共查询到20条相似文献,搜索用时 0 毫秒
1.
Development of crystalline peroxisomes in methanol-grown cells of the yeast Hansenula polymorpha and its relation to environmental conditions 总被引:13,自引:0,他引:13
The development of peroxisomes has been studied in cells of the yeast Hansenula polymorpha during growth on methanol in batch and chemostat cultures. During bud formation, new peroxisomes were generated by the separation of small peroxisomes from mature organelles in the mother cells. The number of peroxisomes migrating to the buds was dependent upon environmental conditions. Aging of cells was accompanied by an increase in size of the peroxisomes and a subsequent increase in their numbers per cell. Their ultimate shape and substructure as well as their number per cell was dependent upon the physiological state of the culture. The change in number and volume density of peroxisomes was related to the level of alcohol oxidase in the cells. Development of peroxisomes in cells of batch cultures was accompanied by an increase in size of the crystalline inclusions in the organelles; they had become completely crystalline when the cells were in the stationary phase. Peroxisomes in cells from methanol-limited chemostat cultures were completely crystalline, irrespective of growth rate. Results of biochemical and cytochemical experiments suggested that alcohol oxidase is a major component of the crystalline inclusions in the peroxisomes of methanol-grown Hansenula polymorpha. Possible mechanisms involved in the ultrastructural changes in peroxisomes during their development have been discussed.Abbreviations DAB
3,3-diaminobenzidine
- OD
optical density (663 nm) 相似文献
2.
Growth of Hansenula polymorpha in shake flasks and chemostat cultures in the presence of methanol as the sole source of carbon and methylamine as the sole
source of nitrogen was associated with the development of peroxisomes in the cells. The organelles were involved in the concurrent
oxidation of these two compounds, since they contained both alcohol oxidase and amine oxidase, which are key enzymes in methanol
and methylamine metabolism, respectively. In addition catalase was present. Peroxisomes with a completely crystalline substructure
were observed in methanol-limited chemostat-grown cells. Amine oxidase probably formed an integral part of these crystalloids,
whereas catalase was present in a freely diffusable form.
Transfer of cells, grown in a methanol-limited chemostat in the presence of methylamine into glucose/ammonium sulphate media
resulted in the loss of both alcohol oxidase and amine oxidase activity from the cells. This process was associated with degradation
of the crystalline peroxisomes. However, when cells were transferred into glucose/methylamine media, amine oxidase activity
only declined during 2 h after the transfer and thereafter increased again. This subsequent rise in amine oxidase activity
was associated with the development of new peroxisomes in the cells in which degradation of the crystalline peroxisomes, originally
present, continued. These newly formed organelles probably originated from peroxisomes which had not been affected by degradation.
When in the methanollimited chemostat methylamine was replaced by ammonium sulphate, repression of the synthesis of amine
oxidase was observed. However, inactivation of this enzyme or degradation of peroxisomes was not detected. The decrease of
amine oxidase activity in the culture was accounted for by dilution of enzyme as a result of growth and washout. 相似文献
3.
Cells of Hansenula polymorpha growing exponentially on glucose generally contained a single peroxisome of small dimension, irregular in shape and located in close proximity to the cell wall. Crystalline inclusions in the peroxisomal matrix were not observed. Associations of the organelles with one or more strands of endoplasmic reticulum were evident. In stationary phase cells the size of the peroxisomes had increased considerably. They were more cubical in form and showed a partly or completely crystalline matrix.After the transfer of cells growing exponentially on glucose into media containing methanol, large peroxisomes with a partly crystalline matrix developed in the cells within 6 h. These organelles originated from the small peroxisomes in the glucose-grown cells. De novo synthesis of peroxisomes was not observed. Prolonged cultivation in the presence of methanol resulted in a gradual increase in the number of peroxisomes by means of separation of small peroxisomes from mature organelles. During growth of peroxisomes associations with the endoplasmic reticulum remained evident.The increase in volume density of peroxisomes in stationary phase cells grown on glucose and in methanol-grown cells was accompanied by the synthesis of the peroxisomal enzymes alcohol oxidase and catalase. Cytochemical staining techniques revealed that alcohol oxidase activity was only detected when the peroxisomes contained a crystalloid inclusion. Since in peroxisomes of an alcohol oxidase-negative mutant of Hansenula polymorpha crystalline inclusions were never detected, it is concluded that the development of crystalloids inside peroxisomes is due to the accumulation of alcohol oxidase in these organelles. 相似文献
4.
