首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of type I and II collagen synthesis in the temporomandibular joint (TMJ) area of 1- to 28-day-old rats was studied after hybridization with probes to pro alpha1(I) and pro alpha1(II) collagen mRNA, and stain intensity through the various cartilaginous zones of the mandibular condyle and other areas of TMJ was assessed. The pro alpha(I) collagen mRNA was detected in the perichondrium/periosteum, in the fibrous and undifferentiated cell layers of the mandibular condyle, in the articular disc, and in all bone structures and muscles. The pro alpha1(II) collagen mRNA was found in the condylar cartilage and the articular fossa. Intensity in the condyle was highest in the chondroblastic layer and decreased towards the lower hypertrophic layer. In the condylar cartilage of the 21- to 28-day-old rats the chondroblastic cell zone was relatively narrow compared with the younger animals, whereas the reverse seems to be the case in the cartilage of the articular fossa. Changes in the pro alpha1(II) collagen mRNA were observed in the osseochondral junction area of the primary spongiosa, in that at the age of 5 days intense staining was found, whereas no staining was observed by 14 days. In the mineralizing zone, however, the majority of osteoblastic cells gave a positive signal with the pro alpha1(I) collagen probe. In conclusion, type II collagen synthesis of the mandibular condyle is restricted to its upper area. This differs from the long bone epiphyseal plate, where this type of collagen is produced virtually throughout the cartilage. Type II collagen synthesis of the fossal cartilage seems to increase as a function of age.  相似文献   

2.
We examined the localization and boundary lubricating function of superficial zone protein (SZP) on the surface of mandibular condylar cartilage. Chondrocytes were separated from the surface layer of mandibular condylar cartilage of 6- to 9-month-old female pigs. A cyclic tensile strain of 7% or 21% cell elongation was applied to the cultured chondrocytes. Gene expression levels of cartilage matrix proteins and secretory phospholipase A2 (sPLA2) were quantified by real-time polymerase chain reaction analysis. The friction coefficient of the mandibular condylar surface was measured by a friction tester before and after treatment with 0.1 U/ml sPLA2. Significantly higher mRNA levels of SZP and type I collagen were found in chondrocytes from the superficial layer than in those in the other layers. The SZP mRNA level was up-regulated by cyclic tensile strain of 7% and 21% cell elongation. Cyclic tensile strain of 21% cell elongation up-regulated the sPLA2 mRNA level. The friction coefficient of the condylar surface was increased significantly by treatment with sPLA2. The removal of SZP from the surface layer of mandibular condylar cartilage by sPLA2 resulted in a significant increase in the friction coefficient on the surface of articular cartilage.  相似文献   

3.
Mandibular hypoplasia is a common jaw deformity that affects breathing, occlusal function and facial aesthetics. Stimulating mandibular condylar growing with functional appliances is an ordinary but controversial treatment method in orthodontics. Therefore, it is vital to clarify how functional appliances affect condylar growing. Raf-1 kinase inhibitor protein (RKIP), as an endogenous inhibitory molecule of the ERK signaling, is postulated to involve in stress-induced response to articular cartilage. This study was to reveal the role of RKIP in regulating cartilage matrix synthesis with functional appliance treatment. Here, position rat mandibular forward simulating functional appliance effect to examine the stress-induced modification of mandibular condylar in vivo, meanwhile rat mandibular condylar chondrocytes (Mccs) were subjected to cyclic tensile stress (CTS, 16%, 1 HZ). The results showed that mandibular forward therapy enhanced condylar cartilage growth. The thicknesses of all layers of condylar cartilage were increased significantly. RKIP expression was also increased in the mature cartilage layer. In addition, CTS could enhance extracellular matrix formation and cartilage marker expression (aggrecan and collagen II), which shared a similar expression pattern with RKIP in Mccs. However, CTS induced up-regulation of collagen II and aggrecan was blocked by RKIP knockdown. Nuclear p-ERK, targeting downstream of RKIP, showed a decrease after CTS,which was disappeared in RKIP-knockdown Mccs. Taken together, physiological mechanical stimulation promotes cartilage growth modification by up-regulating RKIP through inhibiting ERK signaling pathway.  相似文献   

