首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A member of the family of hematopoietic cytokines human prolactin (hPRL) is a 23k kDa polypeptide hormone, which displays pH dependence in its structural and functional properties. The binding affinity of hPRL for the extracellular domain of its receptor decreases 500‐fold over the relatively narrow, physiologic pH range from 8 to 6; whereas, the affinity of human growth hormone (hGH), its closest evolutionary cousin, does not. Similarly, the structural stability of hPRL decreases from 7.6 to 5.6 kcal/mol from pH 8 to 6, respectively, whereas the stability of hGH is slightly increased over this same pH range. hPRL contains nine histidines, compared with hGH's three, and they are likely responsible for hPRL's pH‐dependent behavior. We have systematically mutated each of hPRL's histidines to alanine and measured the effect on pH‐dependent global stability. Surprisingly, a vast majority of these mutations stabilize the native protein, by as much as 2–3 kcal/mol. Changes in the overall pH dependence to hPRL global stability can be rationalized according to the predominant structural interactions of individual histidines in the hPRL tertiary structure. Using double mutant cycles, we detect large interaction free energies within a cluster of nearby histidines, which are both stabilizing and destabilizing to the native state. Finally, by comparing the structural locations of hPRL's nine histidines with their homologous residues in hGH, we speculate on the evolutionary role of replacing structurally stabilizing residues with histidine to introduce pH dependence to cytokine function.  相似文献   

2.
The structural and functional properties of human prolactin (hPRL), a 23 kDa protein hormone and cytokine, are pH-dependent. The dissociation rate constant for binding to the extracellular domain of the hPRL receptor increases nearly 500-fold over the relatively narrow and physiologic range from pH 8 to 6. As the apparent midpoint for this transition occurs around pH 6.5, we have looked toward histidine residues as a potential biophysical origin of the behavior. hPRL has a surprising number of nine histidines, nearly all of which are present on the protein surface. Using NMR spectroscopy, we have monitored site-specific proton binding to eight of these nine residues and derived equilibrium dissociation constants. During this analysis, a thermodynamic interaction between a localized triplet of three histidines (H27, H30, and H180) became apparent, which was subsequently confirmed by site-directed mutagenesis. After consideration of multiple potential models, we present statistical support for the existence of two negative cooperativity constants, one linking protonation of residues H30 and H180 with a magnitude of approximately 0.1 and the other weaker interaction between residues H27 and H30. Additionally, mutation of any of these three histidines to alanine stabilizes the folded protein relative to the chemically denatured state. A detailed understanding of these complex protonation reactions will aid in elucidating the biophysical mechanism of pH-dependent regulation of hPRL's structural and functional properties.  相似文献   

3.
Human prolactin (hPRL), a member of the family of hematopoietic cytokines, functions as both an endocrine hormone and autocrine/paracrine growth factor. We have previously demonstrated that recognition of the hPRL·receptor depends strongly on solution acidity over the physiologic range from pH 6 to pH 8. The hPRL·receptor binding interface contains four histidines whose protonation is hypothesized to regulate pH-dependent receptor recognition. Here, we systematically dissect its molecular origin by characterizing the consequences of His to Ala mutations on pH-dependent receptor binding kinetics, site-specific histidine protonation, and high resolution structures of the intermolecular interface. Thermodynamic modeling of the pH dependence to receptor binding affinity reveals large changes in site-specific protonation constants for a majority of interface histidines upon complexation. Removal of individual His imidazoles reduces these perturbations in protonation constants, which is most likely explained by the introduction of solvent-filled, buried cavities in the crystallographic structures without inducing significant conformational rearrangements.  相似文献   

