首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diabet. Med. 29, 1226-1236 (2012) ABSTRACT: Aims To evaluate if clinical practice guideline recommendations regarding self-monitoring of blood glucose in patients with diabetes not using insulin follow the principles of evidence-based medicine. Methods After a search from 1999 to 2011, 18 clinical practice guidelines were included. Recommendations regarding self-monitoring of blood glucose were graded on a scale from one (strongly against self-monitoring) to four (strongly in favour of self-monitoring) and compared with the similarly graded conclusions of systematic reviews that were cited by the clinical practice guidelines. We also investigated how clinical practice guideline characteristics, for example funding sources, and quality of references cited could be related to the guideline recommendations. Results The clinical practice guidelines cited in total 15 systematic reviews, 14 randomized controlled trials, 33 non-randomized controlled trials papers and 18 clinical practice guidelines or position statements. The clinical practice guideline recommendations had an average grade of 3.4 (range 2.0-4.0). Higher grades were seen for clinical practice guidelines that acknowledged industry funding (mean value 4.0) or were issued by organizations depending on private funding (mean value 3.6 vs. 3.0 for governmental funding). The conclusions of the 15 systematic reviews had a mean grade of 2.2 (range 1.0-3.8). Systematic reviews with low grades were less cited. In total, 21 randomized controlled trials were included in the systematic reviews. Approximately half of these evaluated an educational intervention where the effect of self-monitoring of blood glucose could not be clearly isolated. Conclusions Clinical practice guidelines were more in favour of self-monitoring use than the systematic reviews that were cited. The citation practice was non-systematic and industry funding seemingly led to a more positive attitude towards use of self-monitoring of blood glucose.  相似文献   

2.

Objective

To estimate diabetes-related direct health care costs in pediatric patients with early-onset type 1 diabetes of long duration in Germany.

Research Design and Methods

Data of a population-based cohort of 1,473 subjects with type 1 diabetes onset at 0–4 years of age within the years 1993–1999 were included (mean age 13.9 (SD 2.2) years, mean diabetes duration 10.9 (SD 1.9) years, as of 31.12.2007). Diabetes-related health care services utilized in 2007 were derived from a nationwide prospective documentation system (DPV). Health care utilization was valued in monetary terms based on inpatient and outpatient medical fees and retail prices (perspective of statutory health insurance). Multiple regression models were applied to assess associations between direct diabetes-related health care costs per patient-year and demographic and clinical predictors.

Results

Mean direct diabetes-related health care costs per patient-year were €3,745 (inter-quartile range: 1,943–4,881). Costs for glucose self-monitoring were the main cost category (28.5%), followed by costs for continuous subcutaneous insulin infusion (25.0%), diabetes-related hospitalizations (22.1%) and insulin (18.4%). Female gender, pubertal age and poor glycemic control were associated with higher and migration background with lower total costs.

Conclusions

Main cost categories in patients with on average 11 years of diabetes duration were costs for glucose self-monitoring, insulin pump therapy, hospitalization and insulin. Optimization of glycemic control in particular in pubertal age through intensified care with improved diabetes education and tailored insulin regimen, can contribute to the reduction of direct diabetes-related costs in this patient group.  相似文献   

3.
4.
In recent years, insulin analogues are the benefits of the use in functional intensive insulin therapy for the treatment of diabetes. Shortacting insulin (lispro, aspart and glulisine) and long-acting insulin (glargine and detemir) have been developed for the management of diabetes. Short-acting insulin analogues are an alternative to regular human insulin before meals. These new short-acting insulin analogues show more rapid onset of activity and a shorter duration of action. As a result of these pharmacokinetic differences, an improved postprandial glycemic control is achieved, without increasing the risk of hypoglycemia. In addition, these insulin analogues can be administered immediately before a meal. The long-acting insulin analogues provide basal insulin levels for 24 h when administered once (glargine) or two (detemir) daily. Compared with previous intermediate- or long-acting conventional insulin, these insulins shows a flat profile of plasma insulin levels . The use of these long-acting insulin analogues appears to be associated with a reduced incidence of hypoglycemia, especially at night. The availability of these new insulin analogues has the potential to significantly improve long-term control over blood glucose in diabetic patients. In recent years more and more frequently the method of multiple daily injections (MDI) of insulin is being replaced by the method of continuous subcutaneous insulin infusion (CSII). It is the most physiological way to administer insulin. In recent years treatment with insulin pumps has been used more frequently in the pediatric patients and in the treatment of diabetes in pregnancy. Use of continuous glucose monitoring systems enables detection of glycemia fluctuations unrevealed by selfmonitoring of blood glucose, such as night hypoglycemias and early postprandial hyperglycemias. Real-time systems allow to reduce HbA1c levels and limit number of excursions. Non-invasive glucose measurement devices are introduced. Fully automated continuous glucose monitoring systems integrated with insulin pumps operating in closed-loop model, requiring no patient assistance, are still being researched. Commercially available systems operate in open-loop model, where the patient has to decide on administration and dose of insulin.  相似文献   