4.
CD44 is a multifunctional adhesion molecule that binds to hyaluronan (HA), type I collagen, and fibronectin. We investigated localization of CD44 and HA in mandibular condylar cartilage compared with the growth plate and the articular cartilage, to clarify the characteristics of chondrocytes. We also performed Western blotting using a lysate of mandibular condyle. In mandibular condyle, CD44-positive cells were seen in the surface region of the fibrous cell layer and in the proliferative cell layer. Western blotting revealed that the molecular weight of CD44 in condyle was 78 to 86 kD. Intense reactivity for HA was detected on the surface of the condyle and the lacunae of the hypertrophic cell layer. Moderate labeling was seen in cartilage matrix of the proliferative and maturative layer. Weak labeling was also seen in the fibrous cell layer. In growth plate and articular cartilage, HA was detected in all cell layers. However, chondrocytes of these cartilages did not exhibit reactivity for CD44. These results suggest that chondrocytes in the mandibular condylar cartilage differ in expression of CD44 from those in tibial growth plate and articular cartilage. Cell-matrix interaction between CD44 and HA may play an important role in the proliferation of chondrocytes in the mandibular condyle.  相似文献   

5.
The purpose of the present study is to clarify native ultrastructures of upper surface layers of the rat mandibular condylar cartilage in vivo by a quick-freezing method. The mandibular cartilaginous tissues were removed with their articular discs attached without opening the lower joint cavity. The specimens were processed for light microscopy, transmission or scanning electron microscopy. Deep-etching replica membranes were also prepared after the routine quick-freezing method. The upper surface layer was well preserved by the quick-freezing method. The cartilaginous tissues, which were fixed without opening their articular discs, appeared to keep better morphology than those after opening them. The upper surface layer was thicker than the corresponding layer as reported before. It consisted of atypical extracellular matrices with lots of apparently amorphous components, which were distributed over typical collagen fibrils, by conventional electron microscopy. As revealed with the replica membranes, it also consisted of variously sized filaments and tiny granular components localized on the typical collagen fibrils. A pair of stereo-replica electron micrographs three-dimensionally showed compact filaments within the upper surface layer. The quick-freezing method was useful for keeping native ultrastructures of the fragile upper surface layer in the mandibular condylar cartilage, which may be functionally important to facilitate smooth movement of the temporomandibular joint.  相似文献   

6.
A method is described of measuring the tensile stiffness and fracture stress of human femoral condylar cartilage in planes parallel to and at increasing depth below the articular surface. The axis of tension was either parallel or perpendicular to the predominant collagen fibre direction in the superficial zone. Specimens were analysed for their collagen and glycosaminoglycan contents and partial correlation coefficients were determined between the tensile properties and each of the chemical constituents.The correlations between the tensile properties and the collagen content of specimens oriented parallel to the collagen fibre direction was statistically significant in the superficial zone but the significance level decreased with increasing depth. In specimens which were oriented perpendicularly to the collagen fibre direction the correlations between the above variables were less significant.There was no significant correlation between the tensile properties and the glycosaminoglycans in cartilage.Visibly normal specimens from the superficial layer which were situated adjacent to visibly degenerate cartilage were weaker and less stiff than specimens situated on normal joints or remote from visibly degenerate cartilage. Such differences decreased with depth below articular surface and were greater in parallel-oriented specimens.  相似文献   

7.
梁鑫  张波  刘苹  翁土军  张莉  贺龙珠  李芳菲  屈晨  王萍 《遗传》2015,37(6):561-567
成纤维细胞生长因子受体2(Fibroblast growth factor receptor, FGFR2)是参与调控骨骼发育的重要分子,在调控软骨内成骨过程中发挥着重要作用。为了探讨FGFR2功能增强对小鼠下颌骨髁突生长发育的影响,文章以FGFR2功能增强型点突变(Fgfr2+/S252W)小鼠为研究对象,采用番红固绿染色研究Fgfr2+/S252W小鼠下颌骨髁突不同生长发育阶段的组织形态;利用免疫细胞化学染色和实时荧光定量PCR方法检测X型胶原(Col X)在3周龄小鼠髁突肥大软骨细胞中的表达。结果显示,1周龄、3周龄和6周龄突变型小鼠下颌骨髁突的软骨细胞层宽度都比同窝野生型窄,钙化软骨细胞层退化时间早,骨小梁钙化绿染程度深;Col X在突变型小鼠下颌骨髁突的表达高于同窝野生型小鼠(P<0.001)。结果表明,FGFR2功能增强可导致小鼠下颌骨髁突软骨层组织形态异常,抑制髁突软骨内成骨,从而导致下颌骨髁突发育畸形。  相似文献   

