首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gorham, J., McDonnell, E., Budrewicz, E. and Wyn Jones, R. G.1985. Salt tolerance in the Triticeae: growth and solute accumulationin leaves of Thinopyrum bessarabicum.—J. exp. Bot. 36:1021–1031. The diploid wheatgrass Thinopyrum bessarabicum was found towithstand prolonged exposure to 350 mol m–3 NaCl in hydroponicculture. During the gradual addition of salt to the externalmedium, osmotic adjustment was rapidly achieved by the accumulationof Na and Cl. Following osmotic adjustment constant leaf Naand Cl concentrations were maintained, and K was retained ata high level. Thinopyrum bessarabicum may be described as anosmoconformer, adjusting its internal osmotic pressure to 400–500mOsmol kg–1 above that of the external medium in hydroponicculture. Both slower shoot initiation and reduced leaf lengthcontributed to the reduced growth rates at higher salinities.Leaf width was not affected. Increasing salinity resulted inincreases in leaf concentrations of phosphate, glycinebetaine,sucrose and proline, and in decreases in the concentrationsof nitrate, sulphate, magnesium, calcium, total amino acidsand organic acids. Thinopyrum bessarabicum exhibits salt tolerancecharacters which may be useful in wheat breeding. Key words: Salt stress, solute accumulation, osmotic adjustment, Thinopyrum  相似文献   

2.
Glycinebetaine, proline, asparagine, sucrose, glucose, and dimethylsulphoniopropionate(DMSP) were the major organic solutes in Spartina alternifloraleaf blades. To investigate the physiological role(s) of thesesolutes, the effects of salinity, nitrogen, and sulphur treatmentson leaf blade solute levels were examined. Glycinebetaine wasthe major organic solute accumulated in leaf blades grown at500 mol m–3 NaCl, although asparagine and proline alsoaccumulated when the supply of nitrogen was sufficient. Thesesolutes may play a role in osmotic adjustment. In contrast,DMSP levels either did not change or were reduced in responseto the 500 mol m–3 NaCl treatment. Furthermore, elevatednitrogen supply decreased leaf blade DMSP levels, which wasopposite to the response of glycinebetaine, proline, and asparagine.A 1000-fold increase in external sulphate concentration hadno effect on the leaf blade levels of DMSP, glycinebetaine,proline, or asparagine. These findings suggest that the majorphysiological role of DMSP in S. alterniflora leaf blades isnot for osmotic adjustment, even under conditions of nitrogendeficit and excess sulphur. Instead, DMSP which was presentat 45—130 µmol g–1 dry weight, may play arole as a constitutive organic osmoticum. Key words: Spartina alterniflora, dimethylsulphoniopropionate, glycinebetaine, nitrogen, salinity  相似文献   

3.
The domestication of halophytes has been proposed as a strategy to expand cultivation onto unfavorable land. However, halophytes mainly have been considered for their performance in extremely saline environments, and only a few species have been characterized in terms of their tolerance and physiological responses to moderately high levels of salinity. Salvadora persica is an evergreen perennial halophyte capable of growing under extreme conditions, from very dry environments to highly saline soils. It possesses high potential economic value as a source of oil and medicinal compounds. To quantify its response to salinity, S. persica seedlings were exposed to 200 mM NaCl for 3 weeks, and growth, leaf gas exchange and solute accumulation were measured. The presence of NaCl induced a 100% increase in fresh weight and a 30% increase in dry weight, relative to non-salinized controls. Increases in fresh weight and dry weight were not associated with higher rates of net CO(2) assimilation, however. Analysis of ion accumulation revealed that S. persica leaves accumulated Na(+) as a primary osmoticum. The concentration of Na(+) in leaves of salinized plants was approximately 40-fold greater than that measured in non-salinized controls, and this was associated with significant reductions in leaf K(+) and Ca(2+) concentrations. In addition, a significant accumulation of proline, probably associated with osmotic adjustment and protection of membrane stability, occurred in roots of salinized plants.  相似文献   

