首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zheng S  Yang M  Yang Z  Yang Q 《Bioresource technology》2005,96(13):1522-1524
In this study, the biomass production and pollutant removal from high-strength glutamate fermentation wastewater (GFW) using yeast isolates was investigated. Following enrichment culture, two species of yeasts, Candida halophila and Rhodotorula glutinis, were isolated from raw GFW with chemical oxygen demand (COD) and ammonia-nitrogen levels of 40 and 16 g l(-1), respectively. The binary mixed yeast culture was cultivated batchwise in 2.5-fold diluted GFW from which 85% of COD and 96% of reducing sugar were removed. The resulting yeast biomass contained 56% crude protein, 36.0% carbohydrate and 0.4% crude lipid. The amino acid composition of mixed yeast cells was balanced and was comparable with that of C. utilis and soybean.  相似文献   

2.
Summary A high-strength baker's yeast effluent was anaerobically treated using a hybrid digester under mesophilic conditions. The digester was subjected to a substrate COD concentration of 21 767 mg/I at three different HRTs. At HRTs of 3.0, 2.0 and 1.0 d, the digester reduced the substrate COD by 76, 61 and 33%, respectively. Although the best COD removal was obtained at an OLR of 7.30 kg COD/m3.d, the highest COD removal rate (6.51 kg COD/M3-d) was found at 10.65 kg COD/m3.d at an HRT of 2.0 d. The low methane yield and VFA accumulation found in the digester effluent, indicated inhibition on methanogenic level and this was considered to be the rate-limiting step during the anaerobic treatment process. The overall efficiency of the digester indicated that this digester design and support medium was suitable for the treatment of a high-strength, sulfate-rich baker's yeast effluent.  相似文献   

3.
Candida utilis was grown on a pineapple cannery effluent as the sole carbon and energy source in a chemostat at dilution rates between 0.10 and 0.62 h(-1) to determine the growth kinetics. The principal sugars in the effluent were sucrose, glucose, and fructose. The cell yield coefficient on carbohydrate varied with dilution rate and a maximum value of 0.63 was observed at a dilution rate of 0.33 h(-1). The steady-state concentrations of carbohydrate, reducing sugar, and chemical oxygen demand (COD) appeared to follow Monod saturation kinetics with increasing dilution rate, although none of the measured parameters represented a pure substrate. The maximum specific growth rate and reducing sugar saturation constant were 0.64 h(-1) and 0.060 g/L, respectively. A maximum cell mass productivity of 2.3 g/L h was observed at a dilution rate of 0.51 h(-1). At this dilution rate, only 68% of the COD was removed. A 95% COD removal was attained at a dilution rate of 0.10 h(-1). Optimal yeast productivity and COD reduction occurred at a dilution rate of 0.33 h(-1).  相似文献   

4.
Molasses wastewater (vinasse; the by-product of distillation of fermented sugar) was decolorized and its chemical oxygen demand (COD) was reduced in static cultivation using the fungi Coriolus versicolor, Funalia trogii, Phanerochaete chrysosporium and Pleurotus pulmonarius ('Pleurotus sajorcaju'). The effect of cotton stalk on decolorizing and COD removing capability of four fungi was determined. In the entire concentration range tested (10-30%), wastewater was effectively decolorized by C. versicolor and F. trogii. Cotton stalk addition stimulated the decolorization activity of all fungi. The utilization of cotton stalk represents several advantages due to its function as an attachment place and as a source of nutrients; its use also reduces process costs.  相似文献   