8.
In order to obtain more insight into the physiologic mechanism of endochondral ossification, histological changes occurring in the mandibular condylar cartilage of growing rats fed on a low-calcium diet were investigated by light and electron microscopy. Twenty-three-day-old rats were fed on a normal diet or a low-calcium diet for 8 weeks. For the histological observations the mandibular condyles were dissected from each animal at 1, 2, 4, 5 and 8 weeks after the initiation of the experiment. Histological changes occurring in the mandibular condylar cartilages of the rats fed on a low-calcium diet were as follows: (1) narrow proliferative and mature cell zones and a wide hypertrophic cell zone, (2) inhibition of development of cell organelles in the mature chondrocytes, (3) decrease in dead cells in the proliferative zone, (4) decrease in glycogen accumulation in the chondrocytes and (5) inhibition of calcification in the extracellular matrix of the hypertrophic cell zone. Additionally at the end of the experimental period, the following findings were observed: (1) appearance of small light cells in the mature cell zone and the hypertrophic cell zone and (2) decrease in proteoglycan granules and appearance of large collagen fibrils in the pericellular region of the hypertrophic cell zone.  相似文献   

9.
Summary Mandibular condylar cartilage acts as both articular and growth plate cartilage during growth, and then becomes articular cartilage after growth is complete. Cartilaginous extracellular matrix is remodeled continuously via a combination of production, degradation by matrix metalloproteinases (MMPs), and inhibition of MMP activity by tissue inhibitors of metalloproteinases (TIMPs). This study attempted to clarify the age-related changes in the mRNA expression patterns of MMP-2, MMP-9, TIMP-1, TIMP-2, and TIMP-3 in mandibular condylar cartilage in comparison to tibial growth plate and articular cartilage using an in situ hybridization method in growing and adult rats. MMP-2 and MMP-9 were expressed in a wide range of condylar cartilage cells during growth, and their expression domains became limited to mature chondrocytes in adults. The patterns of TIMP-1 and TIMP-2 expression were similar to those of MMP-2 and MMP-9 during growth, and were maintained until adulthood. TIMP-3 was localized to hypertrophic chondrocytes throughout the growth stage. Therefore, we concluded that TIMP-1 and TIMP-2 were general inhibitors of MMP-2 and MMP-9 in condylar cartilage, while TIMP-3 regulates the collagenolytic degradation of the hypertrophic cartilage matrix.  相似文献   

10.
11.
Mandibular condylar cartilage plays a crucial role in temporomandibular joint (TMJ) function, which includes facilitating articulation with the temporomandibular joint disc and reducing loads on the underlying bone. The cartilage experiences considerable tensile forces due to direct compression and shear. However, only scarce information is available about its tensile properties. The present study aims to quantify the biomechanical characteristics of the mandibular condylar cartilage to aid future three-dimensional finite element modeling and tissue engineering studies. Porcine condylar cartilage was tested under uniaxial tension in two directions, anteroposterior and mediolateral, with three regions per direction. Stress relaxation behavior was modeled using the Kelvin model and a second-order generalized Kelvin model, and collagen fiber orientation was determined by polarized light microscopy. The stress relaxation behavior of the tissue was biexponential in nature. The tissue exhibited greater stiffness in the anteroposterior direction than in the mediolateral direction as reflected by higher Young's (2.4 times), instantaneous (1.9 times), and relaxed (1.9 times) moduli. No significant differences were observed among the regional properties in either direction. The predominantly anteroposterior macroscopic fiber orientation in the fibrous zone of condylar cartilage correlated well with the biomechanical findings. The condylar cartilage appears to be less stiff and less anisotropic under tension than the anatomically and functionally related TMJ disc. The anisotropy of the condylar cartilage, as evidenced by tensile behavior and collagen fiber orientation, suggests that the shear environment of the TMJ exposes the condylar cartilage to predominantly but not exclusively anteroposterior loading.  相似文献   