The regulation of the synthesis of alcohol oxidase, catalase, formaldehyde dehydrogenase and formate dehydrogenase was investigated in the methanol-utilizing yeast Hansenula polymorpha. The organism was found to synthesize immunologically identical alcohol oxidases during growth on glycerol and methanol. Growth on glycerol, however, was not dependent on the alcohol oxidase, as was shown with a mutant without alcohol oxidase protein. Similarly it was shown with a catalase activity negative mutant that high catalase activity during growth on glycerol was not a prerequisite for the utilization of this substrate, though absolutely required for growth on methanol.Experiments were conducted with mixed substrates to study the influence of methanol on alcohol oxidase synthesis. In batch cultures, growth on ribose plus methanol resulted in an enhanced rate of alcohol oxidase synthesis as compared to ribose alone. In continuous cultures, (D=0.1 h-1) addition of methanol to glycerol-, glucose-, or sorbose-limited cultures gave rise to increased alcohol oxidase activity of up to 20 U/mg, which is about by 2 times higher than the specific activity used for growth on methanol alone. The increase in specific activity of the dissimilatory enzymes on the mixed substrates is partly due to methanol per se, as was shown by a mutant unable to dissimilate or assimilate methanol. 相似文献
5.
Anneke C. Douma Marten Veenhuis Wim de Koning Melchior Evers Wim Harder 《Archives of microbiology》1985,143(3):237-243
The subcellular localization of dihydroxyacetone synthase (DHAS) in the methylotrophic yeast Hansenula polymorpha was studied by various biochemical and immunocytochemical methods. After cell fractionation involving differential and sucrose gradient centrifugation of protoplast homogenates prepared from methanol-grown cells, DHAS cosedimented with the peroxisomal enzymes alcohol oxidase and catalase. Electron microscopy of this fraction showed that it contained mainly intact peroxisomes, whereas SDS-polyacrylamide gel electrophoresis revealed two major protein bands (75 and 78 kDa) which were identified as alcohol oxidase and DHAS, respectively. The localization of DHAS in peroxisomes was further established by immunocytochemistry. After immuno-gold staining carried out on ultrathin sections of methanol-grown H. polymorpha using DHAS-specific antibodies, labelling was confined to the peroxisomal matrix.Abbreviations MES
2-(N-morpholino)ethanesulfonic acid
- DTT
dithiothreitol
- SDS
sodium dodecyl sulphate
- TPP
thiamin pyrophosphate
- DHAS
dihydroxyacetone synthase
- GSH
reduced glutathione 相似文献
6.
A study of enzyme profiles in Hansenula polymorpha grown on various carbon substrates revealed that the synthesis of the methanol dissimilatory and assimilatory enzymes is regulated in the same way, namely by catabolite repression and induction by methanol. Mutants of H. polymorpha blocked in dihydroxyacetone (DHA) synthase (strain 70 M) or DHA kinase (strain 17 B) were unable to grow on methanol which confirmed the important role attributed to these enzymes in the biosynthetic xylulose monophosphate (XuMP) cycle. Both mutant strains were still able to metabolize methanol. In the DNA kinase-negative strain 17 B this resulted in accumulation of DHA. Although DHA kinase is thought to be involved in DHA and glycerol metabolism in methylotrophic yeasts, strain 17 B was still able to grow on glycerol at a rate similar to that of the wild type. DHA on the other hand only supported slow growth of this mutant when relatively high concentrations of this compound were provided in the medium. This slow but definite growth of strain 17 B on DHA was not based on the reversible DHA synthase reaction but on conversion of DHA into glycerol, a reaction catalyzed by DNA reductase. The subsequent metabolism of glycerol in strain 17 B and in wild type H. polymorpha, however, remains to be elucidated.Abbreviations XuMP
xylulose monophosphate
- DHA
dihydroxyacetone
- EMS
ethyl methanesulphonate 相似文献
7.
