首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gram-negative pathogens commonly use the chaperone-usher pathway to assemble adhesive multisubunit fibers on their surface. In the periplasm, subunits are stabilized by a chaperone that donates a beta strand to complement the subunits' truncated immunoglobulin-like fold. Pilus assembly proceeds through a "donor-strand exchange" (DSE) mechanism whereby this complementary beta strand is replaced by the N-terminal extension (Nte) of an incoming pilus subunit. Using X-ray crystallography and real-time electrospray ionization mass spectrometry (ESI-MS), we demonstrate that DSE requires the formation of a transient ternary complex between the chaperone-subunit complex and the Nte of the next subunit to be assembled. The process is crucially dependent on an initiation site (the P5 pocket) needed to recruit the incoming Nte. The data also suggest a capping reaction displacing DSE toward product formation. These results support a zip-in-zip-out mechanism for DSE and a catalytic role for the usher, the molecular platform at which pili are assembled.  相似文献   

2.
Adhesive multi-subunit fibres are assembled on the surface of many pathogenic bacteria via the chaperone-usher pathway. In the periplasm, a chaperone donates a β-strand to a pilus subunit to complement its incomplete immunoglobulin-like fold. At the outer membrane, this is replaced with a β-strand formed from the N-terminal extension (Nte) of an incoming pilus subunit by a donor-strand exchange (DSE) mechanism. This reaction has previously been shown to proceed via a concerted mechanism, in which the Nte interacts with the chaperone:subunit complex before the chaperone has been displaced, forming a ternary intermediate. Thereafter, the pilus and chaperone β-strands have been postulated to undergo a strand swap by a ‘zip-in-zip-out’ mechanism, whereby the chaperone strand zips out, residue by residue, as the Nte simultaneously zips in, although direct experimental evidence for a zippering mechanism is still lacking. Here, molecular dynamics simulations have been used to probe the DSE mechanism during formation of the Saf pilus from Salmonella enterica at the atomic level, allowing the direct investigation of the zip-in-zip-out hypothesis. The simulations provide an explanation of how the incoming Nte is able to dock and initiate DSE due to inherent dynamic fluctuations within the chaperone:subunit complex. In the simulations, the chaperone donor strand was seen to unbind from the pilus subunit, residue by residue, in direct support of the zip-in-zip-out hypothesis. In addition, an interaction of a residue towards the N-terminus of the Nte with a specific binding pocket (P*) on the adjacent pilus subunit was seen to stabilise the DSE product against unbinding, which also proceeded in the simulations by a zippering mechanism. Together, the study provides an in-depth picture of DSE, including the first atomistic insights into the molecular events occurring during the zip-in-zip-out mechanism.  相似文献   

3.
P pili are important adhesive fibres that are assembled by the conserved chaperone-usher pathway. During pilus assembly, the subunits are incorporated into the growing fibre by the donor-strand exchange mechanism, whereby the beta-strand of the chaperone, which complements the incomplete immunoglobulin fold of each subunit, is displaced by the amino-terminal extension of an incoming subunit in a zip-in-zip-out exchange process that is initiated at the P5 pocket, an exposed hydrophobic pocket in the groove of the subunit. In vivo, termination of P pilus growth requires a specialized subunit, PapH. Here, we show that PapH is incorporated at the base of the growing pilus, where it is unable to undergo donor-strand exchange. This inability is not due to a stronger PapD-PapH interaction, but to a lack of a P5 initiator pocket in the PapH structure, suggesting that PapH terminates pilus growth because it is lacking the initiation point by which donor-strand exchange proceeds.  相似文献   

4.
PapD, a periplasmic transport protein in P-pilus biogenesis.   总被引:34,自引:8,他引:26       下载免费PDF全文
The product of the papD gene of uropathogenic Escherichia coli is required for the biogenesis of digalactoside-binding P pili. Mutations within papD result in complete degradation of the major pilus subunit, PapA, and of the pilinlike proteins PapE and PapF and also cause partial breakdown of the PapG adhesin. The papD gene was sequenced, and the gene product was purified from the periplasm. The deduced amino acid sequence and the N-terminal sequence obtained from the purified protein revealed that PapD is a basic and hydrophilic peripheral protein. A periplasmic complex between PapD and PapE was purified from cells that overproduced and accumulated these proteins in the periplasm. Antibodies raised against this complex reacted with purified wild-type P pili but not with pili purified from a papE mutant. In contrast, anti-PapD serum did not react with purified pili or with the culture fluid of piliated cells. However, this serum was able to specifically precipitate the PapE protein from periplasmic extracts, confirming that PapD and PapE were associated as a complex. It is suggested that PapD functions in P-pilus biogenesis as a periplasmic transport protein. Probably PapD forms complexes with pilus subunits at the outer surface of the inner membrane and transports them in a stable configuration across the periplasmic space before delivering them to the site(s) of pilus polymerization.  相似文献   