5.
圆红冬孢酵母利用生物乙醇废水-木薯粉水解液发酵产油   总被引:2,自引:0,他引:2  
【目的】获得能够高效降解生物乙醇废水化学需氧量(COD)的圆红冬孢酵母菌株,评估废水初始COD浓度对驯化菌株生长的影响,将木薯粉生产微生物油脂和高浓度有机废水降解过程整合,以生物乙醇废水为水源制备生物乙醇废水-木薯粉水解液培养基,明确产油效率高、生物乙醇废水COD降解率高的初始还原糖浓度。【方法】采用在高浓度的生物乙醇废水中进行多次驯化的方法,获得能够适应废水环境的圆红冬孢酵母菌株;采用双酶水解法对加入乙醇废水中的木薯粉进行水解;采用重量法监测生物量浓度变化,采用酸热法提取油脂,重铬酸钾法监测COD,DNS法测定废水还原糖浓度,凯氏定氮法测定总氮,钼酸铵比色法测定总磷。【结果】通过驯化筛选得到一株能耐受高浓度生物乙醇废水的优势菌株Rhodosporidium toruloides D5。以未稀释的废水为培养基,驯化菌株的最终生物量浓度和COD降解率分别为3.8 g/L和75.0%。采用生物乙醇废水-木薯粉水解液发酵时,控制初始还原糖浓度低于30 g/L时,生物量浓度和油脂浓度随初始还原糖浓度的升高而升高,均在120 h时达到最高COD降解率,初始还原糖浓度对达到的最大COD降解率无明显影响,废水N、P去除率分别达到99%和92%以上。【结论】在未经稀释的高浓度生物乙醇废水中可获得较高的生物量浓度;采用高浓度生物乙醇废水-木薯粉水解液培养基发酵产油,初始还原糖浓度为30 g/L,可在保证高油脂产量的同时,实现废水COD的高效降解,有效回收利用废水中残余的N、P源,从而降低微生物油脂生产和废水处理成本,研究结果可为开发廉价微生物油脂生产技术提供有用的参考。  相似文献   

6.
A repeated batch operation is developed for the treatment of alkaline pulp black liquor, through a process of biological acidification precipitation of lignin using brown rot fungus Fomitopsis sp. IMER2. The results showed that COD and color removal of black liquor was dependent on the biomass concentration, pH decrease and initial COD. Based on these results, the repeated batch process was successfully carried out 12 times over 36 days in an air bubble column bioreactor. The average reduction of COD and color was approximately 40% and 70%, respectively.  相似文献   

7.
The present study was conducted to investigate the chromium(VI), COD and sulphate removal efficiency from aqueous solution and treatment of real effluent (CETP) in a small scale bioreactor using sulphate reducing bacteria consortium. Effect of different hydraulic retention times (HRTs), initial metal concentrations, various carbon sources and temperatures were studied on removal of chromium(VI), COD and sulphate. Maximum chromium(VI) and sulphate removal was found to be 96.0% and 82.0%, respectively, at initial concentration of 50 mg l−1 using lactate as carbon source. However, highest COD removal was 36.2% in medium containing fructose as the carbon source and electron donor. NADH dependent chromate reductase activity was not observed which indicated the anaerobic consortium. Initially consortium medium with a strong negative oxidation reduction potential indicated the reducing activity. The FTIR spectrum of the sulphate reducing bacteria consortium clearly shows the existence of the sulphate ions and signifies that sulfate reducing bacteria have used sulfate during the growth phase.  相似文献   

8.
应用Coriolus vericolor 菌丝球脱色染料及印染废水的研究   总被引:4,自引:0,他引:4  
对白腐真菌(Coriolus vericolor)产生漆酶进行了研究。发现该菌产漆酶的最适初始pH值为4.5。提高微量元素浓度或添加藜芦醇都可使C.versiclor的产酶能力增加,添加Tween80会有一定的抑制作用。采用C.versicolor菌丝球进行重复分批产酶试验,结果表明菌丝球的稳定性很好,同一批菌丝球可连续利用14次,平均每批酶活力可保持在6.72U/mL,产酶能力优于聚氨酯泡沫固定化菌丝。将粗酶液用要料的脱色降解试验,在酶活力为3.3IU/mL,酸性橙浓度为500mg/L条件下,经过24h反应,脱色率达到98.5%;对含弱酸大红和卡布龙红的印染废水进行脱色试验,脱色率也达到了93%。  相似文献   