5.
6.
As a result of the Diabetes Control and Complications Trial, there is increased emphasis on the importance of blood glucose concentration self-monitoring for people with diabetes. The current methods for this are not ideal, and there are many other possible techniques currently under investigation. One of these techniques is microdialysis, which can be used to analyse subcutaneous interstitial glucose concentrations. A system with high recovery has recently been used to monitor glucose concentrations with sampling over one- or two-hour periods. We have investigated whether this system can be used to monitor rapid changes in blood glucose concentration in healthy volunteers with collection intervals of only ten minutes. The results show that microdialysis can be used to monitor rapidly changing blood glucose concentration, but in some subjects, dialysate glucose lagged behind the whole blood and plasma glucose concentrations to a degree that would be clinically significant. It would therefore be necessary to assess the system, comparing dialysate with plasma glucose concentrations in each individual, prior to use in a clinical setting.  相似文献   

7.
Type 1 diabetes is characterized by a lack of insulin production by the pancreas, causing high blood glucose concentrations and requiring external insulin infusion to regulate blood glucose. Continuous glucose sensors can be coupled with continuous insulin infusion pumps to create a closed-loop artificial pancreas. A novel procedure of “human-friendly” identification testing using multisine inputs is developed to estimate suitable models for use in an artificial pancreas. A constrained model predictive control (MPC) strategy is developed to reduce risks of hypo- and hyperglycemia (low and high blood glucose concentration). Meal detection and meal size estimation algorithms are developed to improve meal glucose disturbance rejection when incoming meals are not announced. Closed-loop performance is evaluated through simulation studies of a type 1 diabetic individual, illustrating the ability of the MPC-based artificial pancreas control strategy to handle announced and unannounced meal disturbances.  相似文献   

8.

Background

The benefits of self-monitoring blood glucose levels are unclear in patients with type 2 diabetes mellitus who do not use insulin, but there are considerable costs. We sought to determine the cost effectiveness of self-monitoring for patients with type 2 diabetes not using insulin.

Methods

We performed an incremental cost-effectiveness analysis of the self-monitoring of blood glucose in adults with type 2 diabetes not taking insulin. We used the United Kingdom Prospective Diabetes Study (UKPDS) model to forecast diabetes-related complications, corresponding quality-adjusted life years and costs. Clinical data were obtained from a systematic review comparing self-monitoring with no self-monitoring. Costs and utility decrements were derived from published sources. We performed sensitivity analyses to examine the robustness of the results.

Results

Based on a clinically modest reduction in hemoglobin A1C of 0.25% (95% confidence interval 0.15–0.36) estimated from the systematic review, the UKPDS model predicted that self-monitoring performed 7 or more times per week reduced the lifetime incidence of diabetes-related complications compared with no self-monitoring, albeit at a higher cost (incremental cost per quality-adjusted life year $113 643). The results were largely unchanged in the sensitivity analysis, although the incremental cost per quality-adjusted life year fell within widely cited cost-effectiveness thresholds when testing frequency or the price per test strip was substantially reduced from the current levels.

