首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A triacylglycerol lipase was isolated from the culture medium of HepG2 human hepatoma cells and its properties were compared to hepatic triglyceride lipase (H-TGL) from human postheparin plasma. The HepG2 cell enzyme bound to heparin-Sepharose, was eluted with 1 M NaCl and was not inhibited by 1 M salt. Western-blotting of the fractions from the heparin-Sepharose column with a monoclonal antibody prepared against postheparin plasma H-TGL and which binds to an epitope in the carboxyl-terminus of H-TGL gave a single immunoreactive protein band of 65 kDa. This finding of immunochemical identity was confirmed with polyclonal antibodies prepared against synthetic peptides of H-TGL corresponding to amino acid residues 82-94 near the amino-terminus and residues 468-477, the carboxyl-terminus of the enzyme. We conclude that HepG2 cells secrete a single triacylglycerol lipase with molecular weight properties and immunological characteristics identical to post-heparin plasma H-TGL.  相似文献   

2.
Evidence is presented that hepatic triglyceride lipase (H-TGL) and lipoprotein lipase (LPL), purified from human postheparin plasma, can each hydrolyze both glyceryl trioleate and palmitoyl-CoA. The average ratio of glyceryl trioleate/palmitoyl-CoA hydrolase activities, obtained with enzyme preparations from 15 human postheparin plasma samples was 1.30 (1.18-1.52) for H-TGL and 8.75 (7.45-10.25) for LPL. Albumin was identified as the serum cofactor required for the hydrolysis of palmitoyl-CoA by H-TGL. It protected this enzyme from inactivation by this substrate. In contrast, palmitoyl-CoA activated and protected LPL from denaturation by dilution and incubation at 25 degrees C. The effects of other detergents were investigated on glyceryl trioleate hydrolase activities of both enzymes. Sodium dodecyl sulfate (0.4 mM) and Trisoleate (0.4 mM), which also effectively activated and protected LPL against inactivation, had only moderate protective effect on H-TGL. Sodium dodecyl sulfate at a higher concentration (1 mM) produced little or no inhibition of LPL, while completely inactivating H-TGL. Conversely, sodium taurodeoxycholate (0.4 mM) protected and activated H-TGL, but had only moderate protective effect on LPL. Triton X-100 (0.1-0.8 mM) and egg lysolecithin (0.05-2 mM) also protected H-TGL, but not LPL. The very dissimilar effects of detergents on preparations on H-TGL and LPL may form the basis for the direct assay of each enzyme in the presence of the other.  相似文献   

3.
Hepatic triglyceride lipase (H-TGL) was isolated from human postheparin plasma by column chromatography on heparin-Sepharose and phenyl-Sepharose and immunoaffinity chromatography with monoclonal antibodies. The purified enzyme had an apparent molecular weight of 65,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an amino-terminal sequence of Leu-Gly-Gln-Ser-Leu-Lys-Pro-Glu. Partial amino acid sequences of seven cyanogen bromide peptides were obtained. A human hepatoma cDNA library was screened with synthetic oligonucleotides derived from the partial protein sequence. The cloned H-TGL cDNA of 1569 nucleotides predicts a mature protein of 477 amino acids plus a leader sequence of 22 amino acids. Blot hybridization analysis of poly(A)+ mRNA with a putative H-TGL cDNA clone gave a single hybridizing band of 1.7 kilobases. The protein contains four consensus N-glycosylation sequences based on the cDNA sequence. Comparison of the enzyme sequence with that of other lipases reveals highly conserved sequences in regions of putative lipid and heparin binding. The carboxyl terminus of H-TGL contains a highly basic sequence which is not reported to be present in rat H-TGL or other members of the lipase gene family.  相似文献   

4.
Lipoprotein lipase (LPL) and hepatic triglyceride lipase (H-TGL) are lipolytic activities found in postheparin plasma. A simple and precise method for the direct determination of LPL in postheparin plasma is described. Pre-incubations of this plasma (45--60 min at 26 degrees C) with sodium dodecyl sulfate (35--50 mM) in 0.2 M Tris-HCl buffer, pH 8.2, results in the inactivation of H-TGL, while leaving LPL fully active. Direct determination of H-TGL is done in a separate aliquot of the same postheparin plasma sample using previously reported assay conditons that do not measure LPL. The sodium dodecyl sulfate-resistant lipolytic activity has the characteristics of LPL as judged by a) its activation by serum and by apolipoprotein C-II; b) its inactivation (over 90%) by 0.75 M NaCl; and c) its inactivation by a specific antiserum. No sodium dodecyl sulfate-resistant activity was found in postheparin plasma from a patient with LPL deficiency (primary type I hyperlipoproteinemia). An excellent correlation of values was obtained (r = 0.99) for 30 samples assayed after sodium dodecyl sulfate treatment and after immuno-inactivation of H-TGL. The intra-assay coefficient of variation was +/- 11% and 4% before and after normalization of values, respectively.  相似文献   

