首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction between the integrin alpha(4)beta(7) and its ligand, mucosal addressin cell adhesion molecule-1, on high endothelial venules represents a key adhesion event during lymphocyte homing to secondary lymphoid tissue. Stromal cell-derived factor-1alpha (SDF-1alpha) is a chemokine that attracts T and B lymphocytes and has been hypothesized to be involved in lymphocyte homing. In this work we show that alpha(4)beta(7)-mediated adhesion of CD4(+) T lymphocytes and the RPMI 8866 cell line to mucosal addressin cell adhesion molecule-1 was up-regulated by SDF-1alpha in both static adhesion and cell detachment under shear stress assays. Both naive and memory phenotype CD4(+) T cells were targets of SDF-1alpha-triggered increased adhesion. In addition, SDF-1alpha augmented alpha(4)beta(7)-dependent adhesion of RPMI 8866 cells to connecting segment-1 of fibronectin. While pertussis toxin totally blocked chemotaxis of CD4(+) and RPMI 8866 cells to SDF-1alpha, enhanced alpha(4)beta(7)-dependent adhesion triggered by this chemokine was partially inhibited, indicating the participation of Galpha(i)-dependent as well as Galpha(i)-independent signaling. Accordingly, we show that SDF-1alpha induced a rapid and transient association between its receptor CXCR4 and Galpha(i), whereas association of pertussis toxin-insensitive Galpha(13) with CXCR4 was slower and of a lesser extent. SDF-1alpha also activated the small GTPases RhoA and Rac1, and inhibition of RhoA activation reduced the up-regulation of alpha(4)beta(7)-mediated lymphocyte adhesion in response to SDF-1alpha, suggesting that activation of RhoA could play an important role in the enhanced adhesion. These data indicate that up-regulation by SDF-1alpha of lymphocyte adhesion mediated by alpha(4)beta(7) could contribute to lymphocyte homing to secondary lymphoid tissues.  相似文献   

2.
CCR7 expression and memory T cell diversity in humans   总被引:22,自引:0,他引:22  
CCR7, along with L-selectin and LFA-1, mediates homing of T cells to secondary lymphoid organs via high endothelial venules (HEV). CCR7 has also been implicated in microenvironmental positioning of lymphocytes within secondary lymphoid organs and in return of lymphocytes and dendritic cells to the lymph after passage through nonlymphoid tissues. We have generated mAbs to human CCR7, whose specificities correlate with functional migration of lymphocyte subsets to known CCR7 ligands. We find that CCR7 is expressed on the vast majority of peripheral blood T cells, including most cells that express adhesion molecules (cutaneous lymphocyte Ag alpha(4)beta(7) integrin) required for homing to nonlymphoid tissues. A subset of CD27(neg) memory CD4 T cells from human peripheral blood is greatly enriched in the CCR7(neg) population, as well as L-selectin(neg) cells, suggesting that these cells are incapable of homing to secondary lymphoid organs. Accordingly, CD27(neg) T cells are rare within tonsil, a representative secondary lymphoid organ. All resting T cells within secondary lymphoid organs express high levels of CCR7, but many activated cells lack CCR7. CCR7 loss in activated CD4 cells accompanies CXC chemokine receptor (CXCR)5 gain, suggesting that the reciprocal expression of these two receptors may contribute to differential positioning of resting vs activated cells within the organ. Lymphocytes isolated from nonlymphoid tissues (such as skin, lung, or intestine) contain many CD27(neg) cells lacking CCR7. The ratio of CD27(neg)/CCR7(neg) cells to CD27(pos)/CCR7(pos) cells varies from tissue to tissue, and may correlate with the number of cells actively engaged in Ag recognition within a given tissue.  相似文献   