4.
Salt Tolerance in the Triticeae: Leymus sabulosus   总被引:1,自引:0,他引:1  
Elymus dahuhcus, Leymus giganteus, L. angustus, L. sabulosusand, to a lesser extent, L. triticoides, were found to tolerate200 mol m–3 NaCl in solution culture. Elymus dahuricusdiffered from the Leymus species in its ion-uptake characteristics,showing a greater uptake of Cl and Na and a greater loss ofK from the shoots. In a more detailed experiment on Leymus sabulosusit was found that transpiration rates altered rapidly in responseto changes in external salinity whereas the accumulation ofNa and Cl in the leaves exhibited a lag of several days. Insalt stressed L. sabulosus Cl partially replaced the high levelsof nitrate found in the leaves of control plants. Glycinebetainelevels increased in the leaves from 8.0 mol m–3 plantsap in the controls to 28 mol m–3 plant sap at 250 molm–3 NaCl. Key words: Salt stress, Transpiration, Solute accumulation, Leymus  相似文献   

5.
Though halophytes are naturally adapted to salinity, their salt-tolerance limits are greatly influenced by their provenance and developmental stage. In the present study, physio-biochemical responses of two Tunisian ecotypes of the oilseed coastal halophyte Cakile maritima (Brassicaceae) to salinity (0–400 mM NaCl) were monitored during germination and vegetative growth stages. Tabarka and Jerba seeds were collected from humid or arid climatic areas, respectively. Plant response to salinity appeared to depend on the ecotype and salinity levels. Increasing salinity inhibited germination process. Jerba seeds were found to be more salt tolerant than the Tabarka ones. At the autotrophic stage of growth and under salt-free conditions, Jerba was less productive than Tabarka (in terms of dry matter accumulation), but plant biomass production and leaf expansion (area and number) of the former ecotype were progressively improved by 100 mM NaCl, as compared to the control. In contrast, at the same salt concentration, these parameters decreased under increasing salinity in Tabarka (salt sensitive). Leaf chlorophyll content was reduced at severe salinity, but this effect was more conspicuous in the sensitive Tabarka plants. Na+ contents in the Jerba and Tabarka leaves collected from the 400 mM NaCl-treated plants were 17- and 12-fold higher than in the respective controls. This effect was accompanied by a significant reduction in the leaf K+, Mg2+ and Ca2+ contents, especially in the salt-treated Tabarka. A significant accumulation of proline and soluble carbohydrates in leaves was found during the period of intensive leaf growth. These organic compounds likely play a role in leaf osmotic adjustment and in protection of membrane stability at severe salinity.  相似文献   

6.
Changes in peroxidase activity were studied in the attachedfirst leaf of dark-treated Oryza sativa L. cv. Bala seedlingsin response to benzyladenine and light treatments during laterperiods of leaf growth, prior to maturation. Darkness causeda mild decrease in peroxidase activity; but in illuminated leaves,the enzyme activity was stable at all times. There was a sharprise in peroxidase activity in dark-treated leaves upon lightor benzyladenine application, irrespective of the time of treatment.Benzyladenine treatment to illuminated leaves also caused arise in peroxidase activity. Exogenous hydrogen peroxide, glycolateand amizol resulted in a rise in peroxidase activity, whichwas further enhanced by benzyladenine treatment in both lightand dark incubated leaves. Proline maintained chlorophyll levels,whereas hydroxyproline caused chlorophyll degradation. Benzyladenineenhanced the proline effect and counteracted the hydroxyprolineeffect on chlorophyll. Both proline and hydroxyproline increasedperoxidase activity in the leaves of light and dark incubatedseedlings, and the enzyme activity further increased after benzyladeninetreatment. (Received December 7, 1984; Accepted May 8, 1985)  相似文献   

7.
Intra-specific variations in nonstructural carbohydrates and free proline were determined in leaves, apices, roots, and maturing seeds of two salt-tolerant cultivars (CR and Kharchia-65) and one salt-sensitive cv. Ghods of spring wheat (Triticum aestivum L.) grown in sand culture at various levels of salinity (0, 100, 200, and 300 mM NaCl and CaCl2 at 5 : 1 molar ratio) under controlled environmental conditions. The levels of leaf, apex, and root ethanol-soluble carbohydrates, fructans, starch, and proline increased in line with elevating level of salinity in all three cultivars under investigation. The contents of proline, soluble and insoluble carbohydrates in the apex increased to levels exceeding those in the leaves and roots. Soluble carbohydrate content of salt-sensitive cv. Ghods was higher in the leaves, apices, and roots and lower in the maturing seeds than in the other cultivars at all levels of salinity except at 300 mM. The results show considerable variation in the amount of soluble, insoluble sugars, and proline among plant tissues and wheat genotypes in response to salinity. Higher soluble carbohydrates and fructan in leaves, roots and maturing seeds of stressed plants indicate that their accumulation may help plant to tolerate salinity. Salt-sensitive cv. Ghods accumulated less soluble sugars in the maturing seeds and higher soluble sugars in the apices, which might be used as an indicator in screening wheat genotypes for salinity tolerance.  相似文献   