9.
Sun ZY  Tang YQ  Iwanaga T  Sho T  Kida K 《Bioresource technology》2011,102(23):10929-10935
An efficient process for the production of fuel ethanol from bamboo that consisted of hydrolysis with concentrated sulfuric acid, removal of color compounds, separation of acid and sugar, hydrolysis of oligosaccharides and subsequent continuous ethanol fermentation was developed. The highest sugar recovery efficiency was 81.6% when concentrated sulfuric acid hydrolysis was carried out under the optimum conditions. Continuous separation of acid from the saccharified liquid after removal of color compounds with activated carbon was conducted using an improved simulated moving bed (ISMB) system, and 98.4% of sugar and 90.5% of acid were recovered. After oligosaccharide hydrolysis and pH adjustment, the unsterilized saccharified liquid was subjected to continuous ethanol fermentation using Saccharomycescerevisiae strain KF-7. The ethanol concentration, the fermentation yield based on glucose and the ethanol productivity were approximately 27.2 g/l, 92.0% and 8.2 g/l/h, respectively. These results suggest that the process is effective for production of fuel ethanol from bamboo.  相似文献   

10.
Choi C  Lee J  Lee K  Kim M 《Bioresource technology》2008,99(13):5397-5401
An intermittently aerated membrane bioreactor (IAMBR) system has been developed to improve the efficiency of nutrient removal, and for the stable treatment of organic matter which is contained as suspended solid (SS) in the influent. The important operating factors of an intermittently aerated bioreactor (IABR) are sludge retention times (SRTs) and carbon/nitrogen (C/N) ratios. Because research on IAMBR is young, this paper explores the effect of SRTs and C/N ratios on these systems. For SRTs of 20, 25, 30, and 40 days, there was little difference in the removal of COD, T–N, and T–P. In comparing C/N ratios of 4.5, 7, and 10, the COD concentration in permeate with a C/N ratio of 10 was most stable, although the concentration of organic matter in the influent was high. The removal efficiencies of T–N and T–P in permeate with a C/N ratio of 10 were the highest at 92.9% and 88.9%, respectively. This implies that a C/N ratio above 10 should be maintained for a nutrient removal efficiency of approximately 90%.  相似文献   

11.
Fu Z  Yang F  Zhou F  Xue Y 《Bioresource technology》2009,100(1):136-141
A modified membrane bioreactor (MBR) system has been developed to evaluate the efficiency of nutrient removal in treating synthetic high strength water. This study examined the effect of influent COD/N ratio on this system. Results showed that above 95.0% removal efficiencies of organic matter were achieved; indicating COD removal was irrespective of COD/N ratio. The average removal efficiencies of total nitrogen (TN) and phosphate (PO(4)(3-)-P) with a COD/N ratio of 9.3 were the highest at 90.6% and 90.5%, respectively. Furthermore, TN removal was primarily based on simultaneous nitrification and denitrification (SND) process occurred in the aerobic zone. Decreased COD/N ratios to 7.0 and 5.3, TN removal efficiencies in steady-states were 69.3% and 71.2%, respectively. Both aerobic SND and conventional biological nitrification/denitrification contributed to nitrogen removal and the latter played dominant effect. PO(4)(3-)-P-release and uptake process ceased in steady-states of COD/N 7.0 and 5.3, which decreased its removal efficiency significantly.  相似文献   

12.
The treatment of the wastewater taken from a wool dyeing processing in a wool manufacturing plant was investigated using an anaerobic/aerobic sequential system. The process units consisted of an anaerobic UASB reactor and an aerobic CSTR reactor. Glucose, alkalinity and azo dyes were added to the raw acid dyeing wastewater in order to simulate the dye industry wastewater since the raw wastewater contained low levels of carbon, NaHCO3 and color through anaerobic/aerobic sequential treatment. The UASB reactor gave COD and color removals of 51–84% and 81–96%, respectively, at a HRT of 17 h. The COD and color removal efficiencies of the UASB/CSTR sequential reactor system were 97–83% and 87–80%, respectively, at a hydraulic retention time (HRTs) of 3.3 days. The aromatic amines (TAA) formed in the anaerobic stage were effectively removed in the aerobic stage.  相似文献   