Interpretation

For most patients with type 2 diabetes not using insulin, use of blood glucose test strips for frequent self-monitoring (≥ 7 times per week) is unlikely to represent efficient use of finite health care resources, although periodic testing (e.g., 1 or 2 times per week) may be cost-effective. Reduced test strip price would likely also improve cost-effectiveness.Self-monitoring of blood glucose in patients with diabetes who use insulin may contribute to improved glycemic control and reduced hypoglycemia by allowing for self-adjustments in insulin dose to be made based on meter readings.1 Self-monitoring may also allow for appropriate changes in diet and physical activity to be made. However, the benefits of self-monitoring of blood glucose for patients not using insulin are less clear. Hypoglycemia is less frequent in this population2 and is confined mainly to those taking secretagogues. The degree to which patients can adjust the dose of oral antidiabetes drugs in response to readings is limited.Nevertheless, self-monitoring of blood glucose is routinely recommended for patients who are not using insulin.1 This results in major investments in this technology by patients and payers.3 In 2006, $250 million was spent on blood glucose test strips in 8 publicly funded drugs plans in Newfoundland and Labrador, Nova Scotia, Quebec, Ontario, Manitoba, Saskatchewan and British Columbia, while over $120 million was spent in privately funded drug plans in Canada.4 In some publicly funded drug plans in Canada, blood glucose test strips are among the top 5 classes in terms of total expenditure,5 with costs exceeding those for all oral antidiabetes drugs combined.4,6 It is estimated that more than 50% of the total expenditure on blood glucose test strips is for patients with type 2 diabetes who are not using insulin.3 Costs related to test strips are expected to rise steadily5,7 because of the increasing prevalence of type 2 diabetes.8Decisions about the prescribing and reimbursement of blood glucose test strips require consideration of information about the costs and clinical benefits.9,10 As part of a larger initiative to determine the optimal use of this technology, we sought to determine the cost-effectiveness of self-monitoring of blood glucose for patients with type 2 diabetes who do not use insulin, based on data from our systematic review11 of the available clinical evidence.  相似文献   

9.
The demonstrated role of the tight control of hyperglycaemia for the prevention of long-term diabetic complications has reoriented the goals of insulin supply toward the search for restoration of the effects of physiological insulin secretion rather than the simple survival of insulin deficient patients and the reduction in the number of daily insulin injections to be performed. Normal blood glucose control requires the availability of a fast-acting insulin therapy at meal time in order to reduce hyperglycaemic excursions and a basal insulin therapy able to stabilize blood glucose between meals. Reduction of induced hypoglycaemic risk represents the secondary objective beside the main goal of avoiding hyperglycaemia. Fast-acting analogues, by a faster dissociation of their hexameric conformation after their injection or infusion in subcutaneous tissue, reduce post-meal hyperglycaemia, while their shortened duration of action versus regular insulin minimizes late post-absorptive risk of hypoglycaemia. Long-acting analogues, by their precipitation in subcutaneous tissue or their slowly reversible binding to albumin, provide a benefit on blood glucose stability versus NPH or zinc insulins. Continuous insulin therapy using pumps offers both a better blood glucose stability than multiple daily injections and a broader flexibility in life mode. Using the peritoneal route by implantable pumps is a mean to improve blood glucose stability in poorly controlled patients in spite of optimized subcutaneous insulin therapy. The development of glucose sensors provides reinforced information on blood glucose, versus self-monitoring by capillary blood measurements, that contributes to a better adaptation of insulin therapy. First trials of connections between blood glucose data and insulin delivery open a perspective toward glucose-modulated insulin therapy, at least in periods outside meals, leading to first models of semi-automated artificial endocrine pancreas. The alternative of a cellular insulin supply by pancreas or islet transplantation looked promising during recent years, but lack of transplants and adverse events related to immune suppression limit their use to very specific cases where benefit/risk ratio is positive.  相似文献   

10.
Self-management of insulin-dependent diabetes mellitus (IDDM) is dependent on a negative feedback loop of blood glucose (BG) fluctuations, which in turn directs treatment decisions to maintain normal BG. Although this feedback is typically accomplished by self-monitoring of blood glucose (SMBG), SMBG has limitations, and patients often rely on what their BG "feels" like. Two studies were performed to evaluate whether patients could learn to more accurately "feel"/discriminate their BG on the basis of internal cues or internal plus external BG cues. In Study I, BG Awareness Training significantly improved pre- to posttreatment BG estimation accuracy, relative to a control group. Study II replicated BG Awareness Training efficacy in improving BG estimation accuracy. Improvement in estimation accuracy was related only to initial accuracy; those who were initially less accurate improved the most. This improvement was represented in a 31% reduction in dangerous BG estimation errors and a 9% increase in accurate estimates. Resulting estimations were, however, still significantly less accurate than SMBG at the end of training.  相似文献   