3.
G protein-coupled receptor kinases (GRKs) are well characterized regulators of G protein-coupled receptors, whereas regulators of G protein signaling (RGS) proteins directly control the activity of G protein alpha subunits. Interestingly, a recent report (Siderovski, D. P., Hessel, A., Chung, S., Mak, T. W., and Tyers, M. (1996) Curr. Biol. 6, 211-212) identified a region within the N terminus of GRKs that contained homology to RGS domains. Given that RGS domains demonstrate AlF(4)(-)-dependent binding to G protein alpha subunits, we tested the ability of G proteins from a crude bovine brain extract to bind to GRK affinity columns in the absence or presence of AlF(4)(-). This revealed the specific ability of bovine brain Galpha(q/11) to bind to both GRK2 and GRK3 in an AlF(4)(-)-dependent manner. In contrast, Galpha(s), Galpha(i), and Galpha(12/13) did not bind to GRK2 or GRK3 despite their presence in the extract. Additional studies revealed that bovine brain Galpha(q/11) could also bind to an N-terminal construct of GRK2, while no binding of Galpha(q/11), Galpha(s), Galpha(i), or Galpha(12/13) to comparable constructs of GRK5 or GRK6 was observed. Experiments using purified Galpha(q) revealed significant binding of both Galpha(q) GDP/AlF(4)(-) and Galpha(q)(GTPgammaS), but not Galpha(q)(GDP), to GRK2. Activation-dependent binding was also observed in both COS-1 and HEK293 cells as GRK2 significantly co-immunoprecipitated constitutively active Galpha(q)(R183C) but not wild type Galpha(q). In vitro analysis revealed that GRK2 possesses weak GAP activity toward Galpha(q) that is dependent on the presence of a G protein-coupled receptor. However, GRK2 effectively inhibited Galpha(q)-mediated activation of phospholipase C-beta both in vitro and in cells, possibly through sequestration of activated Galpha(q). These data suggest that a subfamily of the GRKs may be bifunctional regulators of G protein-coupled receptor signaling operating directly on both receptors and G proteins.  相似文献   

4.
The immunomodulatory drug FTY720 interferes with sphingosine-1-phosphate (S1P) receptor signaling leading to lymphocyte retention in secondary lymphoid organs and consequently to profound lymphopenia in the peripheral blood. The molecular mechanisms transduced by S1P receptors upon being triggered by its native ligand, S1P, or by FTY720, are largely unknown. In this study we analyze the role of beta2 and beta7 integrin and their ligands ICAM-1, VCAM-1, and MadCAM-1 on lymphocyte homing in the presence of FTY720. We demonstrate that this drug facilitates homing of lymphocytes single-deficient of either beta2 or beta7 integrin but not of beta2-deficient lymphocytes, which in addition were blocked by anti-beta7 integrin Abs. Enhanced lymphocyte homing is preceded by increased adherence of integrin-deficient as well as wild-type lymphocytes to high endothelial venules (HEV) in FTY720-treated animals. Elevated adherence to HEV requires intact lymphocyte Galphai signaling that cannot be stably imprinted on lymphocytes even after prolonged exposure to FTY720. Thus, FTY720 influences lymphocyte homeostasis not only by suppressing lymphocyte egress from lymph nodes but also by facilitating lymphocyte homing across HEV in an integrin-dependent fashion.  相似文献   

5.
The lymphocyte-specific Cas family protein Cas-L (Crk-associated substrate lymphocyte type) has been implicated to function in lymphocyte movement, mediated mainly by integrin signaling. However, its physiological role is poorly understood. In this study we analyzed the function of Cas-L in lymphocytes using gene-targeted mice. The mutant mice showed a deficit of marginal zone B (MZB) cells and a decrease of cell number in secondary lymphoid organs. An insufficient chemotactic response and perturbed cell adhesion were observed in Cas-L-deficient lymphocytes, suggesting that the aberrant localization was responsible for the deficit of MZB cells. Moreover, we found that lymphocyte trafficking was altered in Cas-L-deficient mice, which gave a potential reason for contraction of secondary lymphoid tissues. Thus, Cas-L affects homeostasis of MZB cells and peripheral lymphoid organs, which is considered to be relevant to impaired lymphocyte migration and adhesion.  相似文献   