13.
The aim of the study was to investigate the effect of nitrate on anaerobic color removal efficiencies. For this aim, anaerobic–aerobic sequencing batch reactor (SBR) fed with a simulated textile effluent including Remazol Brilliant Violet 5R azo dye was operated with a total cycle time of 12 h, including anaerobic (6 h) and aerobic cycles (6 h). Microorganism grown under anaerobic phase of the reactor was exposed to different amounts of competitive electron acceptor (nitrate) and performance of the system was determined by monitoring color removal efficiency, nitrate removal, nitrite formation and removal, oxidation reduction potential, color removal rate, chemical oxygen demand (COD), specific anaerobic enzyme (azo reductase) and aerobic enzyme (catechol 1,2 dioxygenase), and formation and removal of aromatic amines. Variations of population dynamics of microorganisms exposed to various amount of nitrate were identified by denaturing gradient gel electrophoresis (DGGE). It was found that nitrate has adverse effect on anaerobic color removal efficiency and color removal was achieved after denitrification process was completed. It was found that nitrate stimulates the COD removal efficiency and accelerates the COD removal in the first hour of anaerobic phase. About 90 % total COD removal efficiencies were achieved in which microorganism exposed to increasing amount of nitrate. Population dynamics of microorganisms exposed to various amount of nitrate were changed and diversity was increased.  相似文献   

14.
Wet oxidation was investigated for its process performance on methane fermentation of newspaper waste. The mechanisms of solubilization of newspaper waste were investigated using the following criteria: destruction of total COD (TCOD), production of soluble COD (SCOD), production of volatile fatty acids, production of soluble carbohydrates, production of soluble lignin derivatives (SLD), production of furan (F) and destruction of lignin and cellulose. Wet oxidation was carried out at 170, 190, and 210 degrees C, with a retention time of 1 h. The highest removal efficiencies of TCOD and cellulose were achieved at 210 degrees C, approximately 40% and 69% were destroyed, respectively. On the other hand, highest lignin removal efficiency was achieved at 190 degrees C in which approximately 65% was removed. Batch methane fermentation tests were performed in 2-l glass bottles filled with the wet oxidized newspaper samples. Methane fermentation of newspaper pretreated at 190 degrees C gave the highest CH(4) conversion efficiency (59% of the initial TCOD was recovered as CH(4) gas). Anaerobic cellulose removals varied from 74% to 88%.  相似文献   

15.
A novel two-phase anaerobic treatment technology was developed to treat high-concentration organic cassava bioethanol wastewater. The start-up process and contribution of organics (COD, total nitrogen, and NH4 +-N) removal in spatial succession of the whole process and spatial microbial diversity changing when sampling were analyzed. The results of the start-up phase showed that the organic loading rate could reach up to 10 kg COD/m(3)d, with the COD removal rate remaining over 90% after 25 days. The sample results indicated that the contribution of COD removal in the pre-anaerobic and anaerobic phases was 40% and 60%, respectively, with the highest efficiency of 98.5%; TN and NH4 +-N had decreased to 0.05 g/l and 0.90 g/l, respectively, and the mineralization rate of total nitrogen was 94.8%, 76.56% of which was attributed to the anaerobic part. The microbial diversity changed remarkably among different sample points depending on the physiological characteristics of identified strains. Moraxellaceae, Planococcaceae, and Prevotellaceae were dominant in the pre-anaerobic phase and Bacteroidetes, Campylobacterales, Acinetobacter, Lactobacillus, Clostridium, and Bacillus for the anaerobic phase. Methanosarcinaceae and Methanosaeta were the two main phylotypes in the anaerobic reactor.  相似文献   

16.
Liu T  He Z  Hu H  Ni Y 《Bioresource technology》2011,102(7):4712-4717
A novel two-stage biological/flocculation process was developed for treating the pulping effluent from the alkaline peroxide mechanical pulping (APMP) process. In the first biological stage, the aerobic fermentation by using Aspergillus niger can decrease the chemical oxygen demand (COD) by about 60% while producing about 7 g/l of solid biomass. In the second stage (post-coagulation/flocculation), the residual COD, turbidity and color, can be further decreased by using alum and polyacrylamide (PAM). The overall removal efficiencies of COD, color and turbidity from the APMP pulping effluent by the above two-stage biological-coagulation/flocculation process were 93%, 92% and 99%, respectively, under the conditions studied.  相似文献   