12.
The Megaladapidae have a posterior expansion of the articular surface of the mandibular condyle. Several other strepsirhine species exhibit a similar condylar surface. In this study, I propose two behavioral scenarios in which the posterior articular expansion might function: 1) contact with the postglenoid process and resistance to joint stress during browsing, and 2) movement against the postglenoid process during the fast closing and power strokes of mastication, as a consequence of large transverse jaw movements and associated with a strong mandibular symphysis. These models are evaluated through dissection of the TMJ in Lepilemur and from comparative anatomical observations on strepsirhines and ungulates. In Lepilemur the mandibular symphysis is unfused, but compared to the unfused symphyses of other strepsirhines is strengthened by interlocking bony projections (Beecher [1977] Am. J. Phys. Anthropol. 47:325–336). An accessory articular meniscus is found between the posterior articular expansion and the postglenoid process in Lepilemur, suggesting that significant movement occurs in this part of the TMJ. The symphysis is fused in adult specimens of Megaladapis. A posterior articular expansion is common among ungulates, and its presence is associated not with browsing but with symphyseal fusion. This supports the second model and suggests that the posterior articular expansion functions as a movement surface during mastication. Schwartz and Tattersall ([1987] J. Hum. Evol. 16:23–40) cite the posterior articular expansion as a synapomorphy uniting an Adapis-Leptadapis clade with a Megaladapidae-Daubentonia-Indridae clade. The comparative evidence suggests that the posterior articular expansion has evolved convergently in adapines, notharctines, megaladapids, hapalemurids, and indrids as part of a functional complex related to herbivory. However, close morphological similarity of the posterior articular expansion among genera within these strepsirhine subfamilies and families indicates that it is probably a reliable synapomorphy at lower taxonomic levels. Am J Phys Anthropol 103:263–276, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
There is a growing body of evidence supporting the involvement of the Wnt signaling pathway in various aspects of skeletal and joint development; however, it is unclear whether it is involved in the process of temporomandibular joint development. In order to clarify this issue, we examined the spatio-temporal distribution of mRNAs and proteins of the Wnt family during the formation of the mandibular condylar cartilage at the prenatal and postnatal stages. An in situ hybridization test revealed no mRNAs of β-catenin and Axin2 during early mesenchymal condensation; the ligands surveyed in this study (including Wnt-4, 5a, and 9a) were clearly detected at various ranges of expression, mainly in the condylar blastema and later distinct cartilaginous layers. Apart from β-catenin and Axin2, the Wnt family members surveyed in this study, including Lef-1, were found to be immunopositive during early chondrogenesis in the condylar cartilage at E14.5. After distinct chondrocyte layers were identified within the cartilage at E16.5, the expression of the Wnt signaling members was different and mainly restricted to proliferating cells and mineralized hypertrophic chondrocytes. In the adult mandibular condylar cartilage, the Wnt-4 mRNA, as well as the Wnt-4 and Wnt-9a proteins, was not observed. Our findings demonstrated that the Wnt signaling pathway was associated with the development of mandibular condylar cartilage.  相似文献   

14.
The objective of this study was to investigate the involvement of the insulin-like growth factor (IGF) system in the developing mandibular condylar cartilage and temporomandibular joint (TMJ). Fetal mice at embryonic day (E) 13.0-18.5 were used for in situ hybridization studies using [35S]-labeled RNA probes for IGF-I, IGF-II, IGF-I receptor (-IR), and IGF binding proteins (-BPs). At E13.0, IGF-I and IGF-II mRNA were expressed in the mesenchyme around the mandibular bone, but IGF-IR mRNA was not expressed within the bone. At E14.0, IGF-I and IGF-II mRNA were expressed in the outer layer of the condylar anlage, and IGF-IR mRNA was first detected within the condylar anlage, suggesting that the presence of IGF-IR mRNA in an IGF-rich environment triggers the initial formation of the condylar cartilage. IGFBP-4 mRNA was expressed in the anlagen of the articular disc and lower joint cavity from E15.0 to 18.5. When the upper joint cavity was formed at E18.5, IGFBP-4 mRNA expression was reduced in the fibrous mesenchymal tissue facing the upper joint cavity. Enhanced IGFBP-2 mRNA expression was first recognized in the anlagen of both the articular disc and lower joint cavity at E16.0 and continued expression in these tissues as well as in the fibrous mesenchymal tissue facing the upper joint cavity was observed at E18.5. IGFBP-5 mRNA was continuously expressed in the outer layer of the perichondrium/fibrous cell layer in the developing mandibular condyle. These findings suggest that the IGF system is involved in the formation of the condylar cartilage as well as in the TMJ.  相似文献   