5.
Postheparin plasma is a convenient source for the measurement of lipoprotein lipase (LPL) in humans. Previous studies have focused on the measurement of LPL catalytic activity, and have been unable to conveniently measure the LPL protein or identify possibly different plasma forms of the enzyme. Pre- and postheparin plasma was treated with a highly specific antibody raised against bovine milk LPL and the immunoprecipitate was analyzed by Western blotting. In normal subjects there were several species of LPL in plasma. A 56 kD protein increased after heparin injection, and likely represented active LPL. The anti-LPL antibody reacted specifically with this 56 kD protein, and also reacted specifically with proteins at 52 kD, 69 kD, as well as a 20 kD breakdown product. In addition, using peptide mapping, the 56 kD protein was structurally similar to the 52 and 69 kD LPL proteins. The antibodies were affinity purified, biotinylated, and used to quantitate LPL immunoreactive mass using an enzyme-linked immunosorbent assay (ELISA). LPL immunoreactive mass was present in all subjects in preheparin plasma. In postheparin plasma, five patients with type I hyperlipoproteinemia displayed decreased LPL immunoreactive mass when compared to normal subjects, although there was a wide range of specific activity of the small amount of enzyme present. When the LPL from the plasma of the patients was immunoprecipitated and Western blotted, there was considerable heterogeneity in the appearance of the LPL forms, and an overall decrease in LPL protein. Thus, several different immunoreactive LPL proteins were present in pre- and postheparin plasma. In preheparin plasma, as well as in patients with type I hyperlipoproteinemia, there was decreased immunoreactive LPL protein, and the LPL protein that was present was of low specific activity.  相似文献   

6.
5'-Deoxy-5'-methylthioadenosine phosphorylase (MTAase) was purified to homogeneity (10,000-fold) from bovine liver with a recovery of 12%. The pure protein shows a molecular weight of about 98,000 +/- 3,000 and is composed of three apparently identical subunits. Several physicochemical features have been investigated including hydrodynamic properties, amino acid composition, and secondary structure. In particular, the CD spectrum of the protein indicates a very low alpha-helical content and a large percent of beta-structure and random coil. The pure protein was used to raise specific rabbit antisera but, because of the scarce antigenic properties of the native enzyme, different chemically modified forms were prepared and employed as immunogens. Among the antibodies obtained, those to keyhole limpet hemocyanin-MTAase recognize both the native and the denatured enzyme and are also active against the human protein. Therefore, they were employed as a tool to investigate the occurrence of inactive forms of MTAase in two human malignant cell lines lacking this enzymatic activity. The results obtained with K562 and Jurkat cells indicate that the protein is absent in these phosphorylase-deficient cell lines.  相似文献   

7.
Monoclonal antibodies (MAbs) against mutant (T103I) amidase from Pseudomonas aeruginosa were raised by hybridoma technology. To select MAbs suitable for immunoaffinity chromatography, hybridoma clones secreting polyol-responsive MAbs (PR-MAbs) were screened that bind antigen tightly but release under mild and nondenaturing elution conditions. It was found that about 10% of enzyme-linked immunosorbent assay (ELISA)-positive hybridoma produce these MAbs as their ag-ab complex can be disrupted by propylene glycol in the presence of a suitable salt. Two of these hybridoma clones (F6G7 and E2A6) secreting PR-MAbs against mutant amidase were selected for optimization of experimental conditions for elution of amidase by using ELISA elution assay. These hybridoma cell lines secreted MAbs of IgM class that were purified in a single step by gel filtration chromatography, which revealed a single protein band on native polyacrylamide gel electrophoresis (PAGE). Specificity studies of this MAb revealed that it recognized specifically a common epitope on mutant and wild-type amidases as determined by direct ELISA. This MAb exhibited a higher affinity for denatured forms of wild-type and mutant amidases than for native forms as revealed by affinity constants (K), suggesting that it recognizes a cryptic epitope on an amidase molecule. Furthermore, MAb E2A6 inhibited about 60% of wild-type amidase activity, whereas it activated about 60% of mutant amidase (T103I) activity. The data presented in this work suggest that this MAb acts as a very useful probe to detect conformational changes in native and denatured amidases as well as to differentiate wild-type and mutant (T103I) amidases.  相似文献   

