首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of polyunsaturated fatty acids and lipid peroxidation on LM fibroblast plasma membrane individual leaflet sterol distribution and structural order were examined. The cytofacial (inner) leaflet was more rigid and contained more sterol than the exofacial (outer) leaflet. The static (limiting anisotropy) and dynamic (rotational relaxation time) structural components of diphenylhexatriene (DPH) motion in each leaflet were determined by phase and modulation fluorometry measurements combined with leaflet-specific quenching by trinitrophenyl groups. Polyunsaturated fatty acids, incorporated into the membrane phospholipids by culture medium supplementation, decreased the limiting anisotrophy of DPH in the cytofacial but not the exofacial leaflet thereby abolishing the transbilayer difference in fluidity. Peroxidation by Fe(II) + H2O2 resulted in a rigidification (increase in limiting anisotropy and rotational relaxation time) of the plasma membrane exofacial leaflet, regardless of whether the membranes contained saturated and monounsaturated fatty acids or were enriched in either linoleate or linolenate. The structure of the cytofacial leaflet reported by DPH was unaffected. Plasma membrane transbilayer sterol distribution, measured by leaflet-specific quenching of dehydroergosterol fluorescence, indicated that 20-28% of the sterol was localized in the exofacial leaflet. Polyunsaturated fatty acid supplementation of LM fibroblasts resulted in a complete reversal of plasma membrane transbilayer sterol distribution (72-76% exofacial leaflet). Sterol transbilayer distribution between the membrane leaflets was completely resistant to alteration by exposure to crosslinking agents and peroxidation in control plasma membranes and by peroxidation in linoleate- or linolenate-supplemented membranes.  相似文献   

2.
The lipid composition and transbilayer distribution of plasma membrane isolated from primary tumor (L-929, LM, A-9 and C3H) and nine metastatic cell lines cultured under identical conditions was examined. Cultured primary tumor and metastatic cells differed two-fold in sterol/phospholipid molar ratios. There was a direct correlation between plasma membrane anionic phospholipid (phosphatidylinositol and phosphatidylserine) content and plasma membrane sterol/phospholipid ratio. This finding may bear on the possible link between oncogenes and inositol lipids. The fluorescent sterol, dehydroergosterol, was incorporated into primary tumor and metastatic cell lines. Selective quenching of outer monolayer fluorescence by covalently linked trinitrophenyl groups demonstrated an asymmetric transbilayer distribution of sterol in the plasma membranes. The inner monolayer of the plasma membranes from both cultured primary and metastatic tumor cells was enriched in sterol as compared with the outer monolayer. Consistent with this, the inner monolayer was distinctly more rigid as determined by the limiting anisotropy of 1,6-diphenyl-1,3,5-hexatriene. Dehydroergosterol fluorescence was temperature dependent and sensitive to lateral phase separations in phosphatidylcholine vesicles and in LM cell plasma membranes. Dehydroergosterol detected phase separations near 24 degrees C in the outer monolayer and at 21 degrees C and 37 degrees C in the inner monolayer of LM plasma membranes. Yet, no change in transbilayer sterol distribution was detected in ascending or descending temperature scans between 4 and 45 degrees C. Alterations in plasma membrane phospholipid polar head group composition by choline analogues (N,N-dimethylethanolamine, N-methylethanolamine, and ethanolamine) also did not perturb transbilayer sterol asymmetry. Treatment with phenobarbital or prilocaine, drugs that selectively fluidize the outer and inner monolayer of LM plasma membranes, respectively, did not change dehydroergosterol transbilayer distribution.  相似文献   

