首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J D Mikkelsen  M M O'Hare 《Peptides》1991,12(1):177-185
The suprachiasmatic nucleus (SCN) regulates a number of circadian rhythms in mammals. A neuropeptide Y (NPY)-containing pathway from the intergeniculate leaflet of the lateral geniculate to the SCN is considered to carry information of the environmental light-dark cycle. Antisera directed against NPY, Cys-NPY(32-36)amide or the C-terminal extended peptide of proNPY(68-97) (CPON) and avidin-biotin immunohistochemistry were used to define the precise distribution of NPYergic nerve fibers in the SCN, and to compare the location of the various fragments of proNPY in these nerves. Gel chromatography and specific radioimmunoassays were applied to quantify the efficiency of the amidation of NPY, and to study the size of peptides demonstrating NPY- and NPYamide-immunoreactivity in anterior hypothalamic extracts. NPY-, NPYamide-, and CPON-immunoreactive nerve fibers exhibited apparently the same distribution and morphology in the SCN. Immunoreactive fibers were preferentially located in the ventral part of the SCN, but along the rostrocaudal axis of the nucleus, the density and the precise distribution of immunoreactive elements changed. From the rostral third of the SCN to the middle third, the number of immunoreactive fibers increased and their distribution extended in a dorsal and lateral direction. In the caudal part of the SCN, the number of immunoreactive elements decreased and the innervation spread to an even more dorsolateral location. Dorsal aspects of the rostral SCN contained a moderate number of fibers, whereas the dorsomedial quadrant of the caudal 2/3 of the SCN was almost devoid of immunoreactivity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
This study describes the projection of cervical spinal afferent nerve fibers to the medulla in the brush-tailed possum, a marsupial mammal. After single dorsal roots (between C2 and T1) were cut in a series of animals, the Fink-Heimer method was used to demonstrate the projection fields of fibers entering the CNS via specific dorsal roots. In the high cervical spinal cord, afferent fibers from each dorsal root form a discrete layer in the dorsal funiculus. The flattened laminae from upper cervical levels are lateral and those from lower cervical levels are medial within the dorsal columns. All afferent fibers at this level are separated from gray matter by the corticospinal fibers in the dorsal funiculus. All cervical roots project throughout most of the length of the well-developed main cuneate nucleus in a loosely segmentotopic fashion. Fibers from rostral roots enter more lateral parts of the nucleus, and fibers from lower levels pass to more medial areas; but terminal projection fields are typically large and overlap extensively. At more rostral medullary levels, fibers from all cervical dorsal roots also reach the external cuneate nucleus. The spatial arrangement here is more complex and more extensively overlapped than in the cuneate nucleus. Rostral cervical root fibers reach ventral and ventrolateral areas of the external cuneate nucleus and continue to its rostral pole; more caudal root fibers project to more dorsal and medial regions within the nucleus. These results demonstrate that projection patterns of spinal afferents in this marsupial are similar to those seen in the few placental species for which detailed data concerning this system are available.  相似文献   