8.
The effect of salt stress was studied on proline accumulationand the activities of proline metabolic pathway enzymes in seedlingand leaf tissue of two genetically stable lines (SR2P1-2 andSR3P6-2) of in vitro selected NaCl-tolerant plants and parentcultivar Prakash of Brassica juncea L. Salt stress caused differentialenhancement in proline level in both seedlings and leaf tissueof plants at different developmental stages. The magnitude ofincrease in proline content was higher in SR3P6-2 line in seedlings(34 fold at 140 meq-1 NaCl) as well as leaves (16 fold at 40d after sowing at 100 meq-1 NaCl) compared to the parent cv.Prakash (29 fold in seedlings and five fold in leaves) and SR2P1-2(21 fold in seedlings and five fold in leaves) at similar stresslevels. Salt stress also resulted in changes in the activitiesof enzymes of proline metabolism. The activities of prolinebiosynthetic enzymes, pyrroline-5-carboxylate reductase andornithine aminotransferase, increased under salt stress bothin the seedlings and leaves. The range of increase in the activitiesof the two enzymes was relatively higher in SR3P6-2 (3·3-3·9fold) compared to the SR2P1-2 (1·8-2·8 fold) andparent cv. Prakash (1·5-2·8 fold). The activityof proline degrading enzyme, proline oxidase, decreased undersalt stress in both the tissues of all the lines; the reductionin activity was relatively greater in SR3P6-2 compared to SR2P1-2or cv. Prakash. The trend of changes in the enzyme activitieswas in tune with the increase in proline level, the magnitudeof change did not match the extent of increase in proline level.Copyright1995, 1999 Academic Press Brassica juncea L., NaCl-tolerant somaclones, proline content, ornithine aminotransferase, proline oxidase, pyrroline 5-carboxylate reductase  相似文献   

9.
An amphidiploid derived by colchicine treatment of a hybridbetween Triticum aestivum cv Chinese Spring and Thinopyrum bessarabicumwas found to be more salt tolerant than the wheat cultivarsChinese Spring, Kharchia and Ciano 79 in terms of survival andgrain yield at 250 mol m–3 NaCl. Tolerance was relatedto the ability of the amphidiploid to exclude Na and Cl fromthe shoots, and particularly from the young leaves, developinginflorescence and grain. There was no relationship between thesalt tolerance of the different species and varieties testedand changes in the concentrations of other solutes. The amphidiploiddid not inherit the high glycinebetaine concentrations characteristicof the wheatgrass parent. Amphidiploids produced from crossesbetween Thinopyrum species and wheat may be useful as stress-resistantnew crops. Key words: Salt stress, solute accumulation, Thinopyrum, Triticum  相似文献   

10.
The salt tolerance of three cultivars of Pisum sativum L. asdefined by root growth on saline substrate was in the orderDan > Alaska > Laxton Progress. The total content of freeamino acids decreased in Alaska, but not in Laxton Progress,with increasing salinity, while the content of the free basicamino acids increased with salinity. In both cultivars salinityinduced accumulation of free proline, but not enough to maintainthe osmotic adaptation of the cytoplasm. Proline accumulationcould not account for the greater tolerance of the Alaska cultivar.Both cultivars contain large amounts of glutamic acid and homoserine.The amino acid composition of protein of the Alaska cultivaris affected much more by salinity than is that of Laxton Progress.In Alaska salinity induces an increase in aspartic and glutamicacids, threonine, serine, leucine and isoleucine. The totalcontent of basic amino acids decreases with salinity. The proteinof Laxton Progress is very rich in leucine and its amount slightlydecreases with salinity. In the most tolerant cultivar, Dan,there is more proline in the protein than in the other two cultivarsand its content of leucine increases with salinity. The onlyfeatures which show some correlation with salinity toleranceare proline content (Dan > Alaska > Laxton Progress) andan increase in leucine content in the protein, with increasingsalinity. Pisum sativum L, pea, amino acid composition of roots, salinity  相似文献   