6.
Elicitation of contact sensitivity (CS), a classic example of T cell-mediated immunity, requires Ag-specific IgM Abs to trigger an initiation process. This early process leads to local recruitment of CS-effector T cells after secondary Ag challenge. These Abs are produced by the B-1 subset of B cells within 1 day after primary skin immunization. In this study we report the surprising observation that B-1 cells in the peritoneal cavity are activated as early as 1 h after naive mice are painted with a contact-sensitizing Ag on the skin of the trunk and feet to begin the initiation of CS. B-1 cells in the spleen and draining lymph nodes produce the initiating Abs by 1 day after immunization, when we found increased numbers of Ag-specific IgM Ab-producing cells in these tissues by ELISPOT assay. Importantly, we show that contact-activated peritoneal B-1 cells migrate to these lymphoid tissues and then differentiate into Ag-specific IgM Ab-producing cells, resulting in specific CS-initiating IgM Abs in the serum by 1 day. Furthermore, pertussis toxin, which is known to inhibit signaling via G protein-coupled chemokines, inhibited the migration of contact-activated peritoneal B-1 cells to the lymphoid tissues, probably due to BLR-1 (Burkitt lymphoma receptor-1). These findings indicate that within 1 h after contact skin immunization, B-1 cells in the peritoneal cavity are activated to migrate to the lymphoid tissues by chemokine-dependent mechanisms to produce serum Ag-specific IgM Abs within 1 day after immunization, leading to local recruitment of CS-effector T cells.  相似文献   

7.
Mucosal immunization with soluble protein Ag alone may induce Ag-specific tolerance, whereas mucosal immunization with Ag in the presence of a mucosal adjuvant may induce Ag-specific systemic and mucosal humoral and cell-mediated immune responses. The most widely used and studied mucosal adjuvant is cholera toxin (CT). Although the mechanism of adjuvanticity of CT is not completely understood, it is known that CT induces mucosal epithelial cells to produce the proinflammatory cytokines IL-1, IL-6, and IL-8 and up-regulates macrophage production of IL-1 and the costimulatory molecule B7.2. Because IL-1 may duplicate many of the activities of CT, we evaluated IL-1alpha and IL-1beta for their ability to serve as mucosal adjuvants when intranasally administered with soluble protein Ags. IL-1alpha and IL-1beta were as effective as CT for the induction of Ag-specific serum IgG, vaginal IgG and IgA, systemic delayed-type hypersensitivity, and lymphocyte proliferative responses when intranasally administered with soluble protein Ag. Our results indicate that IL-1alpha and IL-1beta may be useful as mucosal vaccine adjuvants. Such an adjuvant may be useful, and possibly required, for vaccine-mediated protection against pathogens that infect via the mucosal surfaces of the host such as HIV.  相似文献   

8.
Through the production of cytokines and growth factors the endothelium of secondary lymphoid organs plays a crucial role in controlling lymphocyte migration to the lymphoid microenvironment, an essential step in the initiation of the immune response. Here we demonstrate that direct contact of B cell lines with tonsil-derived human endothelial cells resulted in changes in the phosphorylation state of endothelial cells, causing their functional activation. We found a rapid (<15-s) and transient dephosphorylation, followed by a rapid rephosphorylation of tyrosine residues of the focal adhesion kinase, paxillin, and ERK2. Maximal rephosphorylation occurred after 15-30 min of B cell contact. Preincubation of lymphoid B cells with an adhesion-blocking Ab directed against alpha(4)beta(1) integrin abrogated adhesion-mediated changes of endothelial cell tyrosine phosphorylation, suggesting that cell contact was essential. Similar patterns of tyrosine phosphorylation, but with slightly different kinetics were induced after cross-linking of beta(1) integrin or CD40 on endothelial cells. Functional activation of endothelial cells by B cell adhesion was confirmed by the production of IL-6, IL-8, monocyte chemoattractant protein-1, M-CSF, and macrophage inflammatory protein-1beta mRNA. However, direct cross-linking of beta(1) integrin and CD40 failed to accomplish the same functional activation. These data indicate that direct contact of lymphoid B cells with the endothelium from lymphoid tissue induce endothelial cell signaling, resulting in chemokine and cytokine production. This phenomenon may provide a mechanism for the remodeling of the endothelium from lymphoid tissues, thus contributing to the free migration of lymphocytes and other cells into the lymphoid organs.  相似文献   