5.
P pili are hairlike polymeric structures that mediate binding of uropathogenic Escherichia coli to the surface of the kidney via the PapG adhesin at their tips. PapG is composed of two domains: a lectin domain at the tip of the pilus followed by a pilin domain that comprises the initial polymerizing subunit of the 1,000-plus-subunit heteropolymeric pilus fiber. Prior to assembly, periplasmic pilin domains bind to a chaperone, PapD. PapD mediates donor strand complementation, in which a beta strand of PapD temporarily completes the pilin domain''s fold, preventing premature, nonproductive interactions with other pilin subunits and facilitating subunit folding. Chaperone-subunit complexes are delivered to the outer membrane usher where donor strand exchange (DSE) replaces PapD''s donated beta strand with an amino-terminal extension on the next incoming pilin subunit. This occurs via a zip-in–zip-out mechanism that initiates at a relatively accessible hydrophobic space termed the P5 pocket on the terminally incorporated pilus subunit. Here, we solve the structure of PapD in complex with the pilin domain of isoform II of PapG (PapGIIp). Our data revealed that PapGIIp adopts an immunoglobulin fold with a missing seventh strand, complemented in parallel by the G1 PapD strand, typical of pilin subunits. Comparisons with other chaperone-pilin complexes indicated that the interactive surfaces are highly conserved. Interestingly, the PapGIIp P5 pocket was in an open conformation, which, as molecular dynamics simulations revealed, switches between an open and a closed conformation due to the flexibility of the surrounding loops. Our study reveals the structural details of the DSE mechanism.  相似文献   

6.
The mechanical behavior of individual P pili of uropathogenic Escherichia coli has been investigated using optical tweezers. P pili, whose main part constitutes the PapA rod, composed of approximately 10(3) PapA subunits in a helical arrangement, are distributed over the bacterial surface and mediate adhesion to host cells. They are particularly important in the pathogenesis of E. coli colonizing the upper urinary tract and kidneys. A biological model system has been established for in situ measurements of the forces that occur during mechanical stretching of pili. A mathematical model of the force-versus-elongation behavior of an individual pilus has been developed. Three elongation regions of pili were identified. In region I, P pili stretch elastically, up to a relative elongation of 16 +/- 3%. The product of elasticity modulus and area of a P pilus, EA, was assessed to 154 +/- 20 pN (n=6). In region II, the quaternary structure of the PapA rod unfolds under a constant force of 27 +/- 2 pN (n approximately 100) by a sequential breaking of the interactions between adjacent layers of PapA subunits. This unfolding can elongate the pilus up to 7 +/- 2 times. In region III, pili elongate in a nonlinear manner as a result of stretching until the bond ruptures.  相似文献   

7.
Attachment to host cells via adhesive surface structures is a prerequisite for the pathogenesis of many bacteria. Uropathogenic Escherichia coli assemble P and type 1 pili for attachment to the host urothelium. Assembly of these pili requires the conserved chaperone/usher pathway, in which a periplasmic chaperone controls the folding of pilus subunits and an outer membrane usher provides a platform for pilus assembly and secretion. The usher has differential affinity for pilus subunits, with highest affinity for the tip‐localized adhesin. Here, we identify residues F21 and R652 of the P pilus usher PapC as functioning in the differential affinity of the usher. R652 is important for high‐affinity binding to the adhesin whereas F21 is important for limiting affinity for the PapA major rod subunit. PapC mutants in these residues are specifically defective for pilus assembly in the presence of PapA, demonstrating that differential affinity of the usher is required for assembly of complete pili. Analysis of PapG deletion mutants demonstrated that the adhesin is not required to initiate P pilus biogenesis. Thus, the differential affinity of the usher may be critical to ensure assembly of functional pilus fibres.  相似文献   