15.
To investigate the role of mechanical pressure on cartilage thickness and type II collagen synthesis, and the role of G protein in that process, in vitro organ culture of mandibular cartilage was adopted in this study. A hydraulic pressure-controlled cellular strain unit was used to apply hydrostatic pressurization to explant cultures. The explants were compressed by different pressure values (0 kPa, 100 kPa, and 300 kPa) after pretreatment with or without a selective and direct antagonist (NF023) for the G proteins. After 4, 8 and 12 h of cell culture under each pressure condition, histological sections of the explants were stained with hematoxylin-eosin to investigate the thickness of the cartilage. Immunohistochemical staining was used to observe type II collagen expressions. The results showed that a hydrostatic pressure of 100 kPa significantly reduced the thickness of the proliferative layer in condylar cartilage without affecting the thickness of the transitional layer. Hydrostatic pressures of 100 kPa and 300 kPa significantly enhanced the synthesis of type II collagen. G proteins are involved not only in the proliferation and differentiation of condylar cartilage regulated by prolonged pressure, but also in the process of collagen production in condylar cartilage stimulated by pressure.  相似文献   

16.
A quick-freezing and deep-etching method in combination with replica immunoelectron microscopy was applied for examining localization of hyaluronic acid and fibronectin on the upper surface layer of rat mandibular condylar cartilage. Rat temporomandibular joints were dissected with articular disks in order to leave the articular cartilage surface intact. The disks were slightly cut with razor blades for exposing the condylar articular cartilage surface. They were quickly frozen with the isopentane-propane cryogen (–193°C) and prepared for freeze-fracturing and deep-etching replica membranes. They were additionally treated with 5% SDS and 0.5% collagenase to keep some antigens attached on the replica membranes. After such a treatment, a routine immunogold method was applied for clarifying the localization of hyaluronic acid and fibronectin in the upper surface layer. Small immunogold particles for hyaluronic acid were mainly localized around upper filamentous networks covered with amorphous materials, but large immunogold ones for fibronectin were localized on deep thicker fibrils. We have revealed the native architecture of the upper surface layer of mandibular condylar cartilage on the replica membranes and also three-dimensional localization of hyaluronic acid and fibronectin by the immunogold method.  相似文献   

17.
Summary The aim of the present investigation has been to further study an incidentally observed rare distribution of alkaline phosphatase in the covering of the mandibular condyle. It was felt that this phenomenon might be related to the necessary interaction between the bony and the cartilaginous condylar head during the transformative growth movements of the condylar process.The study has been based on histomorphological and histochemical observations on frontal and sagittal sections of mandibular condyles from rats between 10 and 21 days of age. As regards the bony condylar head which is oval with its long axis in the antero-posterior direction the observations showed that this structure during growth is transformed in a superior, posterior and medial direction. This involves differential resorption on the surfaces in the anterior part and differential apposition on the surfaces in the posterior part.As regards the cartilaginous condylar head, the observations showed that its shape in the frontal plane changes from triangular in the anterior part to rectangular in the posterior part. Alkaline phosphatase reaction in its perichondrium always reaches a higher level medially than laterally.General observations of perichondrial alkaline phosphatase reaction were applied to the distribution of the enzyme in the perichondrium of the mandibular condyle. These data suggest that as the condylar cartilage grows medially, it becomes narrower anteriorly and broader posteriorly.  相似文献   