4.
Mechanism for ordered receptor binding by human prolactin   总被引:2,自引:0,他引:2  
Sivaprasad U  Canfield JM  Brooks CL 《Biochemistry》2004,43(43):13755-13765
Prolactin, a lactogenic hormone, binds to two prolactin receptors sequentially, the first receptor binding at site 1 of the hormone followed by the second receptor binding at site 2. We have investigated the mechanism by which human prolactin (hPRL) binds the extracellular domain of the human prolactin receptor (hPRLbp) using surface plasmon resonance (SPR) technology. We have covalently coupled hPRL to the SPR chip surface via coupling chemistries that reside in and block either site 1 or site 2. Equilibrium binding experiments using saturating hPRLbp concentrations show that site 2 receptor binding is dependent on site 1 receptor occupancy. In contrast, site 1 binding is independent of site 2 occupancy. Thus, sites 1 and 2 are functionally coupled, site 1 binding inducing the functional organization of site 2. Site 2 of hPRL does not have a measurable binding affinity prior to hPRLbp binding at site 1. After site 1 receptor binding, site 2 affinity is increased to values approaching that of site 1. Corruption of either site 1 or site 2 by mutagenesis is consistent with a functional coupling of sites 1 and 2. Fluorescence resonance energy transfer (FRET) experiments indicate that receptor binding at site 1 induces a conformation change in the hormone. These data support an "induced-fit" model for prolactin receptor binding where binding of the first receptor to hPRL induces a conformation change in the hormone creating the second receptor-binding site.  相似文献   

5.
Competitive antagonists of the human prolactin (hPRL) receptor are a novel class of molecules of potential therapeutic interest in the context of cancer. We recently developed the pure antagonist Del1-9-G129R-hPRL by deleting the nine N-terminal residues of G129R-hPRL, a first generation partial antagonist. We determined the crystallographic structure of Del1-9-G129R-hPRL, which revealed no major change compared with wild type hPRL, indicating that its pure antagonistic properties are intrinsically due to the mutations. To decipher the molecular bases of pure antagonism, we compared the biological, physicochemical, and structural properties of numerous hPRL variants harboring N-terminal or Gly(129) mutations, alone or combined. The pure versus partial antagonistic properties of the multiple hPRL variants could not be correlated to differences in their affinities toward the hPRL receptor, especially at site 2 as determined by surface plasmon resonance. On the contrary, residual agonism of the hPRL variants was found to be inversely correlated to their thermodynamic stability, which was altered by all the Gly(129) mutations but not by those involving the N terminus. We therefore propose that residual agonism can be abolished either by further disrupting hormone site 2-receptor contacts by N-terminal deletion, as in Del1-9-G129R-hPRL, or by stabilizing hPRL and constraining its intrinsic flexibility, as in G129V-hPRL.  相似文献   

6.
The actions of prolactin (PRL) are mediated by its receptor, a member of the superfamily of single transmembrane cytokine receptors. High affinity binding proteins for the closely related growth hormone have been found in the sera of several species including humans and are generated by alternative splicing or proteolysis of the growth hormone receptor extracellular domain (ECD). In contrast, no conclusive evidence has been presented that an analogous prolactin-binding protein (PRLBP) is expressed in human serum. Using both monoclonal and polyclonal antibodies generated against hPRL and the ECD of the human prolactin receptor, co-immunoprecipitation analyses of human serum identified a 32-kDa hPRLBP capable of binding both hPRL and human growth hormone. A measurable fraction of circulating PRL (36%) was associated with the hPRLBP. Despite well documented sex differences in serum hPRL levels, there were no significant differences in the levels of hPRLBP found in the sera of normal adult males and females (15.3 +/- 1.3 ng/ml versus 13.4 +/- 0.8 ng/ml, respectively (mean +/- S.E.)). Immunoprecipitation studies also detected the PRLBP in human milk albeit at lower concentrations than found in sera. Deglycosylation did not alter its electrophoretic mobility, indicating an absence of carbohydrate moieties and suggesting that the hPRLBP spans most of the PRLR ECD, a result confirmed by limited proteolysis and mass spectrometry. The potential function of this serum chaperone was assessed in vitro by the addition of recombinant hPRLBP to the culture medium of the PRL-dependent Nb2 T-cell line. These studies revealed that the hPRLBP antagonizes PRL action, inhibiting PRL-driven growth in a dose-dependent manner.  相似文献   