9.
Several chemoattractant receptors can support agonist-induced, integrin- dependent arrest of rolling neutrophils in inflamed venules in vivo, as well as subsequent crawling into tissues. It has been hypothesized that receptors of the Galpha(i)-linked chemoattractant subfamilies, especially receptors for chemokines, may mediate parallel activation- dependent arrest of homing lymphocyte subsets. However, although several chemokines can attract subsets of B or T cells, robust chemoattractant triggering of resting lymphocyte adhesion to vascular ligands has not been observed. To study the biology of individual leukocyte chemoattractant receptors in a defined lymphoid environment, mouse L1/2 pre-B cells and/or human Jurkat T cells were transfected with alpha (IL-8 receptor A) or beta (MIP-1alpha/CC-CKR-1) chemokine receptors, or with the classical chemoattractant C5a (C5aR) or formyl peptide receptors (fPR). All receptors supported robust agonist- dependent alpha4beta1 integrin-mediated adhesion of lymphocytes to VCAM- 1. L1/2 cells cotransfected with fPR and beta7 integrin were also induced to bind MAdCAM-1, suggesting common mechanisms coupling chemoattractant receptors to activation of distinct integrins. Adhesion was rapid but transient, with spontaneous reversion to unstimulated levels within 5 min after peak binding. When observed under flow conditions, alpha4beta1-mediated arrest occurred within seconds after initiation of contact and rolling of IL-8RA transfectants on VCAM-1/IL- 8 co-coated surface; and arrest reversed spontaneously after a mean of 5 min with a return to rolling behavior. Each of the receptors also conferred agonist-specific chemotaxis; however, whereas strong adhesion required simultaneous occupancy of many receptors with maximal responses above the Kd, chemotaxis in each case was suppressed at high agonist concentrations. The findings indicate that alpha and beta chemokine as well as classical chemoattractant receptors can trigger robust adhesion as well as directed migration of lymphoid cells, but that the requirements for and kinetics of adhesion triggering and chemotaxis are distinct, thus permitting their independent regulation. They suggest that the discordance between proadhesive and chemoattractant responses of circulating lymphocytes to many chemokines may reflect quantitative aspects of receptor expression and/or coupling rather than qualitative differences in receptor signaling.  相似文献   

10.
Foxp3+ regulatory T cells (Tregs) play a pivotal role in the maintenance of peripheral T cell tolerance and are thought to interact with dendritic cells (DC) in secondary lymphoid organs. We analyzed here the in vivo requirements for selective expansion of Ag-specific Treg vs CD4+CD25- effector T cells and engagement of Ag-specific Treg-DC interactions in secondary lymphoid organs. Using i.v. Ag delivery in the absence of inflammation, we found that CD4+CD25+Foxp3+ Tregs undergo vigorous expansion and accumulate whereas naive CD4+CD25-Foxp3- T cells undergo abortive activation. Quantifying directly the interactions between Tregs and CD11c+ DC, we found that Tregs establish cognate contacts with endogenous CD11c+ DC in spleen and lymph nodes at an early time point preceding their expansion. Importantly, we observed that as few as 10(3) Tregs selectively expanded by i.v. Ag injection are able to suppress B and T cell immune responses in mouse recipients challenged with the Ag. Our results demonstrate that Tregs are selectively mobilized by Ag recognition in the absence of inflammatory signals, and can induce thereafter potent tolerance to defined Ag targets.  相似文献   

11.
Receptor based signaling mechanisms are the primary source of cellular regulation. The superfamily of G protein-coupled receptors is the largest and most ubiquitous of the receptor mediated processes. We describe here the analysis in real-time of the assembly and disassembly of soluble G protein-coupled receptor-G protein complexes. A fluorometric method was utilized to determine the dissociation of a fluorescent ligand from the receptor solubilized in detergent. The ligand dissociation rate differs between a receptor coupled to a G protein and the receptor alone. By observing the sensitivity of the dissociation of a fluorescent ligand to the presence of guanine nucleotide, we have shown a time- and concentration-dependent reconstitution of the N-formyl peptide receptor with endogenous G proteins. Furthermore, after the clearing of endogenous G proteins, purified Galpha subunits premixed with bovine brain Gbetagamma subunits were also able to reconstitute with the solubilized receptors. The solubilized N-formyl peptide receptor and Galpha(i3) protein interacted with an affinity of approximately 10(-6) m with other alpha subunits exhibiting lower affinities (Galpha(i3) > Galpha(i2) > Galpha(i1) Galpha(o)). The N-formyl peptide receptor-G protein interactions were inhibited by peptides corresponding to the Galpha(i) C-terminal regions, by Galpha(i) mAbs, and by a truncated form of arrestin-3. This system should prove useful for the analysis of the specificity of receptor-G protein interactions, as well as for the elucidation and characterization of receptor molecular assemblies and signal transduction complexes.  相似文献   