8.
Polyclonal and monoclonal antibodies were generated against a synthetic peptide (25 amino acid residues) corresponding to the amino acid sequence surrounding the active site serine of Torpedo californica acetylcholinesterase (AChE). Prior to immunization, the peptide was either coupled to bovine serum albumin or encapsulated into liposomes containing lipid A as an adjuvant. To determine whether this region of AChE is located on the surface of the enzyme and thus accessible for binding to antibodies, or located in a pocket and thus not accessible to antibodies, the immunoreactivity of the antibodies was determined using enzyme-linked immunosorbent assay (ELISA), immunoprecipitation, Western blots, and competition ELISA. The polyclonal antibody and several of the monoclonal antibodies failed to react with either Torpedo or fetal bovine serum AChE in their native conformations, but showed significant cross-reactivity with the denatured enzymes. Human serum butyrylcholinesterase, which has a high degree of amino acid sequence homology with these AChEs, failed to react with the same antibodies in either native form or denatured form. Chymotrypsin also failed to react with the monoclonal antibodies in either form. Eighteen octapeptides spanning the entire sequence of this region were synthesized on polyethylene pins, and epitopes of representative monoclonal antibodies were determined by ELISA. The reactivity of peptides suggest that a portion of the 25 mer peptide in AChE containing the active site serine is the primary epitope. It is not exposed on the surface of the enzyme and is most likely sequestered in a pocket-like conformation in the native enzyme.  相似文献   

9.
Hybridoma technology was used to raise monoclonal antibodies (MAbs) against wild-type amidase from Pseudomonas aeruginosa. Hybridoma clones secreting polyol-responsive MAbs (PR-MAbs) were screened that bind antigen tightly. but release under mild- and non-denaturing elution conditions, which can be used as ligands in immunoaffinity chromatography. Two of these hybridoma clones (C9E4 and B1E4) secreting MAbs against wild-type amidase were selected in order to check if they are PR-MAbs by using ELISA-elution assay. These hybridoma cell lines secreted MAbs of IgG class which were purified in a single step by Protein A-Sepharose CL-4B chromatography, which revealed two protein bands on SDS-PAGE. Specificity studies of MAb C9E4 revealed that it recognized a common epitope on wild-type and mutant T103I amidases as determined by direct ELISA, as well as by Western blotting under native conditions. This MAb exhibited a higher-affinity constant (K) for the mutant T103I amidase than for the wild-type enzyme. However, this MAb did not recognize either wild-type or mutant T103I enzymes under denaturing conditions suggesting that it binds to a conformation-sensitive epitope on amidase molecule. On the other hand, it also does not recognize either native or denatured forms of mutant C91A amidase suggesting that this substitution disrupted the conformational epitope present on amidase molecule. Furthermore, MAb C9E4 inhibited about 80% of wild-type amidase activity, whereas it activated about 80% of mutant amidase (T103I) activity. However, this MAb did not affect mutant C91A amidase activity which is in agreement with other results presented in this work. The data presented in this work suggest that this MAb acts as a powerful probe to detect conformational changes in native and denatured amidases as well as to differentiate wild-type and mutant (T103I and C91A) amidases.  相似文献   

10.
Purification and characterization of verocytotoxin 2   总被引:4,自引:0,他引:4  
Abstract Five hybrid cell lines secreting monoclonal antibodies (MAbs; LOSM5, 7, 8, 10 and 11) against Streptococcus mutans serotype f 74-kDa saliva receptor (SR) were generated by fusing rats IR983F myeloma cells with splenocytes from rats immunized with affinity purified 74-kDa SR. All the five MAbs recognized both native and denatured forms of the SR. Three partially different epitopes could be delineated on protein 74-kDa by using unlabeled and alkaline phosphatase-labeled MAbs in competitive enzyme-linked immunosorbent assay (ELISA). Two of them are involved in the binding of salivary glycoproteins to S. mutans cells; as demonstrated by the inhibition of saliva binding to S. mutans cells by the MAbs LOSM7, 8 and 11. The five MAbs also reacted with 150-kDa protein, a higher M r protein and peptide mapping of 150-kDa and 74-kDa SR showed identical patterns for both polypeptides.  相似文献   