3.
Transbilayer movement of cholesterol in the human erythrocyte membrane   总被引:3,自引:0,他引:3  
The rate of transbilayer movement of cholesterol was measured in intact human erythrocytes. Suspended erythrocytes were incubated briefly with [3H]cholesterol in ethanol at 4 degrees C, or with liposomes containing [3H]cholesterol over 6 hr at 4 degrees C to incorporate the tracer into the outer leaflet of erythrocyte plasma membranes. The erythrocytes were then incubated at 37 degrees C to allow diffusion of cholesterol across the membrane bilayer. Cells were treated briefly with cholesterol oxidase to convert a portion of the outer leaflet cholesterol to cholestenone, and the specific radioactivity of cholestenone was determined over the time of tracer equilibration. The decrease in specific radioactivity of cholestenone reflected transbilayer movement of [3H]cholesterol. The transbilayer movement of cholesterol had a mean half-time of 50 min at 37 degrees C in cells labeled with [3H]cholesterol in ethanol, and 130 min at 37 degrees C in cells labeled with [3H]cholesterol exchanged from liposomes. The cells were shown, by the absence of hemolysis, to remain intact throughout the assay. The presence of 1 mM Mg2+ in the assay buffer was essential to prevent hemolysis of cells treated with cholesterol oxidase perturbed the cells, resulting in an accelerated rate of apparent transbilayer movement. Our data are also consistent with an asymmetric distribution of cholesterol in erythrocyte membranes, with the majority of cholesterol in the inner leaflet.  相似文献   

4.
Ethanol-induced structural changes in membranes have in some studies been attributed to an increase in total membrane cholesterol. Consistent changes in cholesterol content, however, have not been observed in membranes of ethanol consuming animals and alcoholic patients. This study examined the hypotheses that cholesterol was asymmetrically distributed in synaptic plasma membranes (SPM) and that chronic ethanol consumption alters the transbilayer distribution of cholesterol. Dehydroergosterol, a fluorescent cholesterol analogue was used to examine sterol distribution and exchange in chronic ethanol-treated and pair-fed control groups. The cytofacial leaflet was found to have significantly more dehydroergosterol as compared to the exofacial leaflet. This asymmetric distribution was significantly reduced by chronic ethanol consumption as was sterol transport. Total cholesterol content did not differ between the two groups. Chronic ethanol consumption appeared to alter transbilayer sterol distribution as determined by the incorporation and distribution of dehydroergosterol in SPM. The changes in transbilayer sterol distribution are consistent with recent reports on the asymmetric effects of ethanol in vitro ((1988) Biochim. Biophys. Acta 946, 85-94) and in vivo ((1989) J. Neurochem. 52, 1925-1930) on membrane leaflet structure. The results of this study also underscore the importance of examining membrane lipid domains in addition to the total content of different lipids.  相似文献   

5.
The transbilayer distribution of many lipids in the plasma membrane and in endocytic compartments is asymmetric, and this has important consequences for signaling and membrane physical properties. The transbilayer distribution of cholesterol in these membranes is not properly established. Using the fluorescent sterols, dehydroergosterol and cholestatrienol, and a variety of fluorescence quenchers, we studied the transbilayer distribution of sterols in the plasma membrane (PM) and the endocytic recycling compartment (ERC) of a CHO cell line. A membrane impermeant quencher, 2,4,6-trinitrobenzene sulfonic acid, or lipid-based quenchers that are restricted to the exofacial leaflet of the plasma membrane only reduce the fluorescence intensity of these sterols in the plasma membrane by 15–32%. When the same quenchers have access to both leaflets, they quench 70–80% of the sterol fluorescence. Sterol fluorescence in the ERC is also quenched efficiently in the permeabilized cells. In microinjection experiments, delivery of quenchers into the cytosol efficiently quenched the fluorescent sterols associated with the PM and with the ERC. Quantitative analysis indicates that 60–70% of the PM sterol is in the cytoplasmic leaflet. This means that cholesterol constitutes ∼40 mol% of cytoplasmic leaflet lipids, which may have important implications for intracellular cholesterol transport and membrane domain formation.  相似文献   

6.
W D Sweet  F Schroeder 《FEBS letters》1988,229(1):188-192
Sterols are asymmetrically distributed between the leaflets of animal cell plasma membranes. Although transbilayer migration of sterols is extremely rapid, s to min, previous experimental manipulations have not altered their transmembrane steady-state distribution. However, the effect of polyunsaturated fatty acids has not been reported. When cultured in a lipid-free, chemically defined culture medium, LM fibroblasts do not synthesize polyunsaturated fatty acids but will incorporate polyunsaturated fatty acids into their plasma membranes if supplied in the medium. Sterol transbilayer distribution in LM plasma membranes was determined from quenching of fluorescence of dehydroergosterol by trinitrophenyl groups selectively attached to the exofacial leaflet. When cells are cultured in lipid-free media, 28.1% of the plasma membrane sterol is located in the exofacial (outside) leaflet. In contrast, when cells are cultured with linoleate- or linolenate-supplemented medium, 71.8% and 75.5% of the plasma membrane sterol is exofacial, respectively.  相似文献   