12.
Homeostatic chemokines such as CCL19, CCL21, and CXCL13 are known to elicit chemotaxis from naive T and B cells and play a critical role in lymphocyte homing to appropriate zones within secondary lymphoid organs (SLO). Here we tested whether CCL21 and CXCL13 modulate murine lymphocyte motility in the absence of concentration gradients, using videomicroscopy to directly observe the migration of single cells. CCL21 treatment of T cells induced rapid polarization and sustained random migration with average speeds of 5.16 +/- 2.08 microm/min; B cell migration (average velocity 4.10 +/- 1.58 microm/min) was similarly induced by CXCL13. Migration required the presence of both chemokine and adhesion ligands and was sustained for >24 h. Furthermore, in in vitro assays modeling the relative infrequency of Ag-specific T cell-dendritic cell (DC) encounters during primary immune responses, we found that CCL21 addition to T-DC cocultures accelerated the kinetics of CD69 up-regulation and enhanced by 2-fold the proliferation of Ag-specific T cells in a manner dependent on G-protein-coupled receptor signaling in T cells. These results suggest that homeostatic chemokines could substantially impact the dynamics and priming of lymphocytes within SLO even in the absence of significant concentration gradients.  相似文献   

13.
The dynamics of G protein-mediated signal transduction depend on the two-dimensional diffusion of membrane-bound G proteins and receptors, which has been suggested to be rate-limiting for vertebrate phototransduction, a highly amplified G protein-coupled signaling pathway. Using fluorescence recovery after photobleaching (FRAP), we measured the diffusion of the G protein transducin alpha-subunit (Galpha(t)) and the G protein-coupled receptor rhodopsin on disk membranes of living rod photoreceptors from transgenic Xenopus laevis. Treatment with either methyl-beta-cyclodextrin or filipin III to disrupt cholesterol-containing lipid microdomains dramatically accelerated diffusion of Galpha(t) in its GTP-bound state and of the rhodopsin-Galphabetagamma(t) complex but not of rhodopsin or inactive GDP-bound Galphabetagamma. These results imply an activity-dependent sequestration of G proteins into cholesterol-dependent lipid microdomains, which limits diffusion and exclude the majority of free rhodopsin and the free G protein heterotrimer. Our data offer a novel demonstration of lipid microdomains in the internal membranes of living sensory neurons.  相似文献   

14.
Regulator of G protein signaling (RGS) proteins constitute a family of over 20 proteins that negatively regulate heterotrimeric G protein-coupled receptor signaling pathways by enhancing endogenous GTPase activities of G protein alpha subunits. RGSZ1, one of the RGS proteins specifically localized to the brain, has been cloned previously and described as a selective GTPase accelerating protein for Galpha(z) subunit. Here, we employed several methods to provide new evidence that RGSZ1 interacts not only with Galpha(z,) but also with Galpha(i), as supported by in vitro binding assays and functional studies. Using glutathione S-transferase fusion protein pull-down assays, glutathione S-transferase-RGSZ1 protein was shown to bind (35)S-labeled Galpha(i1) protein in an AlF(4)(-)dependent manner. The interaction between RGSZ1 and Galpha(i) was confirmed further by co-immunoprecipitation studies and yeast two-hybrid experiments using a quantitative luciferase reporter gene. Extending these observations to functional studies, RGSZ1 accelerated endogenous GTPase activity of Galpha(i1) in single-turnover GTPase assays. Human RGSZ1 functionally regulated GPA1 (a yeast Galpha(i)-like protein)-mediated yeast pheromone response when expressed in a SST2 (yeast RGS protein) knockout strain. In PC12 cells, transfected RGSZ1 blocked mitogen-activated protein kinase activity induced by UK14304, an alpha(2)-adrenergic receptor agonist. Furthermore, RGSZ1 attenuated D2 dopamine receptor agonist-induced serum response element reporter gene activity in Chinese hamster ovary cells. In summary, these data suggest that RGSZ1 serves as a GTPase accelerating protein for Galpha(i) and regulates Galpha(i)-mediated signaling, thus expanding the potential role of RGSZ1 in G protein-mediated cellular activities.  相似文献   