3.
The cyto- and myeloarchitectonic organization of trigeminal nucleus interpolaris (Vi) was examined in the rat using correlated Nissl- and myelin-stained sections. The caudal boundary of Vi is marked by a spatial overlap with the rostral pole of the medullary dorsal horn (MDH), where there is a dorsal and medial displacement of the substantia gelatinosa (SG, lamina II) layer of MDH. This spatial displacement was further documented using cytochrome-oxidase-reacted sections through the periobex region (POR) of the medulla, where the relatively unstained SG contrasts sharply with the intensely stained Vi neuropil. The rostral boundary of Vi is characterized partly by a distinct overlap with the caudal pole of the dorsomedial region (DM) of trigeminal nucleus oralis (Vo), and partly by a more gradual transition with ventral and lateral regions of Vo. The presence of the distinct MDH-Vi overlap is discussed in terms of its impact on the widespread contention that Vi is involved in the processing of dental pain afferents in the POR. Six separate and distinct regions of rat Vi can be distinguished on the basis of differences in their overall cyto- and myeloarchitecture: (1) a ventrolateral parvocellular region (vlVipc), which occupies the ventrolateral caudal half of Vi; (2) a ventrolateral magnocellular region (vlVimc), which occupies a similar region in the rostral half of the nucleus; (3) a border region (brVi), interposed between the spinal trigeminal tract (SVT) and vlVipc and vlVimc; (4) a dorsolateral region (dlVi), which lies predominantly in the rostral two-thirds of Vi subjacent to the dorsal half of SVT; (5) a dorsal cap region (dcVi), occupying the dorsomedial aspect of the nucleus throughout its entire rostrocaudal extent; and (6) an intermediate region (irVi), which lies immediately ventral to dcVi within the concavity formed by the medial borders of vlVipc and vlVimc. It is proposed that these cyto- and myeloarchitecturally distinct regions of Vi may largely represent functionally distinct regions, based on reported differences in the organization of afferent and efferent projections within the nucleus.  相似文献   

4.
Summary The anterograde Phaseolus vulgaris-leucoagglutinin (PHA-L) tracing technique was used to determine the distribution of efferent fibers originating in the lateral septal nucleus of the guinea pig. For complementary detection of the chemical identity of the target neurons, double-labeling immunocytochemistry was performed with antibodies to PHA-L and to vasopressin, oxytocin, vasoactive intestinal polypeptide, serotonin or dopamine -hydroxylase, respectively. The hypothalamus received the majority of the PHA-L-stained septofugal fibers. Here, a specific topography was observed. (1) The medial and lateral preoptic area, (2) the anterior, lateral, dorsal, posterior hypothalamic and retrochiasmatic area, (3) the supraoptic, paraventricular, suprachiasmatic, dorsomedial, caudal ventromedial and arcuate nuclei, and (4) the tuberomammillary, medial and lateral supramammillary, dorsal and ventral premammillary nuclei always contained PHA-L-labeled fibers. The rostral portion of the ventromedial nucleus and the medial and lateral mammillary nucleus only occasionally showed weak terminal labeling. In other diencephalic areas, termination of PHA-L-labeled fibers was observed in the epithalamus and the nuclei of the midline region of the thalamus. In the mesencephalon, terminal varicosities occurred in the ventral tegmental area, interfascicular and interpeduncular nucleus, and periaqueductal gray. In addition, the dorsal and medial raphe nuclei of the metencephalon, together with the locus coeruleus and the dorsal tegmental nucleus, received lateral septal efferents.  相似文献   

5.
Cytoarchitectonics of hypothalamic area of diencephalon of the sturgeons was studied in serial sections by techniques of Nissl staining and Bielschowski impregnation in Viktorov’s modification. The hypothalamus was shown to be the most expanded area of diencephalon and forms its the most ventral part. The hypothalamic area of four studied sturgeons, the hausen, Huso huso L., Kura sturgeon, Acipenser guldenstaedtii persicus n. Kurensis Belyaeff, Caspian sturgeon, Ac. stellatus Pall. and the barbel sturgeon Ac. nudioventris Lov. was found to have similar structure. Eleven nerve structures are identified and described in the hypothalamic area: dorsal, ventral, and caudal periventricular zones, rostral and dorsal hypothalamic nuclei, ventral and ventrolateral hypothalamic nuclei, diffuse and central nuclei of the inferior lobes, nucleus of the vascular sac, and mammillary nucleus. Peculiarities and common features of organization of four major parts of hypothalamus of the sturgeons are considered in comparison with those of other ray-finned fish. The performed analysis indicates a high level of development of hypothalamus of the sturgeons.  相似文献   