8.
BackgroundUropathogenic Escherichia coli (UPEC) cause urinary tract infections (UTIs) in approximately 50% of women. These bacteria use type 1 and P pili for host recognition and attachment. These pili are assembled by the chaperone-usher pathway of pilus biogenesis.Scope of reviewThe review examines the biogenesis and adhesion of the UPEC type 1 and P pili. Particular emphasis is drawn to the role of the outer membrane usher protein. The structural properties of the complete pilus are also examined to highlight the strength and functionality of the final assembly.Major conclusionsThe usher orchestrates the sequential addition of pilus subunits in a defined order. This process follows a subunit-incorporation cycle which consists of four steps: recruitment at the usher N-terminal domain, donor-strand exchange with the previously assembled subunit, transfer to the usher C-terminal domains and translocation of the nascent pilus.Adhesion by the type 1 and P pili is strengthened by the quaternary structure of their rod sections. The rod is endowed with spring-like properties which provide mechanical resistance against urine flow. The distal adhesins operate differently from one another, targeting receptors in a specific manner.The biogenesis and adhesion of type 1 and P pili are being therapeutically targeted, and efforts to prevent pilus growth or adherence are described.General significanceThe combination of structural and biochemical study has led to the detailed mechanistic understanding of this membrane spanning nano-machine. This can now be exploited to design novel drugs able to inhibit virulence. This is vital in the present era of resurgent antibiotic resistance. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.  相似文献   

9.
The assembly of adhesive pili in Gram-negative bacteria is modulated by specialized periplasmic chaperone systems. PapD is the prototype member of the superfamily of periplasmic pilus chaperones. Previously, the alignment of chaperone sequences superimposed on the three dimensional structure of PapD revealed the presence of invariant, conserved and variable amino acids. Representative residues that protruded into the PapD cleft were targeted for site directed mutagenesis to investigate the pilus protein binding site of the chaperone. The ability of PapD to bind to fiber-forming pilus subunit proteins to prevent their participation in misassembly interactions depended on the invariant, solvent-exposed arginine-8 (R8) cleft residue. This residue was also essential for the interaction between PapD and a minor pilus adaptor protein. A mutation in the conserved methionine-172 (M172) cleft residue abolished PapD function when this mutant protein was expressed below a critical threshold level. In contrast, radical changes in the variable residue glutamic acid-167 (E167) had little or no effect on PapD function. These studies provide the first molecular details of how a periplasmic pilus chaperone binds to nascently translocated pilus subunits to guide their assembly into adhesive pili.  相似文献   

10.
Pyelonephritic Escherichia coli cause urinary tract infections that involve the kidneys. Initiation of infection is dependent on P-pili expressed on the bacterial surface. In this work, an essential interface for assembly of the helical rod structure of P-pili has been located on the major pilin subunit, PapA. Based on primary sequence alignment, secondary structure analysis, and quaternary structure modeling of the PapA subunit, we predicted the location of a site that is critical for in vivo assembly of the native macromolecular structure of P-pili. A rigid helical rod of PapA subunits comprising most of the pilus length is stabilized by n to n+3 subunit-subunit interactions, and is important for normal function of these pili. Using site-directed mutagenesis, ultrastructural analysis by electron cryomicroscopy, immunocytochemistry, and molecular modeling we show that residues 106-109 (Asn, Gly, Ala, Gly) are essential for assembly of native P-pilus filaments. Mutation of these residues disrupts assembly of the native P-pilus helix. Extended fibrillar structures do still assemble, verifying that n to n+1 subunit-subunit interactions are maintained in the mutant fiber morphology. Observation of this fibrillar morphology in the mutant fiber was predicted by our modeling studies. These mutant P-pili data validate the predictive value of our model for understanding subunit-subunit interactions between PapA monomers. Alteration of the pilus structure from a 7-8 nm helical rod to a 2 nm fibrillar structure may compromise the ability of these bacteria to adhere and remain bound to the host cell, thus providing a possible therapeutic target for antimicrobial drugs.  相似文献   

11.
The chaperone-usher pathway directs the formation of adhesive surface fibres in numerous pathogenic Gram-negative bacteria. The fibres or pili consist exclusively of protein subunits that, before assembly, form transient complexes with a chaperone in the periplasm. In these chaperone:subunit complexes, the chaperone donates one beta-strand to complete the imperfect immunoglobulin-like fold of the subunit. During pilus assembly, the chaperone is replaced by a polypeptide extension of another subunit in a process termed 'donor strand exchange' (DSE). Here we show that DSE occurs in a concerted reaction in which a chaperone-bound acceptor subunit is attacked by another chaperone-bound donor subunit. We provide evidence that efficient DSE requires interactions between the reacting subunits in addition to those involving the attacking donor strand. Our results indicate that the pilus assembly platforms in the outer membrane, referred to as ushers, catalyse fibre formation by increasing the effective concentrations of donor and acceptor subunits.  相似文献   

