC have been characterized and shown to be associated with a plasmid, it should be possible to identify the phenotypic gene products responsible for this phenomenon. It is likely that fimbriae or outer membrane proteins will prove to be the organelle of adhesion. When such information becomes available, it should be possible to prepare oral vaccines consisting of the purified antigen. Efficacy has been shown for attenuated Shigella strains utilized as oral vaccines. The major thrust in the development of new immunization agensts against typhoid fever is to identify immunizing agents at least equal in efficacy to the parenteral acetone killed vaccine but which cause no adverse reactions.  相似文献   

19.
Fu S  Xu J  Li X  Xie Y  Qiu Y  Du X  Yu S  Bai Y  Chen Y  Wang T  Wang Z  Yu Y  Peng G  Huang K  Huang L  Wang Y  Chen Z 《PloS one》2012,7(2):e29552
Due to drawbacks of live attenuated vaccines, much more attention has been focused on screening of Brucella protective antigens as subunit vaccine candidates. Brucella is a facultative intracellular bacterium and cell mediated immunity plays essential roles for protection against Brucella infection. Identification of Brucella antigens that present T-cell epitopes to the host could enable development of such vaccines. In this study, 45 proven or putative pathogenesis-associated factors of Brucella were selected according to currently available data. After expressed and purified, 35 proteins were qualified for analysis of their abilities to stimulate T-cell responses in vitro. Then, an in vitro gamma interferon (IFN-γ) assay was used to identify potential T-cell antigens from B. abortus. In total, 7 individual proteins that stimulated strong IFN-γ responses in splenocytes from mice immunized with B. abortus live vaccine S19 were identified. The protective efficiencies of these 7 recombinant proteins were further evaluated. Mice given BAB1_1316 (CobB) or BAB1_1688 (AsnC) plus adjuvant could provide protection against virulent B. abortus infection, similarly with the known protective antigen Cu-Zn SOD and the license vaccine S19. In addition, CobB and AsnC could induce strong antibodies responses in BALB/c mice. Altogether, the present study showed that CobB or AsnC protein could be useful antigen candidates for the development of subunit vaccines against brucellosis with adequate immunogenicity and protection efficacy.  相似文献   

20.
Gastrointestinal infections caused by Clostridium difficile lead to significant impact in terms of morbidity and mortality, causing from mild symptoms, such as a low-grade fever, watery stools, and minor abdominal cramping as well as more severe symptoms such as bloody diarrhea, pseudomembrane colitis, and toxic megacolon. Vaccination is a viable approach to fight against C. difficile and several efforts in this direction are ongoing. Plants are promising vaccine biofactories offering low cost, enhanced safety, and allow for the formulation of oral vaccines. Herein, the CdeM protein, which is a spore antigen associated with immunoprotection against C. difficile, was selected to begin the development of plant-based vaccine candidates. The vaccine antigen is based in a fusion protein (LTB-CdeM), carrying the CdeM antigen, fused to the carboxi-terminus of the B subunit of the Escherichia coli heat-labile enterotoxin (LTB) as a mucosal immunogenic carrier. LTB-CdeM was produced in plants using a synthetic optimized gene according codon usage and mRNA stability criteria. The obtained transformed tobacco lines produced the LTB-CdeM antigen in the range of 52–90 μg/g dry weight leaf tissues. The antigenicity of the plant-made LTB-CdeM antigen was evidenced by GM1-ELISA and immunogenicity assessment performed in test mice revealed that the LTB-CdeM antigen is orally immunogenic inducing humoral responses against CdeM epitopes. This report constitutes the first step in the development of plant-based vaccines against C. difficile infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号