15.
In the present report, we investigated the effect of ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) expression on the agonist-induced internalization of the thromboxane A(2) beta receptor (TPbeta receptor). Interestingly, we found that EBP50 almost completely blocked TPbeta receptor internalization, which could not be reversed by overexpression of G protein-coupled receptor (GPCR) kinases and arrestins. Because we recently demonstrated that EBP50 can bind to and inhibit Galpha(q), we next studied whether Galpha(q) signaling could induce TPbeta receptor internalization, addressing the long standing question about the relationship between GPCR signaling and their internalization. Expression of a constitutively active Galpha(q) mutant (Galpha(q)-R183C) resulted in a robust internalization of the TPbeta receptor, which was unaffected by expression of dominant negative mutants of arrestin-2 and -3, but inhibited by expression of EBP50 or dynamin-K44A, a dominant negative mutant of dynamin. Phospholipase Cbeta and protein kinase C did not appear to significantly contribute to internalization of the TPbeta receptor, suggesting that Galpha(q) induces receptor internalization through a phospholipase Cbeta- and protein kinase C-independent pathway. Surprisingly, there appears to be specificity in Galpha protein-mediated GPCR internalization. Galpha(q)-R183C also induced the internalization of CXCR4 (Galpha(q)-coupled), whereas it failed to do so for the beta(2)-adrenergic receptor (Galpha(s)-coupled). Moreover, Galpha(s)-R201C, a constitutively active form of Galpha(s), had no effect on internalization of the TPbeta, CXCR4, and beta(2)-adrenergic receptors. Thus, we showed that Galpha protein signaling can lead to internalization of GPCRs, with specificity in both the Galpha proteins and GPCRs that are involved. Furthermore, a new function has been described for EBP50 in its capacity to inhibit receptor endocytosis.  相似文献   

16.
Platelet activation is a complex process induced by a variety of stimuli, which act in concert to ensure the rapid formation of a platelet plug at places of vascular injury. We show here that fibrillar collagen, which initiates platelet activation at the damaged vessel wall, activates only a small fraction of platelets in suspension directly, whereas the majority of platelets becomes activated by mediators released from collagen-activated platelets. In Galpha(q)-deficient platelets that do not respond with activation of integrin alpha(IIb)beta(3) to a variety of mediators like thromboxane A2 (TXA2), thrombin, or ADP, collagen at high concentrations was able to induce aggregation, an effect that could be blocked by antagonists of the TXA2 or P2Y12 receptors. The activation of TXA2 or P2Y12 receptors alone, which in Galpha(q)-deficient platelets couple to G12/G13 and Gi, respectively, did not induce platelet integrin activation or aggregation. However, concomitant activation of both receptors resulted in irreversible integrin alpha(IIb)beta3-mediated aggregation of Galpha(q)-deficient platelets. Thus, the activation of G12/G13- and Gi-mediated signaling pathways is sufficient to induce integrin alpha(IIb)beta3 activation. Although G(q)-mediated signaling plays an important role in platelet activation, it is not strictly required for the activation of integrin alpha(IIb)beta3. This indicates that the efficient induction of platelet aggregation through G-protein-coupled receptors is an integrated response mediated by various converging G-protein-mediated signaling pathways involving G(q) and G(i) as well as G12/G13.  相似文献   

17.
Asthma is a respiratory disorder characterized by airway hyperreactivity (AHR) and inflammation and is associated with high serum IgE and overproduction of IL-4, IL-5, and IL-13 by allergen-specific Th2 cells. Our previous studies demonstrated that heat-killed Listeria monocytogenes (HKL) as an adjuvant in immunotherapy successfully reversed ongoing Ag-specific Th2-dominated responses toward Th1-dominated responses, but it was unclear if such immune modulation could reverse ongoing, established disease in target organs such as the lung. In this paper we show that a single dose of Ag plus HKL as adjuvant significantly reduced AHR in a murine model for asthma and reversed established AHR when given late after allergen sensitization. HKL as adjuvant also dramatically inhibited airway inflammation, eosinophilia, and mucus production, significantly reduced Ag-specific IgE and IL-4 production, and dramatically increased Ag-specific IFN-gamma synthesis. The inhibitory effect of HKL on AHR depended on the presence of IL-12 and CD8+ T cells and was associated with an increase of IL-18 mRNA expression. Thus, our results demonstrate that HKL as an adjuvant for immunotherapy mediates immune deviation from a pathological Th2-dominated response toward a protective immune response in peripheral lymphoid tissues and in the lungs and may be clinically effective in the treatment of patients with established asthma and allergic disease.  相似文献   

