首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The BCR serves to both signal cellular activation and enhance uptake and presentation of Ags by B cells; however, the intracellular signaling mechanisms linking the BCR to Ag presentation functions have been controversial. PI3Ks are critical signaling enzymes controlling many cellular processes, with the p110delta isoform playing a critical role in BCR signaling. In this study, we used pharmacological and genetic approaches to evaluate the role of p110delta signaling in Ag presentation by primary B lymphocytes. It was found that activation of allogeneic T cells is significantly reduced when B cells are pretreated with global PI3K inhibitors, but was intact when p110delta signaling was specifically inactivated. In contrast, inactivation of p110delta significantly impaired the ability of B cells to activate T cells in a BCR-mediated Ag uptake and presentation model. Prestimulation of p110delta-inactivated B cells with anti-CD40 or LPS could not rescue their BCR-mediated Ag presentation ability to normal levels. p110delta signaling was required for efficient presentation of either anti-Ig or protein Ag via a lysozyme-specific BCR. p110delta-inactivated B cells were able to internalize Ag normally, and no defects in association of Ag with lysosome-associated membrane protein 1(+) late endosomes were observed; however, these cells were less effective in forming polarized conjugates with Ag-specific T cells. Our data demonstrate a role for p110delta signaling in B cell Ag presentation function, implicating 3-phosphoinositides and their targets in the latter stages of this process.  相似文献   

2.
Phosphoinositide 3-kinase (PI3K) has been shown to play an essential role in G protein-induced signaling even in non-myeloid cells where few agonists of G protein-coupled receptors are known to activate PI3K. We have identified adherent cell lines where lysophosphatidic acid (LPA) strongly and rapidly activates the accumulation of PI3K lipid products. The process is not modified by expression of a kinase-dead mutant of the Gbetagamma-responsive PI3K p110gamma. In contrast, it is inhibited by genistein or expression of a dominant negative mutant of p85 and potentiated by overexpressing wild-type p110alpha or -beta but not -gamma. By using a specific chemical inhibitor of the epidermal growth factor receptor (EGFR) and expression of a dominant negative mutant, we have observed that recruitment of p85/p110 PI3Ks occurs through transactivation of the EGFR by LPA and downstream mobilization of the docking protein Gab1 that associates with p85 upon LPA stimulation. Finally, we show that LPA cannot activate PI3K in cell lines lacking the EGFR/Gab1 pathway, including cells that transactivate the PDGF receptor. Altogether, these results demonstrate that activation of PI3K by LPA is conditioned by the ability of LPA to transactivate an EGFR/Gab1 signaling pathway.  相似文献   

3.
Bromocriptine, acting through the dopamine D2 receptor, provides robust protection against apoptosis induced by oxidative stress in PC12-D2R and immortalized nigral dopamine cells. We now report the characterization of the D2 receptor signaling pathways mediating the cytoprotection. Bromocriptine caused protein kinase B (Akt) activation in PC12-D2R cells and the inhibition of either phosphoinositide (PI) 3-kinase, epidermal growth factor receptor (EGFR), or c-Src eliminated the Akt activation and the cytoprotective effects of bromocriptine against oxidative stress. Co-immunoprecipitation studies showed that the D2 receptor forms a complex with the EGFR and c-Src that was augmented by bromocriptine, suggesting a cross-talk between these proteins in mediating the activation of Akt. EGFR repression by inhibitor or by RNA interference eliminated the activation of Akt by bromocriptine. D2 receptor stimulation by bromocriptine induced c-Src tyrosine 418 phosphorylation and EGFR phosphorylation specifically at tyrosine 845, a known substrate of Src kinase. Furthermore, Src tyrosine kinase inhibitor or dominant negative Src interfered with Akt translocation and phosphorylation. Thus, the predominant signaling cascade mediating cytoprotection by the D2 receptor involves c-Src/EGFR transactivation by D2 receptor, activating PI 3-kinase and Akt. We also found that the agonist pramipexole failed to stimulate activation of Akt in PC12-D2R cells, providing an explanation for our previous observations that, despite efficiently activating G-protein signaling, this agonist had little cytoprotective activity in this experimental system. These results support the hypothesis that specific dopamine agonists stabilize distinct conformations of the D2 receptor that differ in their coupling to G-proteins and to a cytoprotective c-Src/EGFR-mediated PI-3 kinase/Akt pathway.  相似文献   