11.
Starch branching enzyme was purified from potato (Solanum tuberosum L.) tubers as a single species of 79 kilodaltons and specific antibodies were prepared against both the native enzyme and against the gel-purified, denatured enzyme. The activity of potato branching enzyme could only be neutralized by antinative potato branching enzyme, whereas both types of antibodies reacted with denatured potato branching enzyme. Starch branching enzymes were also isolated from maize (Zea mays L.) kernels. All of the denatured forms of the maize enzyme reacted with antidenatured potato branching enzyme, whereas recognition by antinative potato branching enzyme was limited to maize branching enzymes I and IIb. Antibodies directed against the denatured potato enzyme were unable to neutralize the activity of any of the maize branching enzymes. Antinative potato branching enzyme fully inhibited the activity of maize branching enzyme I; the neutralized maize enzyme was identified as a 82 kilodalton protein. It is concluded that potato branching enzyme (Mr = 79,000) shares a high degree of similarity with maize branching enzyme I (Mr = 82,000), in the native as well as the denatured form. Cross-reactivity between potato branching enzyme and the other forms of maize branching enzyme was observed only after denaturation, which suggests mutual sequence similarities between these species.  相似文献   

12.
We have used an indirect-capture enzyme-linked immunosorbent assay to quantitate the reactivity of sera from human immunodeficiency virus type 1 (HIV-1)-infected humans with native recombinant gp120 (HIV-1 IIIB or SF-2) or with the gp120 molecule (IIIB or SF-2) denatured by being boiled in the presence of dithiothreitol with or without sodium dodecyl sulfate. Denaturation of IIIB gp120 reduced the titers of sera from randomly selected donors by at least 100-fold, suggesting that the majority of cross-reactive anti-gp120 antibodies present are directed against discontinuous or otherwise conformationally sensitive epitopes. When SF-2 gp120 was used, four of eight serum samples reacted significantly with the denatured protein, albeit with ca. 3- to 50-fold reductions in titer. Only those sera reacting with denatured SF-2 gp120 bound significantly to solid-phase-adsorbed SF-2 V3 loop peptide, and none bound to IIIB V3 loop peptide. Almost all antibody binding to reduced SF-2 gp120 was blocked by preincubation with the SF-2 V3 loop peptide, as was about 50% of the binding to native SF-2 gp120. When sera from a laboratory worker or a chimpanzee infected with IIIB were tested, the pattern of reactivity was reversed, i.e., there was significant binding to reduced IIIB gp120, but not to reduced SF-2 gp120. Binding of these sera to reduced IIIB gp120 was 1 to 10% that to native IIIB gp120 and was substantially decreased by preincubation with IIIB (but not SF-2) V3 loop peptide. To analyze which discontinuous or conformational epitopes were predominant in HIV-1-positive sera, we prebound monoclonal antibodies (MAbs) to IIIB gp120 and then added alkaline phosphatase-labelled HIV-1-positive sera. MAbs (such as 15e) that recognize discontinuous epitopes and compete directly with CD4 reduced HIV-1-positive sera binding by about 50%, whereas neutralizing MAbs to the C4, V2, and V3 domains of gp120 were either not inhibitory or only weakly so. Thus, antibodies to the discontinuous CD4-binding site on gp120 are prevalent in HIV-1-positive sera, antibodies to linear epitopes are less common, most of the antibodies to linear epitopes are directed against the V3 region, and most cross-reactive antibodies are directed against discontinuous epitopes, including regions involved in CD4 binding.  相似文献   

