首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Heat shock protein 70 (Hsp70) is a member of a family of conserved chaperone proteins whose function is well investigated in many model organisms. Here we focus on an Hsp70 called Ssa5 in the ciliate protozoan Tetrahymena thermophila, and reveal that its translation is heat inducible as for general Hsps. Moreover, the protein is abundantly expressed in the cytoplasm during sexual reproduction (conjugation) as well as in response to heat‐stress. Knocking out of SSA5 (ΔSSA5) does not affect the survival of the cell under heat‐stress, likely due to other Hsp70 paralogs compensating for the defect. During conjugation, ΔSSA5 leads to a fertilization defect in which the two pronuclei are in close proximity but never fuse. The unfertilized pronuclei differentiate, resulting in a heterokaryon with developed haploid germline and somatic nuclei. In addition, degeneration of the parental somatic nucleus is not affected. These results suggest a specific involvement of Ssa5 in pronuclear fusion and fertilization.  相似文献   

2.
We have studied in detail the immunofluorescence localizations of Tetrahymena 14-nm filament-forming protein (49-kDa protein) in relation to tubulin in conjugating wild-type Tetrahymena thermophila (B strain) pairs and in pairs between B strain and star strains with defective micronuclei. The results suggest that germ nuclear behavior during conjugation may involve the following cytoskeletal structures: (1) during meiosis, microtubule structures are involved in micronuclear elongation and meiotic division; (2) at the postmeiotic stage, 49-kDa protein network structures that are formed independently of the existence of pronuclei are involved in the selection and the survival of one of four meiotic products; (3) during the third prezygotic division, gametic pronuclear transfer, and zygote formation, a cytoskeletal structure in which the 49-kDa protein colocalizes with microtubules and which is dependent on the existence of a normal gametic pronucleus is involved in gametic pronuclear behavior, and (4) during the postzygotic divisions, the microtubules are involved in nuclear behavior.  相似文献   

3.
"Fenestrin" and Conjugation in Tetrahymena thermophila   总被引:1,自引:0,他引:1  
ABSTRACT Certain monoclonal antibodies interact with proteins of Tetrahymena thermophila found in the conjugation junction as well as around the gametic nuclei (pronuclei) of conjugating cells; they also react with the oral primordium and fission zone of vegetative cells and with the cytoproct and contractile vacuole pores of all cells. One of these (FXIX-3A7) was investigated in detail. Immunogold labelling suggests that the material labelled by the 3A7 monoclonal antibody, which we call “fenestrin,” is located beneath the epiplasm (membrane skeleton). Immunoblots reveal that the major and perhaps sole antigen is a 64 kDa polypeptide, found in two isoelectric variants. Developmental studies implicate fenestrin in two processes involved in conjugation. The first is “tip transformation.” During preliminary starvation (“initiation”), labelling of fenestrin first appeared as a spot at the anterior end of starved mature cells, then after mixing of different mating types (“costimulation”) it extended posteriorly along the anterior suture. After pairing, this region spread to form a widened plate. The second process is pronuclear transfer. Fenestrations representing channels between the conjugating cells began to appear 0.5 to 1 h after the conjugants united, and eventually merged to form a small number of temporary large holes during exchange of the transfer pronuclei. A fenestrin envelope also enclosed both the transfer and resident pronuclei; a strand of fenestrin connected the two. Shortly after pronuclear transfer, both transfer and resident pronuclei were released from fenestrin caps and fused to produce a zygotic nucleus (synkaryon) not associated with fenestrin. Fenestrin thus appears to be intimately involved in the process of pronuclear exchange.  相似文献   

4.
Conjugation in Tetrahymena thermophila involves a developmental program consisting of three prezygotic nuclear divisions, pronuclear exchange and fusion, and postzygotic and exconjugant stages. The conjugation junction structure appears during the initiation of conjugation development, and disappears during the exconjugant stage. Many structural and functional proteins are involved in the establishment and maintenance of the junction structure in T. thermophila. In the present study, a zinc finger protein-encoding gene ZFR1 was found to be expressed specifically during conjugation and to localize specifically to the conjugation junction region. Truncated Zfr1p localized at the plasma membrane in ordered arrays and decorated Golgi apparatus located adjacent to basal body. The N-terminal zinc finger and C-terminal hydrophobic domains of Zfr1p were found to be required for its specific conjugation junction localization. Conjugation development of ZFR1 somatic knockout cells was aborted at the pronuclear exchange and fusion conjugation stages. Furthermore, Zfr1p was found to be important for conjugation junction stability during the prezygotic nuclear division stage. Taken together, our data reveal that Zfr1p is required for the stability and integrity of the conjugation junction structure and essential for the sexual life cycle of the Tetrahymena cell.  相似文献   