11.
Sheng M  Tang M  Zhang F  Huang Y 《Mycorrhiza》2011,21(5):423-430
A pot experiment was conducted to examine the effect of the arbuscular mycorrhizal (AM) fungus, Glomus mosseae, on plant biomass and organic solute accumulation in maize leaves. Maize plants were grown in sand and soil mixture with three NaCl levels (0, 0.5, and 1.0 g kg−1 dry substrate) for 55 days, after 15 days of establishment under non-saline conditions. At all salinity levels, mycorrhizal plants had higher biomass and higher accumulation of organic solutes in leaves, which were dominated by soluble sugars, reducing sugars, soluble protein, and organic acids in both mycorrhizal and non-mycorrhizal plants. The relative abundance of free amino acids and proline in total organic solutes was lower in mycorrhizal than in non-mycorrhizal plants, while that of reducing sugars was higher. In addition, the AM symbiosis raised the concentrations of soluble sugars, reducing sugars, soluble protein, total organic acids, oxalic acid, fumaric acid, acetic acid, malic acid, and citric acid and decreased the concentrations of total free amino acids, proline, formic acid, and succinic acid in maize leaves. In mycorrhizal plants, the dominant organic acid was oxalic acid, while in non-mycorrhizal plants, the dominant organic acid was succinic acid. All the results presented here indicate that the accumulation of organic solutes in leaves is a specific physiological response of maize plants to the AM symbiosis, which could mitigate the negative impact of soil salinity on plant productivity.  相似文献   

12.
The capacity of tomato leaf tissues to accumulate proline in response to a salt shock (150 mM NaCl) applied to excised shoots, leaves, leaflets or leaf discs was determined and compared to that of whole plants grown at the same salinity. The associated changes in free amino acids, Na+, K+ and Cl- contents were also investigated. In excised organs treated for 80 h, up to 200 mumol g-1 DW of proline were accumulated, whereas the amount of proline in leaf discs did not exceed a value ten-fold lower. In the whole plants subjected to salinity the Na+, Cl- and K+ contents remained low in comparison to that observed in excised organs. Proline and other amino acids increased more slowly in whole plants than in excised shoots. The contribution of roots and vascular tissues to the control of Na+ and Cl- accumulation and to the regulation of proline metabolism are discussed.  相似文献   

13.
The ability of exogenous compatible solutes, such as proline, to counteract salt inhibitory effects was investigated in 2-year-old olive trees (Olea europaea L. cv. Chemlali) subjected to different saline water irrigation levels supplied or not with exogenous proline. Leaf water relations [relative water content (RWC), water potential], photosynthetic activity, leaf chlorophyll content, and starch contents were measured in young and old leaves. Salt ions (Na+, K+, and Ca2+), proline and soluble sugars contents were determined in leaf and root tissues. Supplementary proline significantly mitigated the adverse effects of salinity via the improvement of photosynthetic activity (Pn), RWC, chlorophyll and carotenoid, and starch contents. Pn of young leaves in the presence of 25 mM proline was at 1.18 and 1.38 times higher than the values recorded under moderate (SS1) and high salinity (SS2) treatments, respectively. Further, the proline supply seems to have a more important relaxing effect on the photosynthetic chain in young than in old leaves of salt-stressed olive plants. The differential pattern of proline content between young and old leaves suggests that there would be a difference between these tissues in distinguishing between the proline taken from the growing media and that produced as a result of salinity stress. Besides, the large reduction in Na+ accumulation in leaves and roots in the presence of proline could be due to its interference in osmotic adjustment process and/or its dilution by proline supply. Moreover, the lower accumulation of Na+ in proline-treated plants, compared to their corresponding salinity treatment, displayed the improved effect of proline on the ability of roots to exclude the salt ions from the xylem sap flowing to the shoot, and thus better growth rates.  相似文献   