4.
Isoforms of the serine-threonine kinase Akt coordinate multiple cell survival pathways in response to stimuli such as platelet-derived growth factor (PDGF). Activation of Akt is a multistep process, which relies on the production of 3'-phosphorylated phosphoinositide (PI) lipids by PI 3-kinases. To quantitatively assess the kinetics of PDGF receptor/PI 3-kinase/Akt signaling in fibroblasts, a systematic study of this pathway was performed, and a mechanistic mathematical model that describes its operation was formulated. We find that PDGF receptor phosphorylation exhibits positive cooperativity with respect to PDGF concentration, and its kinetics are quantitatively consistent with a mechanism in which receptor dimerization is initially mediated by the association of two 1:1 PDGF/PDGF receptor complexes. Receptor phosphorylation is transient at high concentrations of PDGF, consistent with the loss of activated receptors upon endocytosis. By comparison, Akt activation responds to lower PDGF concentrations and exhibits more sustained kinetics. Further analysis and modeling suggest that the pathway is saturated at the level of PI 3-kinase activation, and that the p110alpha catalytic subunit of PI 3-kinase contributes most to PDGF-stimulated 3'-PI production. Thus, at high concentrations of PDGF the kinetics of 3'-PI production are limited by the turnover rate of these lipids, while the Akt response is additionally influenced by the rate of Akt deactivation.  相似文献   

5.
6.
7.
The stem cell factor receptor/c-Kit plays an important physiological role in hematopoiesis, melanogenesis, and gametogenesis. It has also been implicated in numerous human malignancies. Signal transduction pathways shown to be of importance for c-Kit-mediated transformation include the phosphoinositide 3-kinase (PI3K)/Akt pathway. We have previously shown that two alternative splice forms of c-Kit, denoted GNNK(-) and GNNK(+), mediate distinctively different signals. In this study, we found that in the hematopoietic cell line Ba/F3, GNNK(-) c-Kit mediates a substantially stronger activation of PI3K/Akt than GNNK(+) c-Kit. This difference in signaling was shown to be dependent on the association of the scaffolding protein Gab2 with c-Kit, and Src-mediated phosphorylation of Gab2 was shown to be to be independent of the direct association of PI3K with c-Kit. Furthermore, proliferation and survival of Ba/F3 cells expressing a mutant of c-Kit that fails to bind to PI3K directly were slightly decreased compared with wild-type c-Kit-expressing cells. Using small interfering RNA technology, we further verified a role of Gab2 in inducing activation of PI3K/Akt downstream of c-Kit. To summarize, we show that PI3K activation by c-Kit is both splice form-dependent and cell type-specific. Furthermore, activation of PI3K by c-Kit is dependent both on the direct PI3K-binding site in c-Kit and on the phosphorylation of Gab2. The fact that c-Kit has been found mutated in numerous human malignancies, including acute myeloid leukemia, and that Gab2 is often overexpressed in acute myeloid leukemia suggests a potential role of Gab2-mediated PI3K activation in transformation.  相似文献   

8.
The role of phosphoinositide 3-kinase C2alpha in insulin signaling   总被引:3,自引:0,他引:3  
The members of the class II phosphoinositide 3-kinase (PI3K) family can be activated by several stimuli, indicating that these enzymes can regulate many intracellular processes. Nevertheless, to date, there has been no definitive identification of their in vivo product, their mechanism(s) of activation, or their precise intracellular roles. By metabolic labeling, we here identify phosphatidylinositol 3-phosphate as the sole in vivo product of the insulin-dependent activation of PI3K-C2alpha, confirming the emerging role of such a phosphoinositide in signaling. We demonstrate that activation of PI3K-C2alpha involves its recruitment to the plasma membrane and that activation is mediated by the GTPase TC10. This is the first report showing a membrane targeting-mediated mechanism of activation for PI3K-C2alpha and that a small GTP-binding protein can activate a class II PI3K isoform. We also demonstrate that PI3K-C2alpha contributes to maximal insulin-induced translocation of the glucose transporter GLUT4 to the plasma membrane and subsequent glucose uptake, definitely assessing the role of this enzyme in insulin signaling.  相似文献   

9.
10.
Expression of rat TrkA in Xenopus spinal neurons confers responsiveness of these neurons to nerve growth factor (NGF) in assays of neuronal survival and growth cone chemotropism. Mutational analysis indicates that coactivation of phospholipase C-gamma (PLC-gamma) and phosphoinositide 3-kinase (PI3-kinase) by specific cytoplasmic domains of TrkA is essential for triggering chemoattraction of the growth cone in an NGF gradient. Uniform exposure of TrkA-expressing neurons to NGF resulted in a cross-desensitization of turning responses induced by a gradient of netrin-1, brain-derived neurotrophic factor (BDNF), or myelin-associated glycoprotein (MAG) but not by a gradient of collapsin-1/semaphorin III/D or neurotrophin-3 (NT-3). These results, together with the effects of pharmacological inhibitors, support the notion that there are common cytosolic signaling pathways for two separate groups of guidance cues, one of which requires coactivation of PLC-gamma and PI3-kinase pathways.  相似文献   