12.
P pili are composite adhesive fibres that allow uropathogenic Escherichia coli to gain a foothold in the host by binding to receptors present on the uroepithalium via the adhesin PapG. The assembly of P pili requires a periplasmic chaperone, PapD, that has an immunoglobulin-like three-dimensional structure. PapD-subunit complex formation involves a conserved anchoring mechanism in the chaperone cleft and a‘molecular zippering’to the extreme C-terminus of pilus subunits. A chaperone-binding assay was developed using fusions of the C-terminus of PapG to maltose-binding protein (MBP/G fusions) to investigate whether chaperone-subunit complex formation requires additional interactions. PapD bound strongly to an MBP/G fusion containing the C-terminal 140 amino acids of PapG (MBP/G175-314) but only weakly to the MBP/G234-314 fusion containing 81 C-terminal residues, arguing that the region between residues 175-234 contains additional information that is required for strong PapD-PapG interactions. PapD was shown to interact with a PapG C-terminal truncate containing residues 1-198 but not a truncate containing residues 1-145, suggesting the presence of a second, independent PapD interactive site. Four peptides overlapping the second site region were tested for binding to PapD in vitro to further delineate this motif. Only one of the peptides synthesized was recognized by PapD. The MBP/G fusion containing both binding sites formed a tight complex with PapD in vivo and inhibited pilus assembly by preventing chaperone-subunit complex formation.  相似文献   

13.
The assembly of type 1 pili on the surface of uropathogenic Escherichia coli proceeds via the chaperone-usher pathway. Chaperone-subunit complexes interact with one another via a process termed donor strand complementation whereby the G1beta strand of the chaperone completes the immunoglobulin (Ig) fold of the pilus subunit. Chaperone-subunit complexes are targeted to the usher, which forms a channel across the outer membrane through which pilus subunits are translocated and assembled into pili via a mechanism known as donor strand exchange. This is a mechanism whereby chaperone uncapping from a subunit is coupled with the simultaneous assembly of the subunit into the pilus fiber. Thus, in the pilus fiber, the N-terminal extension of every subunit completes the Ig fold of its neighboring subunit by occupying the same site previously occupied by the chaperone. Here, we investigated details of the donor strand exchange assembly mechanism. We discovered that the information necessary for targeting the FimC-FimH complex to the usher resides mainly in the FimH protein. This interaction is an initiating event in pilus biogenesis. We discovered that the ability of an incoming subunit (in a chaperone-subunit complex) to participate in donor strand exchange with the growing pilus depended on a previously unrecognized function of the chaperone. Furthermore, the donor strand exchange assembly mechanism between subunits was found to be necessary for subunit translocation across the outer membrane usher.  相似文献   

14.
The class of proteins collectively known as periplasmic immunoglobulin-like chaperones play an essential role in the assembly of a diverse set of adhesive organelles used by pathogenic strains of Gram-negative bacteria. Herein, we present a combination of genetic and structural data that sheds new light on chaperone-subunit and subunit-subunit interactions in the prototypical P pilus system, and provides new insights into how PapD controls pilus biogenesis. New crystallographic data of PapD with the C-terminal fragment of a subunit suggest a mechanism for how periplasmic chaperones mediate the extraction of pilus subunits from the inner membrane, a prerequisite step for subunit folding. In addition, the conserved N- and C-terminal regions of pilus subunits are shown to participate in the quaternary interactions of the mature pilus following their uncapping by the chaperone. By coupling the folding of subunit proteins to the capping of their nascent assembly surfaces, periplasmic chaperones are thereby able to protect pilus subunits from premature oligomerization until their delivery to the outer membrane assembly site.  相似文献   

15.
Type III secretion system-associated pili found in several plant pathogenic bacteria are required for injection of virulence proteins from bacteria into the plant cells. The possibility to use the type III secretion pilus of Pseudomonas syringae as an epitope display tool was studied. The advantage of the type III secretion pilus, compared with conventional fimbrial epitope display tools, is that the pilin subunits of the type III secretion pilus can auto-assemble into intact pili in vitro. Various peptides were inserted into the type III secretion pilin subunit, and secretion, assembly and surface properties of the modified pili were monitored. It was concluded that the outwards-projecting N-terminal region of the pilin can bear even 43 amino acids insertion. The three-dimensional structure of the epitope, however, can restrict the use of the pilus as an epitope display tool: a beta-hairpin structure was poorly tolerated.  相似文献   