Hansenula polymorpha has been grown in a methanol-limited continuous culture at a variety of dilution rates. Cell suspensions of the yeast grown at a dilution rate of 0.16 h-1 showed a maximal capacity to oxidize excess methanol (QO
2
max
) which was 1.6 times higher than the rate required to sustain the growth rate (Q
O2). When the dilution rate was decreased to 0.03 h-1, QO
2
max
of the cells increased to a value of more than 20 times that of Q
O2. The enzymatic basis for this tremendous overcapacity for the oxidation of excess methanol at low growth rates was found to be the methanol oxidase content of the cells. The level of this enzyme increased from 7% to approximately 20% of the soluble protein when the growth rate was decreased from 0.16 to 0.03 h-1. These results were explained on the basis of the poor affinity of methanol oxidase for its substrates. Methanol oxidase purified from Hansenula polymorpha showed an apparent K
mfor methanol of 1.3 mM in air saturated reaction mixtures and the apparent K
mof the enzyme for oxygen was 0.4 mM at a methanol concentration of 100 mM.The involvement of an oxygen dependent methanol oxidase in the dissimilation of methanol in Hansenula polymorpha was also reflected in the growth yield of the organism. The maximal yield of the yeast was found to be low (0.38 g cells/g methanol). This was not due to a very high maintenance energy requirement which was estimated to be 17 mg methanol/g cells x h. 相似文献
8.
Summary Urine of ddY/DAO mice lackingd-amino-acid oxidase contained 5.7 times more serine than that of normal ddY/DAO+ mice. Most of the serine wasd-isomer. The origin of thisd-serine was examined. Oral administration of 0.02% amoxicillin and 0.004% minocycline to the ddY/ DAO- mice for 7 days did not reduce the urinaryd-serine, indicating that thed-serine was not of intestinal bacterial origin. When the mouse diet was changed to one with different compositions, the urinaryd-serine was considerably reduced. Furthermore, starvation of the ddY/DAO- mice for 24 hours reduced the urinaryd-serine to 33% of the original level. These results indicate that most of the urinaryd-serine comes from the diet. However, the urine of the starved ddY/DAO- mice still contained 4.6 times mored-serine than that of the ddY/DAO+ mice, suggesting a part of the D-serine have an endogenous origin. 相似文献
9.
Summary Urine of mutant ddY/DAO– mice lackingd-amino-acid oxidase activity contained more serine and proline than that of normal ddY/DAO+ mice.d-Amino-acid oxidase treatment of urinary amino acids decreased the serine and proline, suggesting that they containedd-isomers. An HPLC analysis confirmed the presence ofd-serine. Urinary serine and proline contents were not decreased when the ddY/DAO– mice were fed a diet which did not contain supplementaryd-methionine or when they were given water containing antibiotics. These results suggest that thed-serine andd-proline do not derive from thed-methionine supplemented in the diet or from intestinal bacteria. In urine of the ddY/DAO– mice, a substance which seemed to bed-methionine sulfoxide and/ord-methionine sulfone was present. It is probably a metabolite of thed-methionine supplemented in the diet. Thed-aminoaciduria in the mutant mice lackingd-amino-acid oxidase activity indicates that this enzyme is involved in the metabolism of thed-amino acids in normal mice. 相似文献
10.