18.
The alpha4beta1 integrin is an essential adhesion molecule for recruitment of circulating lymphocytes into lymphoid organs and peripheral sites of inflammation. Chemokines stimulate alpha4beta1 adhesive activity allowing lymphocyte arrest on endothelium and subsequent diapedesis. Activation of the GTPase Rac by the guanine-nucleotide exchange factor Vav1 promoted by CXCL12 controls T lymphocyte adhesion mediated by alpha4beta1. In this study, we investigated the role of DOCK2, a lymphocyte guanine-nucleotide exchange factor also involved in Rac activation, in CXCL12-stimulated human T lymphocyte adhesion mediated by alpha4beta1. Using T cells transfected with DOCK2 mutant forms defective in Rac activation or with DOCK2 small interfering RNA, we demonstrate that DOCK2 is needed for efficient chemokine-stimulated lymphocyte attachment to VCAM-1 under shear stress. Flow chamber, soluble binding, and cell spreading assays identified the strengthening of alpha4beta1-VCAM-1 interaction, involving high affinity alpha4beta1 conformations, as the adhesion step mainly controlled by DOCK2 activity. The comparison of DOCK2 and Vav1 involvement in CXCL12-promoted Rac activation and alpha4beta1-dependent human T cell adhesion indicated a more prominent role of Vav1 than DOCK2. These results suggest that DOCK2-mediated signaling regulates chemokine-stimulated human T lymphocyte alpha4beta1 adhesive activity, and that cooperation with Vav1 might be required to induce sufficient Rac activation for efficient adhesion. In contrast, flow chamber experiments using lymph node and spleen T cells from DOCK2(-/-) mice revealed no significant alterations in CXCL12-promoted adhesion mediated by alpha4beta1, indicating that DOCK2 activity is dispensable for triggering of this adhesion in mouse T cells, and suggesting that Rac activation plays minor roles in this process.  相似文献   

19.
We examined whether fusion proteins of G protein-coupled receptors with the alpha subunit of G(16) (Galpha(16)) could activate downstream signals. We expressed fusion proteins of G(i)-coupled receptors, i.e. CX(3)C chemokine receptor 1 (CX(3)CR1) and M(2) receptor, in Chinese hamster ovary cells. An agonist for CX(3)CR1 induced greater increases in intracellular Ca(2+) and prostaglandin E(2) generation in cells expressing CX(3)CR1-Galpha(16) fusion protein than in cells expressing CX(3)CR1 alone or both CX(3)CR1 and Galpha(16) separately. Similarly, agonist-induced prostaglandin E(2) generation was greater in cells expressing M(2)-Galpha(16) fusion protein than ones expressing M(2) alone or both M(2) and Galpha(16) separately. In cells expressing fusion proteins with Galpha(16) of G(q)-coupled receptors, i.e. urotensin II receptor and M(1) receptor, the relevant agonists induced similar increases in intracellular Ca(2+) and prostaglandin E(2) generation as in ones expressing the receptor alone. In cells expressing urotensin II receptor-Galpha(16) fusion protein, prostaglandin E(2) generation exhibited a lower EC(50) value than the intracellular Ca(2+) increase. These results indicate that agonist-stimulated receptor-Galpha(16) fusion proteins are coupled to downstream signaling pathways, and suggest that receptor-Galpha(16) fusion proteins may be useful for screening for ligands of orphan G protein-coupled receptors and G(i)-coupled receptors.  相似文献   

20.
Recently, G protein-coupled receptors activated solely by synthetic ligands (RASSLs) have been introduced as new tools to study Galpha(i) signaling in vivo (1, 2). Also, Galpha(s)-coupled G protein-coupled receptors have been engineered to generate Galpha(s)-coupled RASSLs (3, 4). In this study, we exploited the differences in binding pockets between different classes of H(1) receptor agonists and identified the first Galpha(q/11)-coupled RASSL. The mutant human H(1) receptor F435A (6.55) combines a strongly decreased affinity (25-fold) and potency for the endogenous ligand histamine (200-fold) with improved affinities (54-fold) and potencies (2600-fold) for 2-phenylhistamines, a synthetic class of H(1) receptor agonists. Molecular dynamics simulations provided a mechanism for distinct agonist binding to both wild-type and F435A mutant H(1) receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号