6.
The origin of different branches of the facial nerve in the rabbit was determined by using retrograde transport of HRP. Either the proximal stump of specific nerves was exposed to HRP after transection, or an injection of the tracer was made into particular muscles innervated by a branch of the facial nerve. A clear somatotopic pattern was observed. Those branches which innervate the rostral facial musculature arise from cells located in the lateral and intermediate portions of the nuclear complex. Orbital musculature is supplied by neurons in the dorsal portion of the complex, with the more rostral orbital muscles receiving input from more laterally located cells while the caudal orbital region receives innervation from more medial regions of the dorsal facial nucleus. The rostral portion of the ear also receives innervation from cells located in the dorsomedial part of the nucleus, but the caudal aspect of the ear is supplied exclusively by cells located in medial regions. The cervical platysma, the platysma of the lower jaw, and the deep muscles (i.e., digastric and stylohyoid) receive input from cells topographically arranged in the middle and ventral portions of the nuclear complex. It is proposed that the topographic relationship between the facial nucleus and branches of the facial nerve reflects the embryological derivation of the facial muscles. Those muscles that develop from the embryonic sphincter colli profundus layer are innervated by lateral and dorsomedial portions of the nuclear complex. The muscles derived from the embryonic platysma layer, including the deep musculature, receive their input from mid to ventral regions of the nuclear complex.  相似文献   

7.
Anterograde and retrograde transport of horseradish peroxidase was used to examine the afferent and efferent projections of the glossopharyngeal and vagal nerves in the lamprey, Lampetra japonica. Except for the ganglion cells and motoneurons, the distribution patterns of HRP-positive elements differed little between the two nerves. Afferent fibers mainly terminated in the ipsilateral cerebellar area, medial octavolateralis nucleus, and between the ventral octavolateralis nucleus and descending tract and nucleus of the trigeminal nerve (dV). In the cerebellar area, most of the labeled fibers were located in the molecular zone, but some penetrated into the granular zone. In the rostral part of the medial octavolateralis nucleus, labeled fibers coursed from the middle to the lateral area, and in the caudal part, they were localized in the dorsal area of the nucleus. In the area between the dV and ventral octavolateralis nucleus, labeled fibers coursed near the dorsal margin of the rostral part of the dV, and in the caudal part, they shifted dorsally. Ganglion cells and motoneurons of each nerve were also labeled.  相似文献   

8.
The circadian timing system has three principal components: (i) entrainment pathways, (ii) pacemakers, and (iii) efferent pathways from the pacemakers that convey the circadian signal to effector systems. The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal mammalian circadian pacemaker and, although we understand the organization of entrainment pathways to the SCN and the pacemaker itself, we know much less about the functional organization of SCN projections mediating control of effector systems. It is unclear, for example, whether specific subsets of SCN projections control specific effector systems. In this study, we analyzed the effects of lesions ablating the paraventricular hypothalamic nucleus (PVH), with variable extension into the subparaventricular zone (SPVZ) and adjacent structures, on nocturnal pineal melatonin production and rhythms in core body temperature (Tb) and rest-activity (R-A). In accordance with prior work, ablation of the PVH abolishes the nocturnal rise in pineal melatonin. Lesions restricted to the PVH do not affect rhythms in Tb and R-A but lesions extending caudally and ventrally into the SPVZ disrupt the R-A rhythm proportionate to the interruption of caudal SCN projections without affecting the rhythm in Tb. We conclude that pacemaker regulation of the circadian rhythms analyzed in this study is mediated by discrete sets of SCN projections: (i) dorsal projections to the PVH control pineal melatonin production; (ii) rostral projections to the anterior hypothalamic/preoptic areas mediate the Tb rhythm; and (iii) caudal projections to the SPVZ and hypothalamic arousal systems located in the posterior and lateral hypothalamic areas control the rhythm in R-A.  相似文献   