14.
The physiological changes induced by a daily increase of NaCl level, over a period of 4 d, were studied in leaves of the salt-sensitive cultivated tomato species Lycopersicon esculentum and its wild salt-tolerant relative Lycopersicon pennellii. A higher solute contribution to the osmotic adjustment was observed in NaCl-treated leaves of L. pennellii than in those of L. esculentum. This response together with the higher accumulation of inorganic solutes in the wild species and of organic solutes in the cultivated species verified the different salt tolerance mechanisms operating in the two species in the short-term. With regard to the changes induced by salt stress on the free polyamine levels, the putrescine and spermine levels increased with salinity, whereas the spermine levels decreased in both tomato species; nevertheless, the main difference between the two species lays in an earlier and greater accumulation of putrescine induced by salinity in L. pennellii than in L. esculentum. The changes in putrescine levels were associated to changes in amino acids related to its synthesis, and the changes were different in both species. In L. esculentum, the high concentrations of some intermediate compounds (glutamate and arginine) were related to the low accumulation rate of both proline and putrescine. In contrast, in L. pennellii, important reductions in glutamate and arginine levels were found at the end of the salinization period. Moreover, in this last situation, a decline in the putrescine level ran parallel to a high proline accumulation, which suggests that the higher the stress level, the higher the deviation of glutamate to proline occurring in the salt tolerant species. It could be concluded that an early accumulation of the diamine putrescine seems to be associated with salt tolerance in the short-term.  相似文献   

15.
Six-months-old, uniform sized seedlings of two citrus rootstocks; Cleopatra mandarin (Citrus reshni Hort. ex Tan) and Troyer citrange (Poncirus trifoliata × Citrus sinensis) were irrigated with half-strength Hoagland nutrient solution containing 0, 40 or 80 mM NaCl for 12 weeks. Shoot height, leaf number and fresh weights of the seedlings, and relative chlorophyll contents, chlorophyll fluorescence yields (Fv/Fm), net photosynthetic and respiration rates in the leaves decreased with the increase in salinity level in the irrigation water. The decrease was greater in Troyer citrange as compared to Cleopatra mandarin. The concentrations of sugars i.e. fructose, glucose and sucrose in the leaves of Cleopatra mandarin and both leaves and roots of Troyer citrange decreased with the increase in salinity level. However, the concentrations in the roots of Cleopatra mandarin increased with the increase in salinity level. Free proline content in the leaves of Troyer citrange and root tissue of Cleopatra mandarin also increased with the increased salinity level. Among the polyamines, spermine titer increased in the leaves of both rootstocks as a response to salinity treatments. Na+ concentrations were higher in leaf and root tissue of Cleopatra mandarin, while that of Cl were higher in Troyer citrange.  相似文献   

16.
The changes in the levels of proline, sugar and soluble protein during leaf rolling and its relationship to osmotic adjustment were studied in laboratory conditions. Upon irrigation of plants which have rolled leaves, many sugar crystals occurred on the abaxial surface of the leaves in Ctenanthe setosa (Rosc.) Eichler. The sugar crystals were determined to have sucrose, glucose and fructose. The levels of reducing sugars and proline are higher in rolled leaves while soluble protein levels in rolled leaves are lower than those of unrolled leaves. It was found 1–3, 9–13, 16–21 and 24–28 crystals at degree of leaf rolling 23, 28, 47 and 52%, respectively. Finally, we found a significant correlation between the crystal number and degree of leaf rolling in Ctenanthe setosa. In addition, soluble sugars are found predominant accumulating solute in the plant and are of major importance as a contributor to osmotic adjustment during leaf rolling.  相似文献   

17.
根茎在羊草响应短期NaCl胁迫过程中的作用   总被引:5,自引:0,他引:5       下载免费PDF全文
根茎是根状茎型克隆植物的特有结构,在养分储存、运输和分蘖茎的形成等方面起关键性作用。然而有关根茎生理学方面的研究却十分匮乏。为了探讨根茎在植物感应环境胁迫中的作用, 本文以羊草(Leymus chinensis)为实验材料,研究和比较了短期NaCl胁迫根、根茎、根和根茎3种处理方式下羊草对盐胁迫的响应。试验结果表明:200 mmol·L-1 NaCl处理羊草根、根茎、根和根茎24 h,显著(p<0.05)降低羊草叶片净光合速率和蒸腾速率,增加叶片渗透浓度与脯氨酸含量;其中同时处理根和根茎叶片,蒸腾速率和净光合速率的降低程度显著高于分别处理根和根茎。在分别处理根与根茎的情况下,叶片含水量、脯氨酸含量、净光合速率、蒸腾速率均无显著性差异。不论单独胁迫根、根茎还是同时胁迫根和根茎,羊草根、根茎和叶片内Na+含量都显著高于对照,而羊草根、根茎和叶片内K+含量都显著低于对照。这些结果显示:1)根茎在羊草响应盐胁迫的生理过程中与根系具有类似的功能;2)羊草根茎在盐胁迫条件下能够有效地吸收Na+;3)鉴于根茎的生物量和表面积都明显地低于根系,在盐胁迫下羊草根茎吸收Na+的效率高于根系。  相似文献   