11.
12.
Mitogen-activated protein (MAP) kinase and phosphoinositide 3-kinase (PI3K) pathways are necessary for cell cycle progression into S phase; however the importance of these pathways after the restriction point is poorly understood. In this study, we examined the regulation and function of extracellular signal-regulated kinase (ERK) and PI3K during G(2)/M in synchronized HeLa and NIH 3T3 cells. Phosphorylation and activation of both the MAP kinase kinase/ERK and PI3K/Akt pathways occur in late S and persist until the end of mitosis. Signaling was rapidly reversed by cell-permeable inhibitors, indicating that both pathways are continuously activated and rapidly cycle between active and inactive states during G(2)/M. The serum-dependent behavior of PI3K/Akt versus ERK pathway activation indicates that their mechanisms of regulation differ during G(2)/M. Effects of cell-permeable inhibitors and dominant-negative mutants show that both pathways are needed for mitotic progression. However, inhibiting the PI3K pathway interferes with cdc2 activation, cyclin B1 expression, and mitotic entry, whereas inhibiting the ERK pathway interferes with mitotic entry but has little effect on cdc2 activation and cyclin B1 and retards progression from metaphase to anaphase. Thus, our study provides novel evidence that ERK and PI3K pathways both promote cell cycle progression during G(2)/M but have different regulatory mechanisms and function at distinct times.  相似文献   

13.
Phosphoinositide 3-kinase (PI(3)K) is a unique enzyme characterized by both lipid and protein kinase activities. Here, we demonstrate a requirement for the protein kinase activity of PI(3)K in agonist-dependent beta-adrenergic receptor (betaAR) internalization. Using PI(3)K mutants with either protein or lipid phosphorylation activity, we identify the cytoskeletal protein non-muscle tropomyosin as a substrate of PI(3)K, which is phosphorylated in a wortmannin-sensitive manner on residue Ser 61. A constitutively dephosphorylated (S61A) tropomyosin mutant blocks agonist-dependent betaAR internalization, whereas a tropomyosin mutant that mimics constitutive phosphorylation (S61D) complements the PI(3)K mutant, with only lipid phosphorylation activity reversing the defective betaAR internalization. Notably, knocking down endogenous tropomyosin expression using siRNAs that target different regions if tropomyosin resulted in complete inhibition of betaAR endocytosis, showing that non-muscle tropomyosin is essential for agonist-mediated receptor internalization. These studies demonstrate a previously unknown role for the protein phosphorylation activity of PI(3)K in betaAR internalization and identify non-muscle tropomyosin as a cellular substrate for protein kinase activity of PI(3)K.  相似文献   

14.
15.
The goals of this study were 2-fold: 1) to determine whether stimulation of Eph B4 receptors promotes microvascular endothelial cell migration and/or proliferation, and 2) to elucidate signaling pathways involved in these responses. The human endothelial cells used possessed abundant Eph B4 receptors with no endogenous ephrin B2 expression. Stimulation of these receptors with ephrin B2/Fc chimera resulted in dose- and time-dependent phosphorylation of Akt. These responses were inhibited by LY294002 and ML-9, blockers of phosphatidylinositol 3-kinase (PI3K) and Akt, respectively. Eph B4 receptor activation increased proliferation by 38%, which was prevented by prior blockade with LY294002, ML-9, and inhibitors of protein kinase G (KT5823) and MEK (PD98059). Nitrite levels increased over 170% after Eph B4 stimulation, indicating increased nitric oxide production. Signaling of endothelial cell proliferation appears to be mediated by a PI3K/Akt/endothelial nitric-oxide synthase/protein kinase G/mitogen-activated protein kinase cascade. Stimulation with ephrin B2 also increased migration by 63% versus controls. This effect was inhibited by blockade with PP2 (Src inhibitor), LY294002 or ML-9 but was unaffected by the PKG and MEK blockers. Eph B4 receptor stimulation increased activation of both matrix metalloproteinase-2 and -9. The results from these studies indicate that Eph B4 stimulates migration and proliferation and may play a role in angiogenesis.  相似文献   