13.
L C Menezes  J Pudles 《Biochimie》1976,58(1-2):51-59
Enzymic studies performed with chemically modified yeast hexokinase (ATP : D-hexose-6-phosphotransferase) confirm previous results indicating that the sulfhydryl, imidazol and most of the reactive amino groups do not seem to be directly implicated in the enzyme active site. On the other hand the modification of these functional groups of the enzyme does not affect the transition between the acidic inactive form to an active enzyme form after deprotonation. The chemically modified forms of hexokinase and the native enzyme are affected in the same way by activators (citrate, D-malate, 3-phosphoglycerate and Pi) when the activity was measured at pH 6.6. Moreover the loss of enzyme activity observed in the course of the chemical modifications is accompanied by an increase of the activation effect. This increase must be related to some reorganization of the enzyme active site in presence of the effectors, since the same effect was observed when hexokinase was denatured with 3M urea at pH 7.5. However no increase in the activation effect was observed when the denaturation was carried out at pH 6.5 At this pH the loss in activity and the change of optical absorption at 286 nm were much slower than at pH 7.5, which indicates a great difference in the protein structure between these pHs.  相似文献   

14.
Monoclonal antibodies against partially purified adenylyl cyclase from bovine brain cortex were raised in mice. Three types of antibody were obtained. Type 1 was specific for the calmodulin-sensitive enzyme. Type II also recognized this enzyme, but recognized the calmodulin-insensitive enzymes from a variety of species and tissues as well. Type I antibodies precipitated their antigens in both the native and denatured forms, while type II strongly favored the denatured forms. Type III antibodies precipitated adenylyl cyclase activity, but as shown by Western blot analysis, were directed against 38-kDa and 45-kDa glycoproteins. The 38-kDa protein was identified as synaptophysin.  相似文献   

15.
The immunochemical reactivity of unfractionated antibodies elicited by denatured beta 2 subunits of Escherichia coli tryptophan synthase [L-serine hydro-lyase (adding indole) EC 4.2.1.20] with the homologous antigen and with the native enzyme is examined. These antibodies recognize the native apoenzyme nearly as well as the denatured protein. On the contrary, after binding of its cofactor, pyridoxal 5'-phosphate, the protein exhibits a much lower immunoreactivity toward these antibodies. This decrease of affinity becomes even more pronounced when the beta 2 protein interacts with the alpha subunit. Similarly, reduction of the Schiff base formed between the cofactor and the protein leads to a strong decrease of immunoreactivity. To account for these results, it is proposed that apo-beta 2 must be a dynamic flexible structure that easily exposes to the solvent regions of its polypeptide chain that normally are buried in its interior. The increase in rigidity of this structure upon binding of the cofactor, reduction of Schiff base, and formation of the alpha 2 beta 2 complex would then account for the decreased immunoreactivity of these various states of the native beta 2 protein.  相似文献   

16.
H Masui  M Satoh    T Satoh 《Journal of bacteriology》1994,176(6):1624-1629
Spheroplasts prepared from a molybdenum cofactor-deficient mutant of Rhodobacter sphaeroides f. sp. denitrificans secreted dimethyl sulfoxide (DMSO) reductase which had no molybdenum cofactor and therefore no activity, whereas those from wild-type cells secreted the active reductase. The inactive DMSO reductase proteins were separated by nondenaturing electrophoresis into two forms: form I, with the same mobility as the native enzyme, and form II, with slower mobility. Both forms had the same mobility on denaturing gel. Form I and active DMSO reductase had the same profile on gel filtration chromatography. Form II was eluted a little faster than the native enzyme, suggesting that DMSO reductase form II was not an aggregated form but a compactly folded form very similar to the native enzyme. Form II was digested by trypsin and denatured with urea, whereas form I was unaffected, like native DMSO reductase. These results suggested that form II was a partially unfolded but compactly folded apoprotein of DMSO reductase.  相似文献   

17.
Antiviral activity of recombinant human leukocyte A interferon was inactivated by heating at 65 degrees C or by reduction of disulfide bonds. The specific immunoreactivity, as measured by radioimmunoassays measuring binding to monoclonal antibodies, decreased concomitantly with the antiviral activity. Although the monoclonal antibodies did bind to inactivated interferon, their binding affinity to inactivated interferon was in general very much lower than their binding affinity to active interferon. Therefore, this immunoassay could replace the antiviral assay for detection of biologically active interferon. In addition, most of these antibodies should be especially useful for purification of the interferons since they discriminate between the native active and inactive denatured species. Screening for such antibodies is convenient and simple. The general use of antibodies that preferentially interact with native molecules provides a powerful new principle for choosing monoclonal antibodies with extraordinary potential in assay and purification.  相似文献   