7.
8.
Rao GV  Brooks CL 《Biochemistry》2011,50(8):1347-1358
Human prolactin (hPRL) binds two human prolactin receptor molecules, creating active heterotrimeric complexes. Receptors bind dissimilar hormone surfaces termed site 1 and site 2 in an obligate ordered process. We sought to map the functional epitopes in site 1 of hPRL. Extensive alanine mutagenesis (102 of the 199 residues) showed approximately 40% of these mutant hPRLs changed the ΔG for site 1 receptor binding. Six of these residues are within 3.5 ? of the receptor and form the site 1 functional epitopes. We identified a set of noncovalent interactions between these six residues and the receptor. We identified a second group of site 1 residues that are between 3.5 and 5 ? from the receptor where alanine mutations reduced the affinity. This second group has noncovalent interactions with other hormone residues and stabilized the topology of the functional epitopes by linking these to the body of the protein. Finally, we identified a third group of residues that are outside site 1 (>5 ?) and extend to site 2 and whose mutation to alanine significantly weakened receptor binding at site 1 of prolactin. These three groups of residues form a contiguous structural motif between sites 1 and 2 of human prolactin and may constitute structural features that functionally couple sites 1 and 2. This work identifies the residues that form the functional epitopes for site 1 of human prolactin and also identifies a set of residues that support the concept that sites 1 and 2 are functionally coupled by an allosteric mechanism.  相似文献   

9.
Prolactin (PRL) in milk influences maturation of gastrointestinal epithelium and development of both the hypothalamo-pituitary and immune systems of offspring. Here, we demonstrate that most PRL in human milk is part of a novel, high-affinity, multicomponent binding complex found on the milk fat globule membrane and not in whey. To examine properties of the complex, a sensitive ELISA was developed such that human PRL (hPRL) binding to the complex was measured by loss of hPRL detectability; thus, as much as 50 ng of hPRL was undetectable in the presence of 10 μl of human milk. Using the same methodology, no comparable complex formation was observed with human serum or amniotic fluid. hPRL complexation in milk was rapid, time dependent, and cooperative. Antibodies to or competitors of the hPRL receptor (placental lactogen and growth hormone) showed the hPRL receptor was not involved in the complex. However, hPRL complexation was antagonized by cyclosporine A and anti-cyclophilins. The complex was very stable, resisting dissociation in SDS, urea, and dithiothreitol. Western analysis revealed an ~75-kDa complex that included hPRL, cyclophilins A and B, and a 16-kDa cyclophilin A. Compared with noncomplexed hPRL, complexed hPRL in whole milk showed similar activation of STAT5 but markedly delayed activation of ERK. Alteration of signaling suggests that complex formation may alter hPRL biological activity. This is the first report of a unique, multicomponent, high-capacity milk fat reservoir of hPRL; all other analyses of milk PRL have utilized defatted milk.  相似文献   

10.
Prolactin (PRL) and estrogen act synergistically to increase mammary gland growth, development, and differentiation. Based on their roles in the normal gland, these hormones have been studied to determine their interactions in the development and progression of breast cancer. However, most studies have evaluated only endocrine PRL and did not take into account the recent discovery that PRL is synthesized by human mammary cells, permitting autocrine/paracrine activity. To examine the effects of this endogenous PRL, we engineered MCF7 cells to inducibly overexpress human prolactin (hPRL). Using this Tet-On MCF7hPRL cell line, we studied effects on cell growth, PRLR, ER alpha, and PgR levels, and estrogen target genes. Induced endogenous hPRL, but not exogenous hPRL, increased ER alpha levels as well as estrogen responsiveness in these cells, suggesting that effects on breast cancer development and progression by estrogen may be amplified by cross-regulation of ER alpha levels by endogenous hPRL. The long PRLR isoform was also upregulated by endogenous, but not exogenous PRL. This model will allow investigation of endogenous hPRL in mammary epithelial cells and will enable further dissection of PRL effects on other hormone signaling pathways to determine the role of PRL in breast cancer.  相似文献   