9.
In acute experiments on cats anesthetized with pentobarbital and chloralose, focal responses were recorded to study projections of various parts of the orbitofrontal cortex and cortex of the temporal pole in the region of the medial dorsal nucleus of the thalamus and interaction in this nucleus between stimuli arriving from the medio-basal portions of the neocortex. Different parts of the orbitofrontal cortex were found to have local projections in the medial dorsal nucleus so arranged that the rostral zones of the cortex send stimuli to the medio-dorsal portions of the nucleus, whereas regions of the cortex radiating fanwise from the pole in dorsal and caudal directions are arranged in the lateral and basal portions of the nucleus. The cortex of the temporal pole has relatively diffuse projections in the medial part of the medial dorsal nucleus. Stimuli reaching the medial dorsal nucleus from the basal structures of the neocortex (temporal pole) were shown to facilitate response to stimulation of the orbitofrontal cortex. Meanwhile, stimulation of this region of the cortex depresses the receptive capacity of the nucleus for impulses arriving from the temporal cortex.  相似文献   

10.
The preoptic area/anterior hypothalamus (POA/AH) sits as a boundary region rostral to the classical diencephalic hypothalamus and ventral to the telencephalic septal region. Numerous studies have pointed to the region's importance for sex‐dependent functions. Previous studies suggested that migratory guidance cues within this region might be particularly unique in their diversity. To better understand the early development and differentiation of the POA/AH, cytoarchitectural, birthdate, immunocytochemical, and cell migration studies were conducted in vivo and in vitro using embryonic C57BL/6J mice. A medial preoptic nucleus became discernible using Nissl stain in males and females between embryonic days (E) E15 and E17. Cells containing immunoreactive estrogen receptor‐α were detected in the POA/AH by E13, and increased in number with age in both sexes. From E15 to E17, examination of the radial glial fiber pattern by immunocytochemistry confirmed the presence of dual orientations for migratory guidance ventral to the anterior commissure (medial‐lateral and dorsal‐ventral) and uniform orientation more caudally (medial‐lateral). Video microscopy studies followed the migration of DiI‐labeled cells in coronal 250‐μm brain slices from E15 mice maintained in serum‐free media for 1–3 days. Analyses showed significant migration along a dorsal‐ventral orientation in addition to medial‐lateral. The video analyses showed significantly more medial‐lateral migration in males than females in the caudal POA/AH. In vivo, changes in the distribution of cells labeled by the mitotic indicator bromodeoxyuridine (BrdU) suggested their progressive migration through the POA/AH. BrdU analyses also indicated significant movement from dorsal to ventral regions ventral to the anterior commissure. The significant dorsal‐ventral migration of cells in the POA/AH provides additional support for the notion that the region integrates developmental information from both telencephalic and diencephalic compartments. The sex difference in the orientation of migration of cells in the caudal POA/AH suggests one locus for the influence of gonadal steroids in the embryonic mouse forebrain. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 252–266, 1999  相似文献   

11.
The distribution of growth hormone releasing factor (GHRF) immunoreactive structures in the rat hypothalmus was studied after colchicine treatment with PAP immunocytochemistry in vibratome sections using an antiserum directed to rat hypothalamic GHRF. The majority of the GHRF-immunoreactive cell bodies were found in the arcuate nucleus, the medial perifornical region, and the ventral premammillary nuclei of the hypothalamus. Scattered cells were seen in the lateral basal hypothalamus, the medial and lateral portions of the ventromedial nucleus, and the dorsomedial and paraventricular nuclei. Immunoreactive fibers were observed in all the regions mentioned above. GHRF terminals were located in the central region of the median eminence. In addition, GHRF-immunoreactive neuronal processes were seen in the ventral region of the dorsomedial nucleus, the medial preoptic and suprachiasmatic regions, dorsal portion of the suprachiasmatic nucleus, bed nucleus of the stria terminals and the hypothalamic portion of the stria terminals. The localization of GHRF-immunoreactive terminals in the median eminence reinforces the view that GHRF plays a physiological role in the regulation of pituitary function. In addition, the localization of GHRF-immunoreactive structures in areas not usually considered to project to the median eminence suggest that GHRF may act as a neuromodulator or neurotransmitter.  相似文献   