5.
Vegetative cells were subjected to electrofusion and the resulting heteropolar doublets were then mated to normal single cells and followed throughout conjugation using cytological and genetic techniques. The unique cyto-geometry created in a heteropolar doublet--a continuous cytoplasmic compartment bounded by two anterior poles and sharing a fused posterior pole at midbody, and the potential for two conjugal exchange junctions--resulted in instructive perturbations of nuclear behavior. Our results indicate that the course of nuclear development is strongly dependent on the cortical geometry of conjugating cells. Specifically, 1) continuation of development after meiosis requires an established conjugal junction; 2) after pronuclear exchange, pronuclei are subjected to attractive forces; and 3) products of the second postzygotic division are actively positioned near the posterior region of the cell cortex where they develop into micronuclei.  相似文献   

6.
Recently, we proved the existence of the second calmodulin family protein in Tetrahymena (Tetrahymena calcium-binding protein of 25 kDa, TCBP-25) by analyzing its cDNA (Takemasa, T., Ohnishi, K., Kobayashi, T., Takagi, T., Konishi, K., and Watanabe, Y. (1989) J. Biol. Chem. 264, 19293-19301). During the amino acid sequence determination of TCBP-25, we became aware of the fact that another polypeptide carrying calcium-binding domains of EF-hand type existed in addition to Tetrahymena calmodulin and TCBP-25. This third calmodulin family protein from Tetrahymena was confirmed by isolating its cDNA clones. One of the cloned cDNAs contains 763 nucleotides and encodes a protein that is composed of 207 amino acid residues and has a molecular mass of 23,413 daltons. This predicted protein possesses four EF-hand type calcium-binding domains, so we have designated it as Tetrahymena calcium-binding protein of 23 kDa (TCBP-23). TCBP-23 is similar (35% homology) but clearly different from TCBP-25. The TCBP-23 gene is actively transcribed in vivo as a 0.84-kilobase RNA. Thus, it follows that Tetrahymena cells have three different calmodulin family proteins: calmodulin, TCBP-25 and TCBP-23. These proteins are expected to provide important clues for solving the mechanisms of calcium-dependent phenomena, such as ciliary reversal.  相似文献   

7.
With the intention of studying calcium-dependent ciliary reversal in Tetrahymena, we isolated a Tetrahymena calcium-binding protein of 10 kDa (TCBP-10) which was not calmodulin and reported its properties (Ohnishi, K., and Watanabe, Y. (1983) J. Biol. Chem. 258, 13978-13985). However, immunoblotting with an antiserum against TCBP-10 and sequencing of the cDNAs and partial genomic DNAs for this calcium-binding protein prove that this previously reported TCBP-10 is the degraded product of a 25-kDa calcium-binding protein. Thus, we correct the name of the protein from TCBP-10 to TCBP-25. From the analysis of the cDNA for TCBP-25, it is shown to be composed of 218 amino acid residues and its molecular weight is estimated to be 24,702. This protein is predicted to contain four EF-hand-type calcium binding domains and to be a member of the calmodulin family. Little sequence homology with other proteins was shown by a computer search, except in the EF-hand regions. The special feature of TCBP-25 is that the distance between calcium-binding domains II and III is extraordinarily long for a calmodulin family protein having four calcium-binding domains. The genomic DNA for TCBP-25 contains two introns situated at short distances before calcium-binding domains I and III, implying gene duplication in genealogy.  相似文献   

8.
In sexual reproduction, the union of the male and female pronuclei occurs in fertilized eggs to mix genetic materials derived from both parents, thereby creating a new genome for the next generation [1-4]. The process leading to pronuclear union consists of pronuclear congression, which depends on astral microtubules derived from sperm centrosome [5-8], and the subsequent pronuclear fusion or karyogamy. The union process progresses in parallel with the first embryonic cell cycle, but the molecular mechanisms involved are poorly understood. Here, we devise a labeling method with Dendra2 to track both pronuclei individually in living starfish eggs. Although pronuclear union naturally proceeds while G1 arrest is released by fertilization and S phase progresses [9], we show that the cell-cycle resumption and progression are not prerequisites for pronuclear union. However, low levels of cyclin B- (but not cyclin A-) Cdk1 activity are detectable even in interphase, and are indispensable for pronuclear union, by contributing at least to pronuclear congression through formation of sperm aster. Pronuclear congression thus requires the activity of M-phase cell-cycle regulator in interphase, independently of the cell-cycle regulation. These findings not only provide a clue to the regulatory aspect of creation of new genome with fertilization, but also reveal a novel role for the M-phase Cdk1 during interphase.  相似文献   