11.
Interindividual and ethnic variation in glycated hemoglobin levels, unrelated to blood glucose variation, complicates the clinical use of glycated hemoglobin assays for the diagnosis and management of diabetes. Assessing the types and amounts of glycated hemoglobins present in erythrocytes could provide insight into the mechanism. Blood samples and self-monitored mean blood glucose (MBG) levels were obtained from 85 pediatric type 1 diabetes patients. Glycated hemoglobin levels were measured using three primary assays (boronate-affinity chromatography, capillary isoelectric focusing (CIEF), and standardized DCA2000+ immunoassay) and a two-dimensional (2D) analytical system consisting of boronate-affinity chromatography followed by CIEF. The 2D system separated hemoglobin into five subfractions, four of which contained glycated hemoglobins. Glycated hemoglobin measurements were compared in patients with low, moderate, or high hemoglobin glycation index (HGI), a measure of glycated hemoglobin controlled for blood glucose variation. MBG was not significantly different between HGI groups. Glycated hemoglobin levels measured by all three primary assays and in all four glycated 2D subfractions were significantly different between HGI groups and highest in high HGI patients. These results show that interindividual variation in glycated hemoglobin levels was evident in diabetes patients with similar blood glucose levels regardless of which glycated hemoglobins were measured.  相似文献   

12.
13.
《Endocrine practice》2015,21(11):1195-1203
Objective: Evaluate the performance of glycated albumin (GA) monitoring by comparing it to other measures of glycemic control during intensification of antidiabetic therapy.Methods: This 12-week, prospective, multicenter study compared the diagnostic clinical performance of GA to glycated hemoglobin A1C (A1C), fructosamine corrected for albumin (FRA), fasting plasma glucose (FPG), and mean blood glucose (MBG) estimated from self-monitoring of blood glucose (SMBG) and continuous glucose monitoring (CGM) in 30 patients with suboptimally controlled type 1 or 2 diabetes.Results: Mean A1C decreased from 9.5% to 8.1%. Mean SMBG correlated closely with CGM (Pearson r = 0.783 for daily estimates and r = 0.746 for weekly estimates, P<.0001). Both GA and FRA levels significantly correlated with changes from baseline in A1C and mean weekly SMBG (P<.001). The lowest observed median GA occurred at 4 weeks, followed by a small increase and then a slight reduction, mirroring changes in overall mean SMBG values. The median A1C fell throughout the treatment period, failing to reflect short-term changes in SMBG. A ≥1% reduction in GA at 4 weeks was significantly associated with a ≥0.5% change in A1C at 12 weeks (odds ratio &lsqb;OR] = 19.0, 95% confidence interval &lsqb;CI]: 1.4, 944, P = .018).Conclusion: In patients receiving glucose-lowering therapy, changes in GA at 4 weeks were concordant with changes in A1C at 12 weeks, and both GA and FRA more accurately reflected short-term blood glucose fluctuations than A1C.Abbreviations: A1C = glycated hemoglobin A1C ARIC = Atherosclerosis Risk in Communities CGM = continuous glucose monitoring FPG = fasting plasma glucose FRA = fructosamine corrected for albumin GA = glycated albumin MBG = mean blood glucose OR = odds ratio SMBG = self-monitoring of blood glucose  相似文献   

14.
Pregnant women may develop gestational diabetes mellitus (GDM), a disease of pregnancy characterised by maternal and fetal hyperglycaemia with hazardous consequences to the mother, the fetus, and the newborn. Maternal hyperglycaemia in GDM results in fetoplacental endothelial dysfunction. GDM-harmful effects result from chronic and short periods of hyperglycaemia. Thus, it is determinant to keep glycaemia within physiological ranges avoiding short but repetitive periods of hyper or hypoglycaemia. The variation of glycaemia over time is defined as ‘glycaemia dynamics’. The latter concept regards with a variety of mechanisms and environmental conditions leading to blood glucose handling. In this review we summarized the different metrics for glycaemia dynamics derived from quantitative, plane distribution, amplitude, score values, variability estimation, and time series analysis. The potential application of the derived metrics from self-monitoring of blood glucose (SMBG) and continuous glucose monitoring (CGM) in the potential alterations of pregnancy outcome in GDM are discussed.  相似文献   

15.
Di@bet.es study results are impressive, showing that diabetes affects 13.8% of the Spanish population. Not only the statistical facts are alarming, but the increasing incidence of this disease is a major problem, as pandemic proportions of type 2 diabetes are expected. Thus, the study of diabetes represents a challenge not only for health services, but also for the Ministries of Health and Finance. Technology has become an essential tool in the quality care of patients with diabetes, as it helps in the healthcare processes to obtain an optimum metabolic balance and prevent possible complications. Insulin pumps, continuous glucose monitoring and self-monitoring blood glucose have all proved their efficiency, and telemedicine it is making good progress. The indirect costs of diabetes in Spain are much higher than the direct ones, showing the importance of inverting the paradox. The optimization of resources depends not only on the ability of the physicians, but also the administration, to implant and sustain technological innovations in our system, and with that make it effective in terms of benefits. Cost-effectiveness and cost-utility analysis are needed to prioritize and allow health management services to make the correct choices for approaching this prevalent chronic disease.  相似文献   