7.
We have measured the transbilayer diffusion at 4 degrees C of spin labeled analogs of sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidic acid in the human erythrocyte membrane. Measurements were also carried out in ghosts, released without ATP, and on large unilamellar vesicles made with total lipid extract. As reported previously (Seigneuret, M. and Devaux, P.F. (1984) Proc. Natl. Acad. Sci. USA 81, 3751-3755), the amino phospholipids are rapidly transported from the outer to the inner leaflet on fresh erythrocytes, whereas phosphatidylcholine diffuses slowly. We now show that phosphatidic acid behaves like phosphatidylcholine: approximately 10% is internalized in 5 h at 4 degrees C. Under the same experimental conditions, no inward transport of sphingomyelin can be detected. In ghosts resealed without ATP, all glycerophospholipids tested diffuse slowly from the outer to the inner leaflet (approx. 10% in 5 h) while no transport of sphingomyelin is seen. Finally in lipid vesicles, the inward diffusion of all glycerophospholipids is less than 2% in 5 h and a very small transport of sphingomyelin can be measured. These results confirm the existence of a selective inward aminophospholipid transport of fresh erythrocytes and suggest a slow and passive diffusion of all phospholipids on ghosts, resealed without ATP, as well as on lipid vesicles.  相似文献   

8.
Recent studies suggesting that cellular activation leads to enhanced transbilayer movement of phospholipids and loss of plasma membrane phospholipid asymmetry lead us to hypothesize that such events may govern the release of PAF, a potent, but variably release, lipid mediator synthesized by numerous inflammatory cells. To model these membrane events, we studied the transbilayer movement of PAF across the human erythrocyte and erythrocyte ghost plasma membrane, membranes with documented phospholipid asymmetry which can be deliberately manipulated. Utilizing albumin to extract outer leaflet PAF, transbilayer movement of PAF was shown to be significantly enhanced in erythrocytes and ghosts altered to lose membrane asymmetry when compared to movement in those with native membrane asymmetry. Verification of membrane changes was demonstrated using merocyanine 540 (MC540), a dye which preferentially stains loosely packed or hydrophobic membranes, and acceleration of the modified Russell's viper venom clotting assay by externalized anionic phospholipids. Utilizing the erythrocyte ghost loaded with PAF in either the outer or the inner leaflet, enhanced transbilayer movement to the opposite leaflet was seen to accompany loss of membrane asymmetry. Studies utilizing ghosts loaded with albumin intracellularly demonstrated that 'acceptor' molecules binding PAF further influence the disposition of PAF across the plasma membrane. Taken together, these findings suggest that the net release of PAF from activated inflammatory cells will depend on localization of PAF to the plasma membrane, transbilayer movement, which is facilitated by alteration of membrane phospholipid asymmetry, and removal from the membrane by extracellular and intracellular 'acceptor' molecules.  相似文献   