The yeast Hansenula polymorpha was grown in a chemostat using either methanol or sorbitol as substrate or a mixture of both. Methanol alone could be utilized up to a dilution rate (D) of 0.18 h-1, and sorbitol allowed growth at D's higher than 0.52 h-1. In combination with sorbitol, methanol was completely utilized in the mixture even up to a D of 0.3 h-1, and partially utilized at higher D's, To elucidate the basis of methanol utilization at high D's, enzyme activities on the single substrates and on the substrate mixture were compared. At D's above 0.3 h-1 an increase of formate dehydrogenase activity was evident, an enzyme involved in the oxidation of methanol to carbon dioxide. It was concluded that at high D's large amounts of methanol were oxidized to generate energy. This was proved with 14C-methanol, and it was found that in the range of partial methanol utilization approximately 75% of methanol was converted to carbon dioxide and 25% incorporated into cell material.Abbreviation D
dilution rate 相似文献
11.
We have studied methanol-utilization in a peroxisome-deficient (PER) mutant of Hansenula polymorphoa. In spite of the fact that in carbon-limited chemostat cultures under induced conditions the enzymes involved in methanol metabolism were present at wild-type (WT) levels, this mutant is unable to grow on methanol as a sole carbon and energy source. Addition of methanol to glucose-limited (SR=12.5mM) chemostat cultures of the PER mutant only resulted in an increase in yield when small amounts were used (up to 22.5 mM). At increasing amounts however, a gradual decrease in cell density was observed which, at 80 mM methanol in the feed, had dropped below the original value of the glucose-limited culture. This reduction in yield was not observed when increasing amounts of formate instead of methanol were used as supplements for the glucose-limited mutant culture and also not in WT cells, used as control in these experiments. The effect of addition of methanol to a glucose-limited PER culture was also studied in the transient state during adaptation of the cells to methanol. The enzyme patterns obtained suggested that the ultimate decrease in yield observed at enhanced methanol concentrations was due to an inefficient methanolmetabolism as a consequence of the absence of peroxisomes. The absence of intact peroxisomes results in two major problems namely i) in H2O2-metabolism, which most probably is no longer mediated by catalase and ii) the inability of the cell to control the fluxes of formaldehyde, generated from methanol. The energetic consequences of this metabolism, compared to the WT situation with intact peroxisomes, are discussed.Abbreviations AO
alcohol oxidase
- DHAS
dihydroxyacetone synthase
- WT
wild-type
- PER
peroxisome-deficient
- GSH
reduced glutathione
- GSSG
glutathione disulphide 相似文献
12.
Ida J. van der Klei Marten Veenhuis Klaas Nicolay Wim Harder 《Archives of microbiology》1988,151(1):26-33
The fate of alcohol oxidase (AO) in chemostatgrown cells of Hansenula polymorpha, after its inactivation by KCN, was studied during subsequent cultivation of the cyanide-treated cells in fresh methanol media. Biochemical experiments showed that the cyanide-induced inactivation of AO was due to the release of flavin adenine dinucleotide (FAD) from the holo enzyme. However, dissociation of octameric AO into subunits was not observed. Subsequent growth of intact cyanide-treated cells in fresh methanol media was paralelled by proteolytic degradation of part of the peroxisomes present in the cells. The recovery of AO activity, concurrently observed in these cultures, was accounted for by synthesis of new enzyme protein. Reactivation of previously inactivated AO was not observed, even in the presence of FAD in such cultures. Newly synthesized AO protein was incorporated in only few of the peroxisomes present in the cells. 31P nuclear magnetic resonance (NMR) studies showed that cyanide-treatment of the cells led to a dissipation of the pH gradient across the peroxisomal membrane. However, restoration of this pH gradient was fast when cells were incubated in fresh methanol medium after removal of the cyanide.Abbreviations AO
alcohol oxidase
- FAD
flavin adenine dinucleotide
- CHI
cycloheximide
- NMR
nuclear magnetic resonance
- FPLC
fast protein liquid chromatography
- RIE
rocket immuno electrophoresis 相似文献
13.