18.
Sanz, A., Martinez Cortina, C. and Guardiola, J. L. 1987. Theeffect of the fruit and exogenous hormones on leaf expansionand composition in Citrus.—J. exp. Bot. 38: 2033-2042. The effect of the developing flowers and fruitlets on leaf expansionand composition has been determined in leafy inflorescencesof Citrus sinensis L. Osbeck. During leaf expansion the developingflowers do not compete with the leaves, and their early removaldoes not affect leaf size and composition. Competition for mineralelements is established after flower opening, once leaf expansionis complete. No effect of the fruit on metabolizable carbohydratesin the leaves was found up to day 22 after flower opening. The response to exogenously applied growth regulators suggeststhat the differences in weight and composition between inflorescenceleaves and leaves from vegetative sprouts may be due to hormonally-mediateddifferences in sink strength. Gibberellic acid enhances laminaexpansion and increases the sink strength of the leaves. Kinetinenhances lamina expansion without affecting sink strength. Leafgrowth is directly related to both soluble and wall-bound acidinvertase activities; however, the GA3 effects on leaf growthand sink strength are unrelated to invertase activity and tothe rate of starch accumulation. Key words: Acid invertase, amylase, carbohydrates, Citrus, leaf growth  相似文献   

19.
The aim of the present study was to detect organic substances functioning as osmoticants that are used by the intertidal alga, Cladophora vagabunda (L.) Hoek (Chlorophyceae), to adapt to a wide range of salinity. The major constituents of the amino acid pool were aspartate, glutamate, glycine, valine, lysine, histidine, arginine, and proline. There were concomitant increases in the acidic amino acids: aspartate and the glutamate and the basic amino acids: lysine, histidine and arginine in response to salinity stress. The appearance of proline at hypersalinity alone showed that it acts as an osmoticant. As salinity increased, there was a progressive shift in the electrophoretic pattern of protein bands. New peptide bands appeared under hyposalinity (10‰) and hypersalinity (65‰) stress conditions in addition to the usual bands which appeared in the control (35‰). Glycine betaine, which has been considered a novel organic osmolyte in a number of organisms, has also been observed in C. vagabunda in response to salinity stress. The synthesis of the compatible solute glycine betaine and the amino acid proline with increasing salinity illustrates the contention that marine algae establish an osmotic equilibrium primarily by the synthesis of organic compounds. Presented at the 6th Meeting of the Asian Pacific Society of Applied Phycology, Manila, Philippines.  相似文献   

20.
We characterize the salinity stress response of Iris hexagona, a freshwater species, by measuring three putative osmolytes, betaine, proline, and dimethylsulphonio-propionate (DMSP) in plants after short (3 days) and long-term (4–5 months) exposure to NaCl. HPLC analyses show that untreated control leaves contained 2.1, 0.2 and 3.2 mg g−1 DW of betaine, proline, and DMSP, respectively, and establish the presence of these compounds in the Iridaceae. Within 4 days of salinity stress (200 mM NaCl) betaine, proline and DMSP increased significantly. Among vegetative tissues, the highest level of proline occurred in roots; betaine and DMSP were highest in leaves. Analyses of generative tissue (flowers and flower stalks) after long-term exposure showed the highest levels (>10 mg g−1 DW) of all examined compounds in petals but only proline and betaine increased with salinity. All three substances showed a basipetal gradient in flower stalks. Although the examined compounds responded to salinity, the osmometry of the sap indicated that they comprise less than 10% of the osmotically active solutes. The temporal and spatial changes in the distribution of the analyzed compounds indicate complex responses to salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号