16.
PapD is the periplasmic chaperone required for the assembly of P pili in pyelonephritic strains of Escherichia coli. It consists of two immunoglobulin-like domains bisected by a subunit binding cleft. PapD is the prototype member of a super family of immunoglobulin-like chaperones that work in concert with their respective ushers to assemble a plethora of adhesive organelles including pilus- and non-pilus-associated adhesins. Three highly conserved residue clusters have been shown to play critical roles in the structure and function of PapD, as determined by site-directed mutagenesis. The in vivo stability of the chaperone depended on the formation of a buried salt bridge within the cleft. Residues along the G1 beta strand were required for efficient binding of subunits consistent with the crystal structure of PapD-peptide complexes. Finally, Thr-53, a residue that is part of a conserved band of residues located on the amino-terminal domain surface opposite the subunit binding cleft, was also found to be critical for pilus assembly, but mutations at Thr-53 did not interfere with chaperone-subunit complex formation.  相似文献   

17.
Type 1 pili from uropathogenic Escherichia coli are a prototype of adhesive surface organelles assembled and secreted by the conserved chaperone/usher pathway. They are composed of four different homologous protein subunits that need to be assembled in a defined order. In the periplasm, the pilus chaperone FimC donates a β-strand segment to the subunits to complete their imperfect immunoglobulin-like fold. During subunit assembly, this segment of the chaperone is displaced by an amino-terminal extension of an incoming subunit in a reaction termed donor-strand exchange. To date, the molecular mechanisms underlying the coordinated subunit assembly, in particular the role of the outer membrane usher FimD, are still poorly understood. Here we show that the binding of complexes between FimC and the different pilus subunits to the amino-terminal substrate recognition domain of FimD is an extremely fast process, with association rate constants in the range of 107-108 M 1 s− 1 at 20 °C. Furthermore, we demonstrate that the ordered assembly of pilus subunits is a consequence of the usher's ability to selectively catalyze the assembly of defined subunit-subunit pairs that are adjacent in the mature pilus. The usher therefore coordinates the assembly of pilus subunits at the stage of donor-strand exchange between pairs of subunits and not at the level of the initial binding of chaperone-subunit complexes.  相似文献   

18.
Recently, we reported the degree of N-terminal processing within the cytoplasmic membranes of three mutant pilins from Pseudomonas aeruginosa PAK with respect to leader peptide removal and the methylation of the N-terminal phenylalanine (B. L. Pasloske and W. Paranchych, Mol. Microbiol. 2:489-495, 1988). The results of those experiments showed that the deletion of 4 or 8 amino acids within the highly conserved N terminus greatly inhibited leader peptide removal. On the other hand, the mutation of the glutamate at position 5 to a lysine permitted leader peptide cleavage but inhibited transmethylase activity. In this report, we have examined the effects of these mutant pilins upon pilus assembly in a P. aeruginosa PAO host with or without the chromosomally encoded pilin gene present. Pilins with deletions of 4 or 8 amino acids in the N-terminal region were not incorporated into pili. Interestingly, pilin subunits containing the glutamate-to-lysine mutation were incorporated into compound pili together with PAO wild-type subunits. However, the mutant pilins were unable to polymerize as a homopolymer. When wild-type PAK and PAO pilin subunits were expressed in the same bacterial strain, the pilin subunits assembled into homopolymeric pili containing one or the other type of subunit.  相似文献   

19.
Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system.  相似文献   

20.
The papJ gene of uropathogenic Escherichia coli is required to maintain the integrity of Gal alpha (1-4)Gal-binding P pili. Electron microscopy and ELISA have established that strains carrying the papJ1 mutant allele have a large amount of pilus antigen free of the cells. In contrast to the whole pili released by strains unable to produce the PapH pilus anchor, the free papJ1 pili consist of variably sized segments that appear to result from internal breakages to the pilus. The DNA sequence of papJ is presented and its gene product identified as an 18kD periplasmic protein that possesses homology with nucleotide-binding proteins. PapJ may function as a 'molecular chaperone' directly or indirectly establishing the correct assembly of PapA subunits in the P pilus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号