11.
Voorhees JL  Rao GV  Gordon TJ  Brooks CL 《FEBS letters》2011,585(12):1783-1788
Zinc half sites are present in all human lactogenic hormones: human prolactin (hPRL), growth hormone (hGH), placental lactogens (hPL) and the hPRL receptor (hPRLr). The influence of divalent zinc (Zn(2+)) as measured by intrinsic fluorescence or FRET in each of these hormones is unique and is affected by the presence of varying stoichiometries of hPRLr. These data show that both Zn(2+) and hPRLr binding influence hPRL conformers in an interdependent fashion. Although each of these three lactogenic hormones bind hPRLr and induce a biological response that is sensitive to the presence of increasing concentrations of Zn(2+), each hormone is unique in the mechanistic details of this process.  相似文献   

12.
The 16-kDa N-terminal fragment of human prolactin (16K hPRL) is a potent angiostatic factor that inhibits tumor growth in mouse models. Using microarray experiments, we have dissected how the endothelial-cell genome responds to 16K hPRL treatment. We found 216 genes that show regulation by 16K hPRL, of which a large proportion turned out to be associated with the process of immunity. 16K hPRL induces expression of various chemokines and endothelial adhesion molecules. These expressions, under the control of nuclear factor-kappaB, result in an enhanced leukocyte-endothelial cell interaction. Furthermore, analysis of B16-F10 tumor tissues reveals a higher expression of adhesion molecules (intercellular adhesion molecule 1, vascular cell adhesion molecule 1, or E-selectin) in endothelial cells and a significantly higher number of infiltrated leukocytes within the tumor treated with 16K hPRL compared with the untreated ones. In conclusion, this study describes a new antitumor mechanism of 16K hPRL. Because cellular immunity against tumor cells is a crucial step in therapy, the discovery that treatment with 16K hPRL overcomes tumor-induced anergy may become important for therapeutic perspectives.  相似文献   

13.
The crystal structure of the complex between an N-terminally truncated G129R human prolactin (PRL) variant and the extracellular domain of the human prolactin receptor (PRLR) was determined at 2.5A resolution by x-ray crystallography. This structure represents the first experimental structure reported for a PRL variant bound to its cognate receptor. The binding of PRL variants to the PRLR extracellular domain was furthermore characterized by the solution state techniques, hydrogen exchange mass spectrometry, and NMR spectroscopy. Compared with the binding interface derived from mutagenesis studies, the structural data imply that the definition of PRL binding site 1 should be extended to include residues situated in the N-terminal part of loop 1 and in the C terminus. Comparison of the structure of the receptor-bound PRL variant with the structure reported for the unbound form of a similar analogue ( Jomain, J. B., Tallet, E., Broutin, I., Hoos, S., van Agthoven, J., Ducruix, A., Kelly, P. A., Kragelund, B. B., England, P., and Goffin, V. (2007) J. Biol. Chem. 282, 33118-33131 ) demonstrates that receptor-induced changes in the backbone of the four-helix bundle are subtle, whereas large scale rearrangements and structuring occur in the flexible N-terminal part of loop 1. Hydrogen exchange mass spectrometry data imply that the dynamics of the four-helix bundle in solution generally become stabilized upon receptor interaction at binding site 1.  相似文献   