16.
《Endocrine practice》2016,22(8):1008-1021
Objective/Methods: Barriers to continuous glucose monitoring (CGM) use continue to hamper adoption of this valuable technology for the management of diabetes. The American Association of Clinical Endocrinologists and the American College of Endocrinology convened a public consensus conference February 20, 2016, to review available CGM data and propose strategies for expanding CGM access.Results: Conference participants agreed that evidence supports the benefits of CGM in type 1 diabetes and that these benefits are likely to apply whenever intensive insulin therapy is used, regardless of diabetes type. CGM is likely to reduce healthcare resource utilization for acute and chronic complications, although real-world analyses are needed to confirm potential cost savings and quality of life improvements. Ongoing technological advances have improved CGM accuracy and usability, but more innovations in human factors, data delivery, reporting, and interpretation are needed to foster expanded use. The development of a standardized data report using similar metrics across all devices would facilitate clinician and patient understanding and utilization of CGM. Expanded CGM coverage by government and private payers is an urgent need.Conclusion: CGM improves glycemic control, reduces hypoglycemia, and may reduce overall costs of diabetes management. Expanding CGM coverage and utilization is likely to improve the health outcomes of people with diabetes.Abbreviations:A1C = glycated hemoglobinAACE = American Association of Clinical EndocrinologistsACE = American College of EndocrinologyASPIRE = Automation to Simulate Pancreatic Insulin ResponseCGM = continuous glucose monitoringHRQOL = health-related quality of lifeICER = incremental cost-effectiveness ratioJDRF = Juvenile Diabetes Research FoundationMARD = mean absolute relative differenceMDI = multiple daily injectionsQALY = quality-adjusted life yearsRCT = randomized, controlled trialSAP = sensor-augmented pumpSMBG = self-monitoring of blood glucoseSTAR = Sensor-Augmented Pump Therapy for A1C ReductionT1D = type 1 diabetesT2D = type 2 diabetes  相似文献   

17.
《Endocrine practice》2008,14(2):239-247
ObjectiveTo review the importance of controlling blood glucose levels and the role of self-monitoring of blood glucose (SMBG) in the management of pregnancy complicated by diabetes.MethodsThis report describes the relationship between hyperglycemia and maternal and neonatal complications, reviews the utility of meal-based SMBG in modifying food choices and adjusting insulin doses, and proposes an algorithm to achieve normoglycemia in pregnancies complicated by diabetes.ResultsThe risk of diabetes-related complications in pregnancy is more strongly associated with 1-hour post-prandial plasma glucose concentrations than with fasting plasma glucose levels. SMBG strategies that incorporate postprandial glucose testing provide better glycemic control and greater reductions in risk of complications than does preprandial glucose testing alone. Although the optimal timing and frequency of SMBG remain controversial, available clinical evidence supports testing 4 times per day (before breakfast and 1 hour after each meal) in women with gestational diabetes managed by medical nutrition therapy only and 6 times per day (before and 1 hour after each meal) in pregnant women treated with insulin.ConclusionMeal-based SMBG is a valuable tool for improving outcomes in pregnancy complicated by diabetes. The lessons learned in this setting should have relevance to the general population of patients with diabetes, in whom microvascular and macrovascular complications are the outcomes of importance. (Endocr Pract. 2008; 14:239-247)  相似文献   

18.
《Insulin》2008,3(1):5-14
Background: Self-mmonitoring of blood glucose (SSMBG) is important for all patients with diabetes, as it provides valuable feedback on the effects of diet, exercise, and medications. To maximize the potential benefits of SMBG, clinicians must have confidence in the accuracy of their patients' glucose meters.Objective: The aim of this article is to review several issues related to glucose meter accuracy and ways that accuracy can be enhanced.Methods: A MeDLINE search of English-language articles using the terms SMBG, glucose meter,and accuracy as an initial screen was performed. After articles describing the use of outdated technologies or vague methodologies were excluded, appropriate articles that analyzed various aspects regarding meter accuracy were selected.Results: Glucose meter accuracy studies are complicated by issues related to the reference method, the sample being assayed, nd he ay n which accuracy s reported. error rid analysis ives linicians a means to valuate the clinical importance of meter error. Modern glucose meters have many technological improvements and enhanced clinical accuracy; however, the accuracy of readings depends not only on the instrument but also on patient technique and other aspects of the overall testing process.Conclusions: SMBG has proven to be a valuable tool for the management of diabetes whether it is used to guide insulin dosing, provide feedback on the effect of meals, or detect hypoglycemia. Accuracy of SMBG can be optimized by patient education and continued improvements in meter technology.  相似文献   