9.
The potential role of liver fatty acid binding protein (L-FABP) in modulating cellular sterol distribution was examined in mouse L-cell fibroblasts transfected with cDNA encoding L-FABP. L-cells were chosen because they contain only a small amount of endogenous FABP which does not bind [3H]cholesterol, does not enhance intermembrane sterol transfer, and whose content is unaltered by the expression of L-FABP. Transfected L-cells expressed 0.34% of cytosolic protein as L-FABP. Transfection alone with low expression of L-FABP (0.008% of cytosolic protein) had no effect on any of the parameters tested. Three aspects of cellular sterol transfer were examined. First, cellular sterol uptake, monitored by [3H]cholesterol and the fluorescent sterol, delta-5,7,9(11),22-ergostatetraen-3 beta-ol, was increased 21.5 +/- 2.6% (p less than 0.001) in L-cells expressing L-FABP. This increase was not accounted for by increased sterol esterification in the cells expressing L-FABP. Inhibition of both cholesterol transfer and esterification with 3-(decyldimethylsilyl)-N-[2-(4-methylphenyl)-1-phenylethyl]propanamide from Sandoz abolished the L-FABP related enhancement of both [3H]cholesterol uptake and esterification. Second, plasma membrane transbilayer distribution of sterol, determined by fluorescence methods indicated that the majority of sterol was in the inner leaflet of the plasma membrane. In transfected cells expressing L-FABP, twice as much sterol (28 +/- 4%) was present in the exofacial leaflet of the plasma membrane as compared to that of control cells (15 +/- 2%). Third, expression of L-FABP enhanced sterol transfer from the plasma membrane to microsomes in intact cells. Treatment of [3H]cholesterol or [3H]oleate-loaded cells with sphingomyelinase resulted in increased formation of radiolabeled cholesterol ester, consistent with enhanced microsomal esterification of plasma membrane derived cholesterol. Concomitantly, plasma membrane [3H]cholesterol became less accessible to oxidation by cholesterol oxidase. Sphingomyelinase-stimulated cholesterol esterification was 21 +/- 3% greater in transfected cells. Concomitantly, accessibility of plasma membrane [3H]cholesterol to cholesterol oxidase was decreased 18 +/- 3% in cells expressing L-FABP. These differences are consistent with the ability of L-FABP to influence sterol transport and plasma membrane transbilayer sterol distribution in intact cells.  相似文献   

10.
Transbilayer lipid asymmetry is a fundamental characteristic of the eukaryotic cell plasma membrane (PM). While PM phospholipid asymmetry is well documented, the transbilayer distribution of PM sterols such as mammalian cholesterol and yeast ergosterol is not reliably known. We now report that sterols are asymmetrically distributed across the yeast PM, with the majority (~80%) located in the cytoplasmic leaflet. By exploiting the sterol‐auxotrophic hem1Δ yeast strain we obtained cells in which endogenous ergosterol was quantitatively replaced with dehydroergosterol (DHE), a closely related fluorescent sterol that functionally and accurately substitutes for ergosterol in vivo. Using fluorescence spectrophotometry and microscopy we found that <20% of DHE fluorescence was quenched when the DHE‐containing cells were exposed to membrane‐impermeant collisional quenchers (spin‐labeled phosphatidylcholine and trinitrobenzene sulfonic acid). Efficient quenching was seen only after the cells were disrupted by glass‐bead lysis or repeated freeze‐thaw to allow quenchers access to the cell interior. The extent of quenching was unaffected by treatments that deplete cellular ATP levels, collapse the PM electrochemical gradient or affect the actin cytoskeleton. However, alterations in PM phospholipid asymmetry in cells lacking phospholipid flippases resulted in a more symmetric transbilayer distribution of sterol. Similarly, an increase in the quenchable pool of DHE was observed when PM sphingolipid levels were reduced by treating cells with myriocin. We deduce that sterols comprise up to ~45% of all inner leaflet lipids in the PM, a result that necessitates revision of current models of the architecture of the PM lipid bilayer.   相似文献   

11.
Y I Henis  O Gutman 《FEBS letters》1988,228(2):281-284
Two independent methods demonstrated that resealed human erythrocyte ghosts undergo Sendai virus-mediated cell-cell fusion to a much lower degree (about 4%) than intact erythrocytes, in spite of similar levels of viral envelope-cell fusion in the two preparations. Fluorescence photobleaching recovery (FPR) showed similar lateral mobilities of the viral glycoproteins following fusion with either ghosts or whole erythrocytes. It is suggested that although viral glycoprotein mobilization in the cell membrane is essential for cell-cell fusion, the target cell properties are also important; in the absence of the required cellular parameters, the mobilization may not be a sufficient condition.  相似文献   