18.
Polyclonal antibodies produced after the immunization of a rabbit with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Bacillus stearothermophilus were used to isolate two types of antibodies interacting with different non-native forms of the antigen. Type I antibodies were purified using Sepharose-bound apo-GAPDH that was treated with glutaraldehyde to stabilize the enzyme in the tetrameric form. Type II antibodies were isolated using immobilized denatured monomers of the enzyme. It was shown that the type I antibodies bound to the native holo- and apoforms of the enzyme with the ratio of one antibody molecule per GAPDH tetramer. While interacting with the native holoenzyme, the type I antibodies induce a time-dependent decrease in its activity by 80-90%. In the case of the apoenzyme, the decrease in the activity constitutes only 25%, this indicating that only one subunit of the tetramer is inactivated. Differential scanning calorimetry experiments showed that the formation of the complex between both forms of the enzyme and the type I antibodies resulted in a shift of the maximum of the thermal capacity curves (T(m) value) to lower temperatures. The extremely stable holoenzyme was affected to the greatest extent, the shift of the T(m) value constituting approximately 20 degrees C. We assume that the formation of the complex between the holo- or apo-GAPDH and the type I antibody results in time-dependent conformational changes in the enzyme molecule. Thus, the antibodies induce the structural rearrangements yielding the conformation that is identical to the structure of the antigen used for the selection of the antibodies (i.e., inactive). The interaction of the antibodies with the apo-GAPDH results in the inactivation of the subunit directly bound to the antibody. Virtually complete inactivation of the holoenzyme by the antibodies is likely due to the transmission of the conformational changes through the intersubunit contacts. The type II antibodies, which were selected using the immunosorbent with unfolded enzyme form, do not affect the activity of native holo- and apo-GAPDH, but prevent the reactivation of the denatured GAPDH, binding the denatured forms of the enzyme.  相似文献   

19.
Abstract: Three different homologues of butyrylcholinesterase (BChE) with 75-, 62-, and 54-kDa subunit size are isolated from adult chicken serum, and all show very low or zero enzyme activity. Although the active BChE from serum with a subunit size of 81 kDa forms tetramers, the 75-kDa protein is isolated as a dimer. The homology of the 75-kDa protein with active BChE is shown by immunoreactivity with BChE-specific monoclonal antibodies, by coisolation with the active BChE, and by their identical first six N-terminal amino acids. By deglycosylation of these proteins and by their differential lectin binding, we show that the active BChE is an N -glycosylated protein of the triantennary type, whereas the inactive 75-kDa protein is O -glycosylated. These data show for the first time the existence of (1) multiple inactive forms of BChE, (2) secreted inactive cholinesterases, because they are found in serum, and (3) an O -glycosylated cholinesterase. Because cholinesterases can regulate neurite growth in vitro by a nonenzymatic mechanism, these data strongly support that both inactive and active forms of BChE may be involved in noncholinergic communication, possibly depending on particular glycosylation patterns.  相似文献   

20.
Misra SK  Bhakuni V 《Biochemistry》2003,42(13):3921-3928
Impaired functioning of methylenetetrahydrofolate reductase (MTHFR) can cause high levels of homocysteine in plasma or hyperhomocysteinemia, which is an independent risk factor for cardiovascular diseases and neural tube defects. We have studied in detail the effect of modulation of hydrophobic and electrostatic interactions of Escherichia coli MTHFR on its structure and function. Alterations in hydrophobic interactions of MTHFR, using urea, lead to dissociation of the native tetramer, resulting in stabilization of enzymatically active holoenzyme dimers followed by unfolding of the holoenzyme dimer to the denatured monomer along with dissociation of FAD from the enzyme. This is the first report of an enzymatically active dimer of E. coli MTHFR and suggests that the dimer rather than tetramer is the smallest functionally active unit of the enzyme. Furthermore, these results also demonstrate that dissociation of the FAD cofactor from the enzyme occurs only on unfolding of the dimer to denatured monomers. Modulation of electrostatic interactions, using NaCl, leads to dissociation of the native enzyme, resulting in stabilization of an enzymatically inactive partially unfolded holoenzyme dimer. Comparative analysis of loss of enzymatic activity and changes in structural features of MTHFR demonstrate a very good correlation between enhanced flexibility of the enzyme-bound FAD and loss of enzymatic activity, suggesting the importance of rigidity of the FAD cofactor in maintenance of the enzymatic activity of MTHFR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号