18.
A monoclonal antibody to a core-protein-related epitope of a small dermatan sulfate-rich proteoglycan (DS-PGII) isolated from adult bovine articular cartilage (22) was used to localize this molecule, or molecules containing this epitope, in bovine articular cartilages, in cartilage growth plate, and in other connective tissues. Using an indirect method employing peroxidase-labeled pig anti-mouse immunoglobulin G, DS-PGII was shown to be present mainly in the superficial zone of adult articular condylar cartilage of the metacarpal-phalangeal joint. In fetal articular and epiphyseal cartilages, the molecule was uniformly distributed throughout the matrix. By approximately 10 months of age it was confined mainly to the superficial and middle zones of articular cartilage and the inter-territorial and pericellular matrix of the deep zone. DS-PGII was not detected in the primary growth plate of the fetus except in the proliferative zone, where it was sometimes present in trace amounts. In contrast, it was present throughout the adjacent matrix of developing epiphyseal cartilage. In the trabeculae of the metaphysis, strong staining for DS-PGII was seen in decalcified osteoid and bone immediately adjacent to osteoblasts. Staining was also observed on collagen fibrils in skin, tendon, and ligament and in the adventitia of the aorta and of smaller arterial vessels in the skin. These observations indicate that DS-PGII and/or molecules containing this epitope are widely distributed in collagenous tissues, where the molecule is intimately associated with collagen fibrils; in adult cartilage this association is limited mainly to the narrow parallel arrays of fibrils which are found in the superficial zone at the articular surface. From its intimate association and other studies, this molecule may play an important role in determining the sizes and tensile properties of collagen fibrils; it may also be involved in the calcification of osteoid but not of cartilage.  相似文献   

19.
Size and shape of the mandibular condyle in primates   总被引:4,自引:0,他引:4  
The relationships between the size of the articular surface of the mandibular condyle and masticatory muscle size, tooth size, diet, and biomechanical variables associated with mastication were studied by taking 12 measurements on skulls of 253 adult female anthropoid primates, including three to ten specimens from each of 32 species. In regressions of condylar length, width, or area against body weight, logarithmic transformations substantially improve the fit of the equations compared with untransformed data. There is a strong relationship between condylar measurements and body weight, with all correlations being .94 or higher. The slopes of the allometric regressions of length, width, and area of the condylar head indicate slight positive allometry with body size. Folivorous primates have smaller condyles than frugivorous primates, and colobines have smaller condyles than cebids, cercopithecines, or hominoids. When colobines are eliminated, the differences between frugivores and folivores are not significant. However, the two species with the relatively largest condyles are Pongo pygmaeus and Cercocebus torquatus, suggesting that there may be a relationship between unusually large condylar dimensions and the ability to crack hard nuts between the teeth. Cranial features having strong positive correlations with condylar dimensions include facial prognathism, maxillary incisor size, maxillary postcanine area, mandibular ramus breadth, and temporal fossa area. These data are interpreted as indicating that relatively large condyles are associated with relatively large masticatory muscles, relatively inefficient mandibular biomechanics, and a large dentition. These relationships support the growing evidence that the temporomandibular joint is a stress-bearing joint in normal function.  相似文献   

20.
In the mandibular condyle of the newborn mouse the chondroprogenitor (CP) zone is the only layer that incorporates 3H-thymidine thus serving the source for cells of the cartilage lineage. Ultrastructurally these cells have a mesenchymal appearance surrounded by collagen fibrils as well as by additional filaments that become apparent following fixation with ferrocyanide-reduced OsO4. In addition, electron-dense particles indicative of proteoglycans are scattered throughout the matrix in the CP zone as well as in the chondroblastic and hypertrophic zones. Following labeling with 35S-sulfate the CP zone as well as the other compartments revealed a substantial number of grains following processing for autoradiography. The number of grains per cell was highest in the hypertrophic zone. Indirect immunofluorescence indicated the presence of fibronectin in the articular surface, CP zone and in the hypertrophic zone. The immunogold method localized fibronectin intracellularly in CP cells and extracellularly in the hypertrophic zone. Therefore, in the mandibular condyle the CP cells which are capable for DNA synthesis are also involved in the synthesis of macromolecules of which some are specific for the cartilage phenotype, while others are associated with other functions of connective tissue cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号