12.
Membrane cholesterol is distributed asymmetrically both within the cell or within cellular membranes. Elaboration of intracellular cholesterol trafficking, targeting and intramembrane distribution has been spurred by both molecular and structural approaches. The expression of recombinant sterol carrier proteins in L-cell fibroblasts has been especially useful in demonstrating for the first time that such proteins actually elicit intracellular and intra-plasma membrane redistribution of sterol. Additional advances in the use of native fluorescent sterols allowed resolution of transbilayer and lateral cholesterol domains in plasma membranes from cultured fibroblasts, brain synaptosomes and erythrocytes. In all three cell surface membranes, cholesterol is enriched in the inner, cytofacial leaflet. Up to three different cholesterol domains have been identified in the lateral plane of the plasma membrane: a fast exchanging domain comprising less than 10% of cholesterol, a slowly exchanging domain comprising about 30% of cholesterol, and a very slowly or non-exchangeable sterol domain comprising 50–60.

Of plasma membrane cholesterol. Factors modulating plasma membrane cholesterol domains include polyunsaturated fatty acids, expression of intracellular sterol carrier proteins, drugs such as ethanol, and several membrane pathologies (systemic lupus erythematosus, sickle cell anaemia and aging). Disturbances in plasma membrane cholesterol domains after transbilayer fluidity gradients in plasma membranes. Such changes are associated with decreased Ca2+ -ATPase and Na +, K+ -ATPase activity. Thus, the size, dynamics and distribution of cholesterol domains within membranes not only regulate cholesterol efflux/influx but also modulate plasma membrane protein functions and receptor-effector coupled systems.  相似文献   

13.
Cholesterol is often found distributed nonrandomly in domains in biological and model membranes and has been reported to be distributed heterogeneously among various intracellular membranes. Although a large body of literature exists on the organization of cholesterol in plasma membranes or membranes with high cholesterol content, very little is known about organization of cholesterol in membranes containing low amounts of cholesterol. Using a fluorescent cholesterol analog (25-[N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-methyl]amino]-27-norcholesterol, or NBD-cholesterol), we have previously shown that cholesterol may exhibit local organization even at very low concentrations in membranes, which could possibly be attributable to transbilayer tail-to-tail dimers. This is supported by similar observations reported by other groups using cholesterol or dehydroergosterol, a naturally occurring fluorescent cholesterol analog which closely mimics cholesterol. In this paper, we have tested the basic features of cholesterol organization in membranes at low concentrations using spectral features of dehydroergosterol. More importantly, we have investigated the role of membrane surface curvature and thickness on transbilayer dimer arrangement of cholesterol using NBD-cholesterol. We find that dimerization is not favored in membranes with high curvature. However, cholesterol dimers are observed again if the curvature stress is relieved. Further, we have monitored the effect of membrane thickness on the dimerization process. Our results show that the dimerization process is stringently controlled by a narrow window of membrane thickness. Interestingly, this type of local organization of NBD-cholesterol at low concentrations is also observed in sphingomyelin-containing membranes. These results could be significant in membranes that have very low cholesterol content, such as the endoplasmic reticulum and the inner mitochondrial membrane, and in trafficking and sorting of cellular cholesterol.  相似文献   

14.
Cholesterol oxidase (EC 1.1.3.6, Brevibacterium sp.), which catalyzes the reaction: cholesterol + O2Δ4-cholestenone + H2O2, has no effect on the cholesterol of intact (human) erythrocytes and of “resealed” ghosts, when it is present only outside these ghosts. The cholesterol of “leaky” ghosts, of “resealed” ghosts with enzyme trapped within, and of “inside-out” vesicles, was completely oxidized. This pattern indicates that the inner (cytoplasmic) membrane surface must be exposed to the enzyme for the reaction to occur, and that outer surface cholesterol only becomes reactive after the membrane has been degraded by the oxidation of inner surface cholesterol. The enzymatic oxidations followed monotonic first-order kinetics, and hence gave no evidence to support the two states of cholesterol in the membrane that had been postulated earlier from studies on the plasma lipoprotein extraction of cholesterol from the membrane.  相似文献   