19.
Intravenous amperometric needle-type enzymatic glucose/lactate sensors intended for continuous monitoring are prepared with a novel nitric oxide (NO) releasing layer to improve device hemocompatibility. To create an underlying NO release coating, the sensors with immobilized enzymes (either glucose oxidase or lactate oxidase) are prepared with a thin layer of poly(lactide-co-glycolide) (PLGA) loaded with lipophilic diazeniumdiolate species that slowly release NO via a proton driven reaction. An outer thin layer (ca. 30 μm) of PurSil (polyurethane/dimethylsiloxane copolymer) limits the flux of glucose and lactate to the inner layer of enzyme, to provide the desired linear amperometric response. A 30 μm coating of PLGA containing 33 wt% of the appropriate NO donor (N-diazeniumdiolated dibutylhexanediamine, DBHD/N?O?) can release NO at a physiologically relevant rate > 1 × 10?1?mol min?1 cm?2 for at least 7 days without influencing the analytical performance of the glucose/lactate sensors. In vitro, the sensors exhibit relatively stable amperometric response over a one-week period with high selectivity over interferences (e.g., ascorbic acid) required for blood monitoring applications. Glucose sensors implanted in the veins of rabbits for 8h exhibit significantly enhanced hemocompatibility for the NO release sensors vs. corresponding controls (without NO release in same animals), with greatly reduced thrombus formation on their surfaces. Further, the analytical performance of the NO release glucose sensors are superior to controls placed in the veins of the same animals, with a greater accuracy in measuring blood glucose levels as evaluated using a Clarke error grid type analysis.  相似文献   

20.
《Endocrine practice》2019,25(4):306-314
Objective: Characterize the effectiveness of insulin glargine alone, exenatide alone, or combined in subjects taking stable doses of metformin and evaluate their impact on hemoglobin A1C, hypoglycemia, weight, and glucose variability.Methods: Open-label, randomized, parallel-arm study of adults with type 2 diabetes naïve to both insulin and glucagon-like peptide 1 (GLP-1) agonist who were not at A1C goal despite treatment with metformin. This prospective interventional study employed blinded continuous glucose monitoring ambulatory glucose profile (AGP) reports over 32 weeks. Subjects were randomized to treatment with glargine (Iglar), exenatide (GLP-1), or combination of glargine and exenatide (Iglar + GLP-1). At midpoint, those not at A1C target had the second medication added; those on Iglar + GLP-1 continued therapy optimization.Results: Decreases in A1C were: 7.6 to 6.2% for Iglar + GLP-1, 7.5 to 6.6% for Iglar, and 7.5 to 6.4% for GLP-1. Iglar + GLP-1 achieved A1C targets faster (14 to 16 weeks) but had more hypoglycemia. Hypoglycemia rates increased slightly for all arms. Weight loss was achieved in all regimens including GLP-1. Glucose variability was not reduced to the same extent in the Iglar arm as the GLP-1 arm.Conclusion: Addition of Iglar and/or GLP-1 to metformin for patients not at treatment goal was safe and effective. The order of medication addition needs to consider individualized AGP patterns and goals. Iglar + GLP-1 resulted in rapid A1C lowering, whereas GLP-1 was noted to have less hypoglycemia. Weight loss was most pronounced in GLP-1 monotherapy, suggesting that GLP-1 may mitigate the weight gain of Iglar. Any treatment with GLP-1 showed significant decreases in glucose variability.Abbreviations: A1C = hemoglobin A1c; AGP = ambulatory glucose profile; CGM = continuous glucose monitoring; GLM = general linear model; GLP-1 = glucagon-like peptide 1 (exenatide); Iglar = insulin glargine; SGLT2 = sodium-glucose cotransporter 2; SMBG = self-monitoring blood glucose; SU = sulfonylurea; T2D = type 2 diabetes mellitus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号