14.
We report the solution structure of human prolactin determined by NMR spectroscopy. Our result is a significant improvement over a previous structure in terms of number and distribution of distance restraints, regularity of secondary structure, and potential energy. More significantly, the structure is sufficiently different that it leads to different conclusions regarding the mechanism of receptor activation and initiation of signal transduction. Here, we compare the structure of unbound prolactin to structures of both the homologue ovine placental lactogen and growth hormone. The structures of unbound and receptor bound prolactin/placental lactogen are similar and no noteworthy structural changes occur upon receptor binding. The observation of enhanced binding at the second receptor site when the first site is occupied has been widely interpreted to indicate conformational change induced by binding the first receptor. However, our results indicate that this enhanced binding at the second site could be due to receptor-receptor interactions or some other free energy sources rather than conformational change in the hormone. Titration of human prolactin with the extracellular domain of the human prolactin receptor was followed by NMR, gel filtration and electrophoresis. Both binary and ternary hormone-receptor complexes are clearly detectable by gel filtration and electrophoresis. The binary complex is not observable by NMR, possibly due to a dynamic equilibrium in intermediate exchange within the complex. The ternary complex of one hormone molecule bound to two receptor molecules is on the contrary readily detectable by NMR. This is in stark contrast to the widely held view that the ternary prolactin-receptor complex is only transiently formed. Thus, our results lead to improved understanding of the prolactin-prolactin receptor interaction.  相似文献   

15.

Background

Angiogenesis, the formation of new blood vessels from existing vasculature, plays an essential role in tumor growth, invasion, and metastasis. 16K hPRL, the antiangiogenic 16-kDa N-terminal fragment of human prolactin was shown to prevent tumor growth and metastasis by modifying tumor vessel morphology.

Methodology/Principal Findings

Here we investigated the effect of 16K hPRL on tumor vessel maturation and on the related signaling pathways. We show that 16K hPRL treatment leads, in a murine B16-F10 tumor model, to a dysfunctional tumor vasculature with reduced pericyte coverage, and disruption of the PDGF-B/PDGFR-B, Ang/Tie2, and Delta/Notch pathways. In an aortic ring assay, 16K hPRL impairs endothelial cell and pericyte outgrowth from the vascular ring. In addition, 16K hPRL prevents pericyte migration to endothelial cells. This event was independent of a direct inhibitory effect of 16K hPRL on pericyte viability, proliferation, or migration. In endothelial cell-pericyte cocultures, we found 16K hPRL to disturb Notch signaling.

Conclusions/Significance

Taken together, our data show that 16K hPRL impairs functional tumor neovascularization by inhibiting vessel maturation and for the first time that an endogenous antiangiogenic agent disturbs Notch signaling. These findings provide new insights into the mechanisms of 16K hPRL action and highlight its potential for use in anticancer therapy.  相似文献   

16.
Fan X  Zhou N  Zhang X  Mukhtar M  Lu Z  Fang J  DuBois GC  Pomerantz RJ 《Biochemistry》2003,42(34):10163-10168
The APJ receptor is widely expressed in the human central nervous system (CNS). Apelin was recently identified as the endogenous peptidic ligand for human APJ. Studies with animal models suggested that APJ and apelin play an important role in the hypothalamic regulation of water intake and the endocrine axis, in the regulation of blood pressure, and in cardiac contractility. Apelin has been found to block the activity of APJ as a human immunodeficiency virus type I (HIV-1) coreceptor. In this study, we combined chemical synthetic approaches with alanine substitution to evaluate the structural requirements for interactions with the APJ receptor. We demonstrated that apelin peptides in aqueous solution adopt a random conformation, and the positive charge and hydrophobic residues of apelin-13 play important roles in interactions with the APJ receptor. We have observed an important correlation between receptor binding affinity and cell-cell fusion inhibitory activity. The elucidation of structural requirements of apelin-13 in its interaction with the APJ receptor is critical for further investigation of apelin-APJ functions in vivo and in the design of small molecular inhibitors for potential treatment of HIV-1 infection in the CNS.  相似文献   