9.
A new Ca2+-binding protein, different from calmodulin, has been detected in the cilium and cell body of Tetrahymena. This protein, designated as TCBP-10, has been purified from the cells to homogeneity. TCBP-10 is an acidic protein (pI = 4.5) which shows a Ca2+-dependent mobility shift in alkali-glycerol-polyacrylamide gel electrophoresis. The protein is resistant to heat and trichloroacetic acid. The molecular weight of the protein is 10,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 22,000 by Sephadex G-50 gel filtration, suggesting that the native form of the protein is a dimer. The protein has a molar extinction coefficient of 6,500 at 282 nm. Equilibrium dialysis experiments revealed that the protein binds 1 mol of Ca2+/mol of protein with a dissociation constant of 27 microM. The protein contains a relatively large quantity of acidic amino acids, single residues of cysteine, histidine, and tryptophan, and no methionine. These properties are similar to those of some low molecular weight Ca2+-binding proteins belonging to the calmodulin family. Thus, the cilium of Tetrahymena contains a second Ca2+-binding protein in addition to calmodulin. We consider that TCBP-10 and calmodulin may play important cooperative roles in the Ca2+-regulation of ciliary movement in Tetrahymena.  相似文献   

10.
Vinblastine is shown to induce pronuclear fusion failure in conjugating Tetrahymena thermophila. In this alternate conjugational pathway gametic pronuclei are exchanged between conjugants but do not fuse. Each pronucleus undergoes one mitotic division to produce a new macro- and micronucleus. Genetic consequences of pronuclear fusion failure include the following: (1) the progeny are whole genome homozygotes with nuclei derived from single meiotic products, and (2) half of the progeny are heterokaryons with micro- and macronuclei of different genetic origins. These facts make this process extremely useful in strain construction and mutant isolation. The induction of pronuclear fusion failure by vinblastine suggests that microtubules play an essential role in pronuclear fusion.  相似文献   

11.
In this preliminary work, using pig embryos ultrastructural immunocytochemistry with polyclonal antibodies against purified histones was used to demonstrate both their localization and the time of their appearance in pronuclei, from 15 h after ovulation (pronuclear stage) to 48 h postinsemination (4-cell stage). In pronuclei, the histones H2B, H3, and H4 were located in the heterochromatin as soon as it appeared. Usually, one of the pronuclei seemed to be more heavily labelled. The chromatin facing the zone of pronuclear contact formed a bowl-shaped region in each pronucleus heavily labelled for these histones. The so-called pseudo-nucleoli were present in both pronuclei and contained H2B. In 4-cell stages, the labelling intensities of heterochromatin for H2B, H3 and H4 were equal in all the nuclei. H2B was still evident in the pseudo-nucleoli, but in a lower quantity than before. The condensed chromatin located either under the nuclear envelope or surrounding the pseudo-nucleoli was heavily labelled for H2B, H3 and H4.  相似文献   

12.
Gao X  Zhu JJ  Yang XY  Yuan JQ  Wang YW  Song MG 《动物学研究》2011,32(4):461-464
在尾草履虫的接合生殖过程中,共有三次配前核分裂。在配前第三次分裂结束后,两个接合的细胞内均形成一个迁移原核和一个静止原核。迁移原核位于口旁锥内,而且紧贴于接合面,静止原核则位于迁移原核的外侧,两者呈左右排列,距离接近。但是,目前对导致两种原核近距离的原因尚不清楚。该文通过α-微管蛋白的单克隆抗体对受精核形成前的接合对进行了免疫荧光染色,结果发现,配前第三次分裂不同于前两次分裂,连接迁移原核和静止原核的核间连丝伸向细胞的后方,呈"U"或"V"型,结果导致两个原核左右排列,而不是前后排列,两者间的距离缩短。这个结果也阐明了造成两种原核近距离的原因。  相似文献   