12.
To elucidate the organization of the ferret spinocervicothalamic pathway (SCTP), we examined the lateral cervical nucleus (LCN) and the termination of the cervicothalamic tract (CTT) in this species. In thionin-stained sections, the ferret LCN appeared as an easily delineated column of cells in the dorsolateral funiculus from about mid-C3 to the rostral end of C1, with most cells located in the C1 and C2 segments. In transverse sections, the LCN was elongated along a dorsolateral to ventromedial axis and in the rostral half of C2 and caudal half of C1 continuous with the neck of the dorsal horn. The number of ferret LCN cells was estimated to 2,500-3,700, with an average of 3,340. Substance P-like immunoreactive fibers located preferentially in the ventromedial part of the LCN, whereas serotonin-like immunoreactive fibers were found throughout the nucleus. Anterograde transport of wheat germ agglutinin-horseradish peroxidase conjugate and biotinylated dextran amine demonstrated that the ferret CTT terminates extensively in the peripheral parts of the ventral posterior lateral nucleus. Sparser termination was evident in the ventral posterior inferior nucleus, in the medial nucleus of the posterior complex, and in the medial part of the magnocellular medial geniculate nucleus. Thus, although the LCN is significantly smaller in ferrets than in cats and raccoons, the organization of the LCN and of the cervicothalamic tract is closely similar in the three species. These findings indicate a conserved general organization of the SCTP among carnivores.  相似文献   

13.
The hypothalamic suprachiasmatic nucleus (SCN) and the thalamic pregeniculate nucleus (PGN), which appears to include the intergeniculate leaflet (IGL), comprise circadian related centers in the primate brain. In this study, these centers were analysed in respect to their cytoarchitecture, retinal afferents and chemical of major cells and axon terminals with tract tracers and immunohistochemical techniques to define cytoarchitecture and connections, in the common marmoset. The SCN was shown to be a triangularly shaped cluster of compact cells just dorsal to the optic chiasm and lateral to the third ventricle. It is innervated in its ventral portion by terminals from the retina, and NPY-ergic fibers. Serotonergic and SP-staining processes are distributed throughout. VIP-neurons form a dorsolateral group of cells and CB-immunoreactive neurons fill much of the nucleus. The PGN was shown to be a wedge-shaped cluster of cells located dorsomedially to the dorsal lateral geniculate nucleus. It appears to comprise a ventral portion which receives a bilateral retinal projection and contains NPY-neurons, suggesting that this portion may correspond to IGL. The PGN also contains CB-neurons, PV-neurons and fibers, and SP- and 5-HT-fibers. These results in marmoset show that, beside a common plan revealed for most mammals, there are significant interspecific variations in the circadian timing system. Future studies are needed in order to elucidate the circadian organization in this primate species.  相似文献   

14.
The hypothalamic suprachiasmatic nucleus (SCN) and the thalamic pregeniculate nucleus (PGN), which appears to include the intergeniculate leaflet (IGL), comprise circadian related centers in the primate brain. In this study, these centers were analysed in respect to their cytoarchitecture, retinal afferents and chemical of major cells and axon terminals with tract tracers and immunohistochemical techniques to define cytoarchitecture and connections, in the common marmoset. The SCN was shown to be a triangularly shaped cluster of compact cells just dorsal to the optic chiasm and lateral to the third ventricle. It is innervated in its ventral portion by terminals from the retina, and NPY-ergic fibers. Serotonergic and SP-staining processes are distributed throughout. VIP-neurons form a dorsolateral group of cells and CB-immunoreactive neurons fill much of the nucleus. The PGN was shown to be a wedge-shaped cluster of cells located dorsomedially to the dorsal lateral geniculate nucleus. It appears to comprise a ventral portion which receives a bilateral retinal projection and contains NPY-neurons, suggesting that this portion may correspond to IGL. The PGN also contains CB-neurons, PV-neurons and fibers, and SP- and 5-HT-fibers. These results in marmoset show that, beside a common plan revealed for most mammals, there are significant interspecific variations in the circadian timing system. Future studies are needed in order to elucidate the circadian organization in this primate species.  相似文献   