Proliferation and metabolic significance of peroxisomes in Candida boidinii during growth on d-alanine or oleic acid as the sole carbon source 总被引:4,自引:0,他引:4
We have studied the induction of peroxisomes in the methylotrophic yeast Candida boidinii by d-alanine and oleic acid. The organism was able to utilize each of these compounds as the sole carbon source and grew with growth rates of =0.20 h-1 (on d-alanine) or =0.43 h-1 (on oleic acid). Growth was associated with the development of many peroxisomes in the cells. On d-alanine a cluster of tightly interwoven organelles was observed which made up 6.3% of the cytoplasmic volume and were characterized by the presence of d-amino acid oxidase and catalase. On oleic acid rounded to elongated peroxisomes were dominant which were scattered throughout the cytoplasm. These organelles contained increased levels of -oxidation enzymes; their relative volume fraction amounted 12.8% of the cytoplasmic volume. 相似文献
14.
Anl-amino-acid oxidase (EC 1.4.3.1) that catalyzes the oxidative deamination of twelvel-amino acids has been purified 21-fold and with 14% yield to electrophoretic homogeneity fromChlamydomonas reinhardtii cells by ammonium-sulfate fractionation, gel filtration through Sephacryl and Superose, anion-exchange chromatography and preparative electrophoresis in polyacrylamide gels. The native enzyme is a protein of 470 kDa and consists of eight identical or similarsized subunits of 60 kDa each. Optimum pH and temperature were 8.2 and 55° C, respectively, with a Q10 (45–55° C) of 1.7 and an activation energy of 45 kJ · mol–1. Its absorption spectrum showed, in the visible region, maxima at 360 and 444 nm, characteristic of a flavoprotein with a calculated flavin content of 7.7 mol FAD per mol of native enzyme. ApparentK
m values of the twelvel-amino acids which can act as substrates ofl-amino-acid oxidase ranged between 31 M for phenylalanine and 176 M for methionine. The effect of several specific group reagents, chelating agents and bivalent cations on enzyme activity has also been studied.This work was supported by Grant 780-CO2-01 from CICYT, Spain. The skillful secretarial assistance of C. Santos and I. Molina is gratefully acknowledged. 相似文献
15.
Summary
d-Amino acid oxidase cDNA was amplified by a polymerase chain reaction using RNA extracted from the mouse kidney. When digested withHindIII, the cDNAs of the BALB/c and ddY/DAO– mice were cleaved into two fragments whereas the cDNA of the ddY/DAO+ mice was not. Sequencing revealed that nucleotide-471 of the cDNAs was G in the BALB/c and ddY/DAO– mice whereas it was substituted for C in the ddY/DAO+ mice. This base substitution was the cause of the failure of the cleavage of the cDNA of the ddY/DAO+ mice.Examination of other strains of inbred mice showed thatd-amino-acid oxidase cDNAs of A/J, AKR, C57BL/6, CD-1, CF#1, ICR, DBA/2, NZB and NZW mice were cleaved withHindIII into two fragments whereas those of C3H/He, CBA/J and NC mice were not. Genomic DNAs extracted from the mice of these 15 strains were digested withHindIII and hybridized withd-amino-acid oxidase cDNA. A 18.2-kb fragment hybridized with the probe in the C3H/He, CBA/J, ddY/DAO+ and NC mice whereas two fragments of 12 kb and 6.2 kb hybridized in the other mice. These results are consistent with those of the cDNAs, confirming the loss of theHindIII cleavage site in the C3H/He, CBA/J, ddY/DAO+ and NC mice. The Southern hybridization revealed a loss of a differentHindIII cleavage site in the A/J, AKR, C57BL/6, DBA/2, ICR and NZB mice.The substitution at nucleotide-471 should cause a substitution of an amino acid residue. However, this substitution did not affect catalytic activity ofd-amino acid oxidase. 相似文献
16.
Hao-Chieh Hsieh I-Ching Kuan Shiow-Ling Lee Gee-Yeng Tien Yi-Jen Wang Chi-Yang Yu 《Biotechnology letters》2009,31(4):557-563
d-Amino acid oxidase from Rhodosporidium toruloides was immobilized onto glutaraldehyde-activated magnetic nanoparticles. Approximately four enzyme molecules were attached to
one magnetic nanoparticle when the weight ratio of the enzyme to the support was 0.12. After immobilization, the T
m was increased from 45°C of the free form to 55°C. In the presence of 20 mM H2O2, the immobilized form retained 93% of its activity after 5 h while the free form was completely inactivated after 3.5 h. 相似文献
17.