13.
真核生物的细胞周期通过连续的激活和失活特定的周期蛋白/周期蛋白依赖性激酶复合物活性进行调控。嗜热四膜虫含有34种周期蛋白,有性生殖期特异表达的周期蛋白Cyc2和Cyc17在四膜虫小核减数分裂中发挥重要功能。本研究从嗜热四膜虫中鉴定出一种新的周期蛋白CYC28 (TTHERM_00082190)基因,预测编码266个氨基酸。实时荧光定量PCR表明,CYC28在有性生殖时期特异表达,且在4 h表达水平最高。通过同源重组构建获得MTT1启动子调控下的HA-CYC28突变体细胞。免疫荧光定位表明,HA-Cyc28定位在细胞质和凋亡的亲本大核中。分别构建CYC28敲除突变株和RNA干扰细胞株,对CYC28敲减突变体细胞的分析发现,营养生长和有性生殖期突变细胞发育正常。然而,过表达株Cyc28突变体引起原核染色体排列异常,原核不能完成有丝分裂形成配子核,有性生殖进程终止。结果表明,Cyc28参与细胞的有性生殖进程,它的正常表达和降解对原核有丝分裂的完成是必需的。  相似文献   

14.
J. Gaertig  Anne Fleury 《Protoplasma》1992,167(1-2):74-87
Summary Indirect immunofluorescence has revealed various intracytoplasmic microtubular structures, which are transiently polymerized in specific subcellular locations during the developmental process of conjugation in the ciliateTetrahymena thermophila. These structures include: (1) micronuclear spindles, (2) perimicronuclear microtubules, (3) microtubular baskets surrounding migrating pronuclei, and (4) microtubules interconnecting the pronuclei with the conjugants' junctional zone. Furthermore, a peripheral network of intracytoplasmic microtubules related to the cell cortex is present in both vegetative cells and in conjugants. Comparative observations made on cells undergoing normal conjugation and defective conjugation (occurring either spontaneously or induced by taxol) has revealed some rules governing the pattern of deployment of conjugation-specific microtubules. The presence of perinuclear microtubular arrays during early postmeiotic stages of development is strictly limited to more anteriorly located nuclei which includes the selected haploid nucleus that further divides to form the stationary and migratory pronuclei. These perinuclear microtubules may be involved in the positional control of nuclear fates leading to effective nuclear selection. Microtubular bundles associated with pronuclei and connecting the junctional zone are only formed in the presence of functional pronuclei, and may be involved in the guidance of pronuclei leading to their fusion. The mechanism of cytoplasmic control of nuclear differentiation of derivatives of the zygotic nucleus appear to be associated with a coordinate action of two microtubular arrays: spindle microtubules of the second postzygotic division and the peripheral intracytoplasmic network of microtubules, leading to a proper subcortical positioning of the postzygotic nuclei at opposite poles of the cell.Abbreviations MTs Microtubules  相似文献   

15.
Novel Reticular Calcium Binding Protein Is Purified on Taipoxin Columns   总被引:2,自引:1,他引:1  
Abstract: We identified, by affinity chromatography, two putative binding proteins for the presynaptic snake venom toxin taipoxin. We have previously characterized one of these proteins [neuronal pentraxin (NP)] as a neuronally secreted protein with homology to acute-phase proteins. Here we report the identification of the second protein as a 49-kDa lumenal calcium binding protein that we have named taipoxin-associated calcium binding protein 49 (TCBP-49). This protein contains six EF-hand putative calcium binding domains and the carboxyl-terminal sequence His-Asp-Glu-Leu (HDEL), identical to the yeast endoplasmic reticulum retention signal. Message for this protein is present in brain, liver, muscle, heart, kidney, and testis. Antibodies to this protein label reticular organelles of neurons and glia. This localization and the specific enrichment of native and recombinant TCBP-49 on columns of immobilized taipoxin raise the possibility that this protein interacts with internalized taipoxin, perhaps mediating its activation. The availability of pure TCBP-49 will allow direct tests of whether TCBP-49 alters the integrity of the oligomeric structure, phospholipase activity, or toxicity of taipoxin.  相似文献   