15.
To elucidate the organization of the ferret spinocervicothalamic pathway (SCTP), we examined the lateral cervical nucleus (LCN) and the termination of the cervicothalamic tract (CTY) in this species. In thionin-stained sections, the ferret LCN appeared as an easily delineated column of cells in the dorsolateral funiculus from about mid-C3 to the rostral end of C1, with most cells located in the C1 and C2 segments. In transverse sections, the LCN was elongated along a dorsolateral to ventromedial axis and in the rostral half of C2 and caudal half of C1 continuous with the neck of the dorsal horn. The number of ferret LCN cells was estimated to 2,500-3,700, with an average of 3,340. Substance P-like immunoreactive fibers located preferentially in the ventromedial part of the LCN, whereas serotonin-like immunoreactive fibers were found throughout the nucleus. Anterograde transport of wheat germ agglutinin-horseradish peroxidase conjugate and biotinylated dextran amine demonstrated that the ferret CTT terminates extensively in the peripheral parts of the ventral posterior lateral nucleus. Sparser termination was evident in the ventral posterior inferior nucleus, in the medial nucleus of the posterior complex, and in the medial part of the magnocellular medial geniculate nucleus. Thus, although the LCN is significantly smaller in ferrets than in cats and raccoons, the organization of the LCN and of the cervicothalamic tract is closely similar in the three species. These findings indicate a conserved general organization of the SCTP among carnivores.  相似文献   

16.
This study provides basic data on the normal structure of the inferior olivary complex (IOC) of the donkey, Equus asinus, at the light microscopic level. In common with that of other mammals, the donkey IOC consisted of three major nuclei and four minor groups of cells. The former was comprised of the medial and dorsal accessory olives (MAO and DAO, respectively) and the principal olive (PO), and the latter was comprised of the dorsal cap, nucleus beta, ventrolateral outgrowth and dorsomedial cell column. The MAO had the longest rostral to caudal representation and formed the caudal pole of IOC. The DAO was located dorsally to the MAO in the caudal half of the IOC. In the rostral half, the DAO bended ventrally and merged with the dorsal lamella of PO. More rostrally, the DAO lost its connection with the dorsal lamella and then conversely connected with the ventral lamella of PO. The DAO formed the rostral pole of the IOC. The PO extended through the rostral half of the IOC. The dorsal cap was a small group of cells. Overall, the donkey IOC is similar to that of other mammals.  相似文献   

17.
Summary Pieces of fetal midbrain raphe tissue were transplanted into the third ventricle or the ventral hypothalamic region near the suprachiasmatic nucleus (SCN) of adult host rats that had previously been denervated by treatment with 5,6-dihydroxytryptamine. The ability of grafted serotonin neurons to reinnervate the SCN in the host rats was studied by means of immunohistochemistry 1 and 3 months after transplantation. In both the intraventricular and intraparenchymal transplant experiments, reinnervation by outgrowing serotonin fibers was observed in the hypothalamus of host rats at 1 and 3 months after surgery. At both survival periods, there was no abundant arborization of serotonin fibers in the SCN, while the preoptic and periventricular areas of the host rats displayed a pattern of serotonergic innervation resembling that in normal (untreated) rats. It is suggested that within the SCN the regenerating serotonin fibers may be exposed to an inhibitory environment.  相似文献   