16.
Daunorubicin induces apoptosis in myeloid leukemia cells by activation of neutral sphingomyelinase and ceramide generation occurring 4-10 min after daunorubicin addition. We show here that daunorubicin is able to increase the phosphoinositide 3-kinase activity and enhance intracellular phosphoinositide 3-kinase lipid products prior to ceramide generation. Daunorubicin activates Akt, a downstream phosphoinositide 3-kinase effector. Interestingly, the phosphoinositide 3-kinase inhibitors wortmannin and LY294002 accelerate daunorubicin-induced apoptosis in U937 cells. The phosphoinositide 3-kinase/Akt pathway has been involved in cell survival following serum deprivation, tumor necrosis factor alpha, anti-Fas and UV radiations. Our results suggest that anti-tumor agents such as daunorubicin may also activate anti-apoptotic signals that could contribute to drug resistance.  相似文献   

17.
In this study, we investigate the extracellular and intracellular signals that drive cell cycle progression of activated B cells in the absence of T cell help. We find that brief engagement of the B cell receptor is sufficient to induce a single cell division in a fraction of cells, but that survival during successive cell divisions requires sustained receptor stimulation. In contrast, T cells have been shown previously to commit to multiple cell divisions following brief TCR engagement. Both early and late B cell receptor signals are blocked by inhibitors of phosphoinositide 3-kinase and mammalian target of rapamycin and are associated with S6 kinase activation and increased cell size. The requirement for ongoing Ag receptor signaling can be overcome by engagement of CD40 but only partially by IL-4. Proliferation driven by LPS also requires sustained exposure to the stimulus. These findings reveal checkpoints that may limit T-independent B cell responses when Ag exposure is transient.  相似文献   

18.
Many receptor and nonreceptor tyrosine kinases activate phosphoinositide 3-kinases (PI3Ks). To assess the role of the delta isoform of the p110 catalytic subunit of PI3Ks, we derived enzyme-deficient mice. The mice are viable but have decreased numbers of mature B cells, a block in pro-B-cell differentiation, and a B1 B-cell deficiency. Both immunoglobulin M receptor-induced Ca(2+) flux and proliferation in response to B-cell mitogens are attenuated. Immunoglobulin levels are decreased substantially. The ability to respond to T-cell-independent antigens is markedly reduced, and the ability to respond to T-cell-dependent antigens is completely eliminated. Germinal center formation in the spleen in response to antigen stimulation is disrupted. These results define a nonredundant signaling pathway(s) utilizing the delta isoform of p110 PI3K for the development and function of B cells.  相似文献   

19.
The phosphoinositide 3-kinase signaling pathway has been implicated in a range of T lymphocyte cellular functions, particularly growth, proliferation, cytokine secretion, and survival. Dysregulation of phosphoinositide 3-kinase-dependent signaling and function in leukocytes, including B and T lymphocytes, has been implicated in many inflammatory and autoimmune diseases. As befits a pivotal signaling cascade, several mechanisms exist to ensure that the pathway is tightly regulated. This minireview focuses on two lipid phosphatases, viz. the 3'-phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SHIP (Src homology 2 domain-containing inositol-5-phosphatase). We discuss their role in regulating T lymphocyte signaling as well their potential as future therapeutic targets.  相似文献   

20.
Lee SB  Hong SH  Kim H  Um HD 《Life sciences》2005,78(1):91-98
A single stimulus can induce both the cell death and survival pathway, suggesting that these pathways share common upstream signaling components. In order to define these components, human U937 cells grown in 10% serum were exposed to serum-free media. This treatment resulted in apoptosis, which was found to be mediated by SAPK/JNK. It was previously reported that the serum withdrawal (SW)-induced SAPK activation is mediated by a positive mutual interaction between the reactive oxygen species (ROS) and phosphoinositide 3-kinase (PI3K). This study shows that the ROS/PI3K interaction also induces a NF-kappaB-dependent survival pathway. Despite the role of PI3K, Akt was found to be irrelevant to the activation of SAPK and NF-kappaB. Comparative analyses of SAPK and NF-kappaB for their responses to exogenous H(2)O(2) revealed that SAPK activation requires much higher H(2)O(2) concentrations than those required for NF-kappaB activation. Moreover, high lethal concentrations of H(2)O(2) were found to activate NF-kappaB and SAPK in a PI3K-independent manner. These results suggest that ROS induce both the SAPK-dependent apoptotic and NF-kappaB-mediated survival pathways, and these inducer signals are amplified by PI3K in the SW-triggered pathway. Cell death appears to be favored as this amplification proceeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号