15.
The behavior of dehydroergosterol in -α-dimyristoylphosphatidylcholine (DMPC) unsonicated multilamellar liposomes was characterized by absorption spectroscopy and fluorescence measurements. Dehydroergosterol exhibited a lowered absorption coefficient in multilamellar liposomes whiel the steady-state fluorescence anisotropy of dehydroergosterol in these membranes decreased significantly with increasing dehydroergosterol concentration, suggesting membrane sterol-sterol interactions. The comparative steady-state anisotropy of 0.9 mole percent dehydroergosterol in multilamellar liposomes was lower than in small unilamellar vesicles suggesting different sterol environments for dehydroergosterol. Dehydroergosterol fluorescence lifetime was relatively independent of membrane sterol content and yielded similar values in sonicated and unsonicated model membranes. In multilamellar liposomes containing 5 mole percent cholesterol, the gel-to-liqui crystalline phase transition of DMPC detected by 0.9 mole percent dehydroergosterol was significantly broadened when compared to the phase transition detected by dehydroergosterol in the absence of membrane cholesterol (Smutzer, G. et al. (1986) Biochim. Biophys. Acta 862, 361–371). In multilamellar liposomes containing 10 mole percent cholesterol, the major fluorescence lifetime of dehydroergosterol did not detect the gel-to-liquid crystalline phase transition of DMPC. Time-correlated fluorescence anisotropy decays of dehydroergosterol in DMPC multilamellar liposomes in the absence and presence of 5 mole percent cholesterol exhibited a single rotational correlation time near one nanosecond that was relatively independent of temperature and low concentrations of membrane cholesterol. The limiting anisotropy of 0.9 mole percent dehydroergosterol decreased above the gel-to-liquid crystalline phase transition in membranes without cholesterol and was not significantly affected by the phase transition in membranes containing 5 mole percent cholesterol. These results suggested hindered rotational diffusion of dehydroergosterol in multilamellar liposomes. Lifetime and time-correlated fluorescence measurements of 0.9 mole percent dehydroergosterol in multilamellar liposomes further suggested this fluorophore was detecting physical properties of the bulk membrane phospholipids in membranes devoid of cholesterol and was detecting sterol-rich regions in membranes of low sterol concentration.  相似文献   

16.
Two mechanisms have been proposed for maintenance of transbilayer phospholipid asymmetry in the erythrocyte plasma membrane, one involving specific interactions between the aminophospholipids of the inner leaflet of the bilayer and the cytoskeleton, particularly spectrin, and the other involving the aminophospholipid translocase. If the former mechanism is correct, then erythrocytes which have lost their asymmetric distribution of phospholipids should display altered bilayer/cytoskeleton interactions. To test this possibility, normal erythrocytes, erythrocytes from patients with chronic myelogenous leukemia or sickle disease, and lipid-symmetric and -asymmetric erythrocyte ghosts were labeled with the radioactive photoactivable analogue of phosphatidylethanolamine, 2-(2-azido-4-nitrobenzoyl)-1-acyl-sn-glycero-3-phospho[14C]ethanolamine ([14C]AzPE), previously shown to label cytoskeletal proteins from the bilayer. The labeling pattern of cytoskeletal proteins in pathologic erythrocytes and lipid-asymmetric erythrocyte ghosts was indistinguishable from normal erythrocytes, indicating that the probe detects no differences in bilayer/cytoskeleton interactions in these cells. In contrast, in lipid-symmetric erythrocyte ghosts, labeling of bands 4.1 and 4.2 and actin, and to a lesser extent ankyrin, by [14C]AzPE was considerably reduced. Significantly, however, labeling of spectrin was unaltered in the lipid-symmetric ghosts, suggesting that its relationship with the bilayer is normal in these lipid-symmetric cells. These results do not support a model in which spectrin is involved in the maintenance of an asymmetric distribution of phospholipids in erythrocytes.  相似文献   

17.
Summary The water diffusion across human erythrocyte membrane has been studied on intact cells and resealed ghosts by a doping NMR technique. Although the water exchange time of ghosts was longer than that of erythrocytes, no significant differences in their diffusional permeability were noticed for temperatures in the range 2–43°C. Contrary to what was previously noticed in erythrocytes, no significant increase in the water exchange time of ghosts in the acid range of pH occurred.  相似文献   