18.
Using an antiserum generated in rabbits against synthetic galanin (GA) and the indirect immunofluorescence method, the distribution of GA-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system (CNS) and a detailed stereotaxic atlas of GA-like neurons was prepared. GA-like immunoreactivity was widely distributed in the rat CNS. Appreciable numbers of GA-positive cell bodies were observed in the rostral cingulate and medial prefrontal cortex, the nucleus interstitialis striae terminalis, the caudate, medial preoptic, preoptic periventricular, and preoptic suprachiasmatic nuclei, the medial forebrain bundle, the supraoptic, the hypothalamic periventricular, the paraventricular, the arcuate, dorsomedial, perifornical, thalamic periventricular, anterior dorsal and lateral thalamic nuclei, medial and central amygdaloid nuclei, dorsal and ventral premamillary nuclei, at the base of the hypothalamus, in the central gray matter, the hippocampus, the dorsal and caudoventral raphe nuclei, the interpeduncular nucleus, the locus coeruleus, ventral parabrachial, solitarii and commissuralis nuclei, in the A1, C1 and A4 catechaolamine areas, the posterior area postrema and the trigeminal and dorsal root ganglia. Fibers were generally seen where cell bodies were observed. Very dense fiber bundles were noted in the septohypothalamic tract, the preoptic area, in the hypothalamus, the habenula and the thalamic periventricular nucleus, in the ventral hippocampus, parts of the reticular formation, in the locus coeruleus, the dorsal parabrachial area, the nucleus and tract of the spinal trigeminal area and the substantia gelatinosa, the superficial layers of the spinal cord and the posterior lobe of the pituitary. The localization of the GA-like immunoreactivity in the locus coeruleus suggests a partial coexistence with catecholaminergic neurons as well as a possible involvement of the GA-like peptide in a neuroregulatory role.  相似文献   

19.
应用PAP-PAAP双重免疫组化染色程序在同一切片上进行两种肽能物质的定位,观察了中国树鼩下丘脑视上核和室旁核内VP能和OT能神经元的比较解剖学分布,发现:视上核被视束分成主部和交叉后部。在视上核主部,其头侧部几乎仅含OT能神经元胞体,中间部VP能胞体出现并逐渐增多,尾侧部VP能胞体数目明显超过OT能胞体。在明显含有两种胞体的中间部和尾侧部,OT能胞体多位于背内侧,VP能胞体多位于腹外侧;在视上核交叉后部,其头侧部以VP能胞体为主,且多位于背外侧,OT能胞体多位于腹内侧。中间部OT能胞体多位于内侧,VP能胞体多位于外侧。尾侧部OT能胞体多位于背、腹两侧,VP能胞体则多位于中间;在室旁核,其头侧部几乎全由OT能胞体构成。中间部,VP能胞体出现并逐渐增多,OT和VP能胞体分别主要位于内、外侧。尾侧部两种神经元胞体较明显地分为内、外两群,内侧群主要为OT能胞体,外侧群几乎全为VP能胞体,该群的头侧半又可分为背腹两个亚群,至尾侧半,此二亚群渐合并。本文讨论了OT和VP能神经元在中国树鼩和大鼠视上核和室旁核内的比较分布。  相似文献   

20.
Projections of the central cerebellar nuclei to the intralaminar thalamic nuclei were studied in cats with the use of light and electron microscopy. Almost all intralaminar nuclei were shown to obtain cerebello-thalamic projections. The entire complex of the central cerebellar nuclei serves as a source of such projections; yet, involvement of different nuclei is dissimilar. Destruction of the central and, especially, caudal regions of the fastigial nucleus evoked in the intralaminar thalamic nuclei degenerative changes in the nerve fibers (from swelling and development of varicosities up to total fragmentation). Pathological phenomena could be noticed in the most caudal regions of the above thalamic nuclear group, including the medial dorsal nucleus. Projections of the cerebellar interpositus nucleus were directed toward nearly the same regions of the intralaminar nuclei; degeneration was more intensive (covered thecentrum medianum) when posterior regions of the interpositus nucleus were destroyed. Destruction of the lateral cerebellar nucleus evoked a similar pattern of pathological changes, but degeneration was also observed in some structures of the ventral and anterior nuclear groups of the thalamus. Electron microscopic examination showed that degeneration of dark and light types developed in the fiber preterminals and terminals. It can be concluded that the central cerebellar nuclei project not only to the ventral complex of the thalamic nuclei, but also to the anterior, medial, and intralaminar nuclear groups (rostral and caudal portions).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号