17.
A study was performed to assess the feasibility of anaerobic treatment of slaughterhouse wastewaters in a UASB (Upflow Anaerobic Sludge Blanket) reactor and in an AF (Anaerobic Filter). Among the different streams generated, the slaughter line showed the highest organic content with an average COD of 8000 mg/l, of which 70% was proteins. The suspended solids content represented between 15 and 30% of the COD. Both reactors had a working volume of 21. They were operated at 37°C. The UASB reactor was run at OLR (Organic Loading Rates) of 1–6.5 kg COD/m3/day. The COD removal was 90% for OLR up to 5 kg COD/m3/day and 60% for an OLR of 6.5 kg COD/m3/day. For similar organic loading rates, the AF showed lower removal efficiencies and lower percentages of methanization. At higher OLR sludge, flotation occurred and consequently the active biomass was washed out from the filter. The results indicated that anaerobic treatment systems are applicable to slaughterhouse wastewaters and that the UASB reactor shows a better performance, giving higher COD removal efficiencies than the AF.  相似文献   

18.
The objective of this study is to examine the treatment performance of vertical flow intermittent feeding constructed wetland (VFCW) in removal of organic pollution, nutrients and color in azo-dye containing wastewater. The systems consisted of PVC reactors, some filling materials such as gravel, sand and zeolite and wetland plants including Typha angustifolia and Canna indica. The average treatment efficiency of the systems for COD, color, sulphate, NH4-N, and PO4-P were in the range of 57–63%, 94–99%, 44–48%, 39–44%, and 84–88%, respectively among the VFCW reactors. It is concluded that VFCW reactor system can effectively be used in the treatment of dye-rich wastewater, especially for the removal of color and in the reduction of COD. Biofilm formation and cleavage of azo bonds could be observed by SEM and FTIR results, respectively. Almost similar NH4-N and PO4-P removal were obtained in all reactors by using same amount of zeolite media.  相似文献   

19.
Jia C  Kang R  Zhang Y  Zhang Y  Cong W 《Biodegradation》2007,18(5):551-557
Degradation and decolorization of monosodium glutamate wastewater (MSGW) with Coriolus versicolor were firstly carried out. The effects of various operation parameters namely wastewater concentrations, pH, culture time and incidence of sterilization on maximum percentage of degradation and decolorization of wastewater were investigated. Studies of mycelium and enzyme for C. versicolor degradation and decolorization were estimated in this study. Ten percentage of wastewater concentration and pH = 5.0 were found to be the most suitable ones among the other experiments. The highest degradation and decolorization efficiency of wastewater was obtained at the fifth day of cultivation, which was displayed with more than 70% chemical oxygen demand removal, 83% total sugar removal and 55% color removal, respectively. Sterile operation had no remarkable effect on the degradation and decolorization efficiency for C. versicolor. Mycelium and the extra cellular fungal enzyme were both necessary for the degradation and decolorization of MSGW. C. versicolor possesses great potential and economic advantages in MSGW treatment.  相似文献   

20.
The present study is related to treatment of textile wastewater in microaerophilic–aerobic hybrid reactor. The study showed the effectiveness of biological treatment of wastewater involving appropriate microorganism and suitable reactors. COD and color were reduced to 82–94%, and 99% respectively for textile wastewater. The reactor was operated at highest loading of 16.4 g COD g l−1 d−1 and obtained 80% COD and 72% color removal. Biokinetic models were applied to data obtained from experimental studies in continuously operated hybrid reactor. Treatment efficiencies of the reactor were investigated at different hydraulic retention times (2.3–9.1 d) and organic loading rates (2.6–16.4 g COD l−1 d−1). Second-order and a Stover–Kincannon models were best fitted to the hybrid column reactor. The second-order substrate removal rate constant (k2(S)) was found as 41.44 d−1 for hybrid reactor. Applying the modified Stover–Kincannon model to the hybrid reactor, the maximum removal rate constant (Umax) and saturation value constant (KB) were found to be 212 g l−1 d−1 and 22.89 g l−1 d−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号