18.
用荧光漂白恢复法测定了血红蛋白对红细胞膜脂质分子侧向扩散的限制作用.血红蛋白主要是通过和内侧膜脂质的结合而产生影响的,pH6及PH7.7时都显示出效应的存在.和膜结合较强的高铁血红蛋白,表现出对膜脂质侧向扩散亦有较大的限制作用.  相似文献   

19.
Abstract: Both apolipoprotein E (apoE) and the low-density lipoprotein (LDL) receptor are present in brain; however, little is known regarding the function of these proteins in brain, in particular with respect to brain cholesterol. The role of apoE and the LDL receptor in modulating the transbilayer or asymmetric distribution of cholesterol in the exofacial and cytofacial leaflets of synaptic plasma membranes (SPMs) was examined in mutant mice deficient in apoE, the LDL receptor, or both proteins by using the fluorescent sterol dehydroergosterol and fluorescent quenching procedures. Fluidity of the exofacial and cytofacial leaflets was also measured. Cholesterol asymmetry of SPMs was altered in the mutant mice, with the largest effect observed in the LDL receptor-deficient mice. There was an approximately twofold increase in the percent distribution of cholesterol in the exofacial leaflet of the LDL receptor-deficient mice (32%) compared with C57BL/6J mice (15%). Mice deficient in apoE or both proteins also showed a significantly higher percent distribution of cholesterol (23 and 26%, respectively) in the exofacial leaflet compared with the C57BL/6J mice. Although the percent distribution of cholesterol was highest in the exofacial leaflet of the LDL receptor-deficient mice, fluidity of the exofacial leaflet of that group was significantly lower. However, the cholesterol-to-phospholipid ratio of SPMs of the LDL receptor-deficient mice was significantly lower, and this difference was largely the result of a significant increase in the total amount of SPM phospholipid. This study demonstrates for the first time that SPM lipid structure is altered in mice deficient in apoE or the LDL receptor. Although the mechanism that maintains the asymmetric distribution of cholesterol in plasma membranes is not well understood, data of the present experiments indicate that both apoE and the LDL receptor are involved in maintaining the transbilayer distribution of cholesterol.  相似文献   

20.
G Nemecz  F Schroeder 《Biochemistry》1988,27(20):7740-7749
The fluorescent sterol delta 5,7,9(11),22-ergostatetraen-3 beta-ol (dehydroergosterol) was investigated as a cholesterol analogue to examine sterol domains in and spontaneous exchange of sterol between 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) small unilamellar vesicles (SUV). Fluorescence lifetime, acrylamide quenching analyses, and intermembrane exchange kinetics were consistent with the presence of at least two sterol domains in POPC. Fluorescence lifetime was determined by phase and modulation fluorescence spectroscopy and analyzed by nonlinear least-squares as well as continuous distributional analyses. Both methods demonstrated that pure dehydroergosterol in POPC SUV had two lifetime components (C) and fractional intensities (F) near C1 = 0.851 ns (F1 0.96) and C2 = 2.668 ns (F2 0.004). In contrast to component C1, the center of lifetime distribution, fractional intensity, and peak width of dehydroergosterol lifetime component C2 was dependent on the polarity of the medium and vesicle curvature. The sterol domain corresponding to dehydroergosterol component C2 was preferentially quenched by acrylamide. Acrylamide quenching of dehydroergosterol fluorescence demonstrated that the two lifetime components of dehydroergosterol were not due to transbilayer sterol domains with different lifetimes. In a spontaneous exchange assay not requiring separation of donor and acceptor SUV, the lifetime component C2, but not C1, shifted to a shorter lifetime with altered distributional width. The kinetics of these lifetime and distributional width changes best fitted a two-exponential function, with a fast exchange rate constant K1 = 0.0325 min-1, t1/2 = 21.3 min, and a slow rate constant k2 = 0.00275 min-1, t1/2 = 261 min. The fast exchanging pool correlates with the longer lifetime component C2. These kinetics were confirmed both by dehydroergosterol exchange measured with fluorescence intensity and by [3H]cholesterol exchange. In summary, lifetime, distributional width, acrylamide quenching, and classical exchange assay data are consistent with the presence of at least two pools of sterol in POPC SUV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号