17.
Heyes CD  El-Sayed MA 《Biochemistry》2001,40(39):11819-11827
We have measured the temperature dependence of the FT-IR spectra of bacteriorhodopsin (bR) as a function of the pH and of the divalent cation regeneration with Ca(2+) and Mg(2+). It has been found that although the irreversible melting transition shows a strong dependence on the pH of the native bR, the premelting reversible transition at 78-80 degrees C shows very little variation over the pH range studied. It is further shown that the acid blue bR shows a red-shifted amide I spectrum at physiological temperature, which shows a more typical alpha-helical frequency component at 1652 cm(-)(1) and could be the reason for the observed reduction of its melting temperature and lack of an observed premelting transition. Furthermore, the thermal transitions for Ca(2+)- and Mg(2+)-regenerated bR (Ca-bR and Mg-bR, respectively) each show a premelting transition at the same 78-80 degrees C temperature as the native purple membrane, but the irreversible melting transition has a slight dependence on the cation identity. The pH dependence of the Ca(2+)-regenerated bR is studied, and neither transition varies over the pH range studied. These results are discussed in terms of the cation contribution to the secondary structural stability in bR.  相似文献   

18.
16K prolactin (PRL) is the name given to the 16-kDa N-terminal fragment obtained by proteolysis of rat PRL by tissue extracts or cell lysates, in which cathepsin D was identified as the candidate protease. Based on its antiangiogenic activity, 16K PRL is potentially a physiological inhibitor of tumor growth. Full-length human PRL (hPRL) was reported to be resistant to cathepsin D, suggesting that antiangiogenic 16K PRL may be physiologically irrelevant in humans. In this study, we show that hPRL can be cleaved by cathepsin D or mammary cell extracts under the same conditions as described earlier for rat PRL, although with lower efficiency. In contrast to the rat hormone, hPRL proteolysis generates three 16K-like fragments, which were identified by N-terminal sequencing and mass spectrometry as corresponding to amino acids 1-132 (15 kDa), 1-147 (16.5 kDa), and 1-150 (17 kDa). Biochemical and mutagenetic studies showed that the species-specific digestion pattern is due to subtle differences in primary and tertiary structures of rat and human hormones. The antiangiogenic activity of N-terminal hPRL fragments was assessed by the inhibition of growth factor-induced thymidine uptake and MAPK activation in bovine umbilical endothelial cells. Finally, an N-terminal hPRL fragment comigrating with the proteolytic 17-kDa fragment was identified in human pituitary adenomas, suggesting that the physiological relevance of antiangiogenic N-terminal hPRL fragments needs to be reevaluated in humans.  相似文献   

19.
Isolation and characterization of the human prolactin gene.   总被引:10,自引:2,他引:10       下载免费PDF全文
  相似文献   

20.
Signaling pathways mediating the antiangiogenic action of 16K human (h)PRL include inhibition of vascular endothelial growth factor (VEGF)-induced activation of the mitogen-activated protein kinases (MAPK). To determine at which step 16K hPRL acts to inhibit VEGF-induced MAPK activation, we assessed more proximal events in the signaling cascade. 16K hPRL treatment blocked VEGF-induced Raf-1 activation as well as its translocation to the plasma membrane. 16K hPRL indirectly increased cAMP levels; however, the blockade of Raf-1 activation was not dependent on the stimulation of cAMP-dependent protein kinase (PKA), but rather on the inhibition of the GTP-bound Ras. The VEGF-induced tyrosine phosphorylation of the VEGF receptor, Flk-1, and its association with the Shc/Grb2/Ras-GAP (guanosine triphosphatase-activating protein) complex were unaffected by 16K hPRL treatment. In contrast, 16K hPRL prevented the VEGF-induced phosphorylation and dissociation of Sos from Grb2 at 5 min, consistent with inhibition by 16K hPRL of the MEK/MAPK feedback on Sos. The inhibition of Ras activation was paralleled by the increased phosphorylation of 120 kDa proteins comigrating with Ras-GAP. Taken together, these findings show that 16K hPRL inhibits the VEGF-induced Ras activation; this antagonism represents a novel and potentially important mechanism for the control of angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号