D-amino acid oxidases from Rhodosporidium toruloides and Trigonopsis variabilis (RtDAO and TvDAO) are both yeast homodimeric flavoenzymes. Two of their cDNA genes were connected by a hexanucleotide linker and heterologously expressed in E. coli to produce the corresponding double DAOs (dRtDAO and dTvDAO) with two subunits fused into a single polypeptide. The specific activities of double DAOs remained similar to those of native dimeric DAOs, although the catalytic efficiencies (k(cat)/K(M)) were decreased due to higher K(M) values. The T(m) value for dRtDAO was shifted 5 degrees C higher while that for dTvDAO was increased only by 2 degrees C, in comparison with the corresponding native counterparts. In the presence of 10 mM H(2)O(2), dRtDAO and dTvDAO exhibited half-lives of about 60 and 40 min, respectively, which were 2- and 1.5-fold, respectively, longer than their native DAOs. These yeast DAOs can therefore be thermally and oxidatively stabilized by linking their subunits together. 相似文献
18.
l-Amino acid oxidase is synthesized in Neurospora crassa in response to three different physiological stimuli: (i) starvation in phosphate buffer, (ii) mating, and (iii) nitrogen derepression in the presence of amino acids. During starvation in phosphate buffer, or after mating, l-amino acid oxidase synthesis occurred in parallel with that of tyrosinase. Exogenous sulfate repressed the formation of the two enzymes in starved cultures, but not in mated cultures. Sulfate repression was relieved by protein synthesis inhibitors, suggesting that the effect of sulfate required the synthesis of a metabolically unstable protein repressor. With amino acids as the sole nitrogen source only l-amino acid oxidase was produced. Under these conditions enzyme synthesis was repressed by ammonium and was insensitive to sulfate. Biochemical evidence suggested that the l-amino acid oxidase formed under the three different conditions was the same protein. Therefore, the expression of l-amino acid oxidase appeared to be under the control of least two regulatory circuits. One, also controlling tyrosinase, seems to respond to developmental signals related to sexual morphogenesis. The other, controlling other enzymes of the nitrogen catabolic system, is used by the organism to obtain nitrogen from alternative sources such as proteins and amino acids. 相似文献
19.
C. Di Giacomo F. Latteri C. Fichera V. Sorrenti A. Campisi C. Castorina A. Russo R. Pinturo Dr. A. Vanella 《Neurochemical research》1993,18(11):1157-1162
It has been reported that acetyl-l-carnitine (AcCn) can reduce the degenerative processes in the central nervous system of rats, modify the fluidity of membranes and decrease the accumulation of lipofuscins in neurones. In light of these considerations we have assayed the in vitro effect of acetyl-l-carnitine on spontaneous and induced lipoperoxidation in rat skeletal muscle; in addition, the effect of AcCn on XD/XO ratio was evaluated. The presence of AcCn (10–40 mM) in incubation medium significantly reduced MDA and conjugated diene formation in rat skeletal muscle; moreover, a significant decrease in induced MDA levels was observed when microsomal preparation where incubated in the presence of 10–40 mM AcCn. Since a significant reduction of XO activity was detected in the presence of 10–80 mM AcCn, the reduced lipid peroxidation by AcCn seems to be due to an inhibition of XO activity. 相似文献
20.
Growth of Pseudomonas aeruginosa PA01 on isomers of hydroxyproline induced the synthesis of an allohydroxy-d-proline dehydrogenase. The enzyme resembled the d-alanine dehydrogenase of this organism in its association with the particulate fraction and its linkage to oxygen through a cytochrome-containing respiratory chain, but differed from this and other bacterial d-amino acid dehydrogenases in its high substrate specificity and low K
m
. 相似文献