16.
Degradation of proteins mediated by ubiquitin-proteasome pathway (UPP) plays important roles in the regulation of eukaryotic cell cycle. In this study, the functional roles and regulatory mechanisms of UPP in mouse oocyte meiotic maturation, fertilization, and early embryonic cleavage were studied by drug-treatment, Western blot, antibody microinjection, and confocal microscopy. The meiotic resumption of both cumulus-enclosed oocytes and denuded oocytes was stimulated by two potent, reversible, and cell-permeable proteasome inhibitors, ALLN and MG-132. The metaphase I spindle assembly was prevented, and the distribution of ubiquitin, cyclin B1, and polo-like kinase 1 (Plk1) was also distorted. When UPP was inhibited, mitogen-activated protein kinase (MAPK)/p90rsk phosphorylation was not affected, but the cyclin B1 degradation that occurs during normal metaphase-anaphase transition was not observed. During oocyte activation, the emission of second polar body (PB2) and the pronuclear formation were inhibited by ALLN or MG-132. In oocytes microinjected with ubiquitin antibodies, PB2 emission and pronuclear formation were also inhibited after in vitro fertilization. The expression of cyclin B1 and the phosphorylation of MAPK/p90rsk could still be detected in ALLN or MG-132-treated oocytes even at 8 h after parthenogenetic activation or insemination, which may account for the inhibition of PB2 emission and pronuclear formation. We also for the first time investigated the subcellular localization of ubiquitin protein at different stages of oocyte and early embryo development. Ubiquitin protein was accumulated in the germinal vesicle (GV), the region between the separating homologous chromosomes, the midbody, the pronuclei, and the region between the separating sister chromatids. In conclusion, our results suggest that the UPP plays important roles in oocyte meiosis resumption, spindle assembly, polar body emission, and pronuclear formation, probably by regulating cyclin B1 degradation and MAPK/p90rsk phosphorylation.  相似文献   

17.
We postulated an essential role for a cysteine-protease in sea urchins sperm histones degradation which follows fertilization. We now report the purification of this enzyme, the determination of its N-terminal amino acid sequence and the localization of the protein with antibodies generated against this amino-terminal peptide. The immunofluorescence data confirmed the presence of this enzyme in the nucleus of unfertilized eggs. After fertilization labeling is observed both in female and male pronuclei suggesting a rapid recruitment of the enzyme to the male pronuclei. Interestingly, we have found that this cysteine-protease persists in the nucleus of the zygotes during S phase of the cell cycle and co-localizes with alpha-tubulin that organizes the mitotic spindle during the initial embryonic cell division.  相似文献   

18.

Background

During fertilization, pronuclear envelope breakdown (PNEB) is followed by the mingling of male and female genomes. Dynamic chromatin and protein rearrangements require posttranslational modification (PTM) for the postfertilization development.

Methodology/Principal Findings

Inhibition of poly(ADP-ribose) polymerase activity (PARylation) by either PJ-34 or 5-AIQ resulted in developmental arrest of fertilized embryos at the PNEB. PARylation inhibition affects spindle bundle formation and phosphorylation of Erk molecules of metaphase II (MII) unfertilized oocytes. We found a frequent appearance of multiple pronuclei (PN) in the PARylation-inhibited embryos, suggesting defective polymerization of tubulins. Attenuated phosphorylation of lamin A/C by PARylation was detected in the PARylation-inhibited embryos at PNEB. This was associated with sustained localization of heterodomain protein 1 (HP1) at the PN of the one-cell embryos arrested by PARylation inhibition.

Conclusions/Significance

Our findings indicate that PARylation is required for pronuclear fusion during postfertilization processes. These data further suggest that PARylation regulates protein dynamics essential for the beginning of mouse zygotic development. PARylation and its involving signal-pathways may represent potential targets as contraceptives.  相似文献   

19.
Conjugant pairs of Tetrahymena thermophila were mechanically separated by vigorous pipetting at the early stages of meiotic prophase. The complete sequence of conjugational nuclear events including the appearance of pronuclei, development of the new macronuclei (postzygotic development), and resorption of the old macronuclei was observed in the separated cells, without pronuclear exchange. The pronuclei in the separated cells were recognised by the presence of components of the extranuclear cytoskeleton, which were labelled with anti-tubulin and anti-fenestrin antibodies in the same way as in undisturbed conjugants. The apical region of the separated conjugants (the post-junction area), corresponding to the junction area of conjugants was labelled with anti-fenestrin antibody and maintained the properties required for the nuclear development. The results of the genetic study were consistent with a hypothesis that cytogamy (pronuclear fusion) was induced in the separated conjugants. Therefore, the lasting cell contact is not necessary for the successful completion of conjugational nuclear events.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号