首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thaumatin, an intensely sweet-tasting protein, was secreted by the methylotrophic yeast Pichia pastoris. The mature thaumatin II gene was directly cloned from Taq polymerase-amplified PCR products by using TA cloning methods and fused the pPIC9K expression vector that contains Saccharomyces cerevisiae prepro alpha-mating factor secretion signal. Several additional amino acid residues were introduced at both the N- and C-terminal ends by genetic modification to investigate the role of the terminal end region for elicitation of sweetness in the thaumatin molecule. The secondary and tertiary structures of purified recombinant thaumatin were almost identical to those of the plant thaumatin molecule. Recombinant thaumatin II elicited a sweet taste as native plant thaumatin II; its threshold value of sweetness to humans was around 50 nM, which is the same as that of plant thaumatin II. These results demonstrate that the functional expression of thaumatin II was attained by Pichia pastoris systems and that the N- and C-terminal regions of the thaumatin II molecule do not -play an important role in eliciting the sweet taste of thaumatin.  相似文献   

2.
Various maturation forms of the plant protein thaumatin were expressed in yeast, using a promoter fragment of the glyceraldehyde-3P-dehydrogenase (GAPDH) gene. Plasmids encoding preprothaumatin were shown to direct the synthesis of a processed form of the plant protein. The important role of signal sequences in the expression of the plant protein in yeast was indicated by the observation that plasmids encoding processed thaumatin forms were only poorly expressed, if at all. Nucleotide sequence analysis of the 843 nucleotide GAPDH promoter fragment revealed a characteristic structure with two regions of dyad symmetry containing translational starts of GAPDH and a putative 38 amino acid peptide. A promoter fragment from which the upstream region was deleted proved to be less efficient in thaumatin expression.  相似文献   

3.
The thaumatin content (forms TO, TI and TII) of fruits from Thaumatococcus danielli at various stages of maturation were examined. The amounts of all three forms of sweet protein increased during maturation to reach a total of about 50 mg/g in mature aril tissue in fruits from both the Ashanti and Kadjebe regions of Ghana. TO was a minor form in fruits at all stages of development from both regions. The major regional difference was that TII was absent from the Kadjebe fruits; however, the total level of sweet proteins was maintained by increased levels of TO and TI. Structural and immunological comparisons of the three thaumatin forms showed that TO is closely related to the other two forms which are known to differ at only five positions in their primary structure.  相似文献   

4.
Thaumatin is a sweet-tasting protein comprising a mixture of some variants. The major variants are thaumatins I and II. Although the amino acid sequence of thaumatin I was known and the nucleotide sequence of cDNA of thaumatin II was elucidated, the nucleotide sequence of thaumatin I has been controversial. We have cloned two thaumatin cDNAs from the fruit of Thaumatococcus daniellii Benth. One is the same nucleotide sequence as that of thaumatin II already reported, and the other is a novel nucleotide sequence. The amino acid sequence deduced from the novel cDNA was the same amino acid sequence as that of thaumatin I, the only exception being the residue at position 113 (Asp instead of Asn), indicating that the novel thaumatin cDNA is that for thaumatin I. This thaumatin I cDNA was transformed into Pichia pastoris X-33, and the recombinant thaumatin I expressed was purified and characterized. The threshold value of sweetness of the recombinant thaumatin I was the same as that of the plant thaumatin I, although several unexpected amino acid residues were attached to the N-terminal of the recombinant thaumatin I. These indicate that the N-terminal portion of thaumatin is not critical for the elicitation of sweetness.  相似文献   

5.
Thaumatin, an intensely sweet-tasting protein, elicits a sweet taste sensation at 50 nM. Here the X-ray crystallographic structure of one of its variants, thaumatin II, was determined at a resolution of 1.27 ?. Overall structure of thaumatin II is similar to thaumatin I, but a slight shift of the Cα atom of G96 in thaumatin II was observed. Furthermore, the side chain of residue 67 in thaumatin II is highly disordered. Since residue 67 is one of two residues critical to the sweetness of thaumatin, the present results suggested that the critical positive charges at positions 67 and 82 are disordered and the flexibility and fluctuation of these side chains would be suitable for interaction of thaumatin molecules with sweet receptors.  相似文献   

6.
Thaumatin, an intensely sweet-tasting protein, elicits a sweet taste sensation at 50 nM. Here the X-ray crystallographic structure of one of its variants, thaumatin II, was determined at a resolution of 1.27 Å. Overall structure of thaumatin II is similar to thaumatin I, but a slight shift of the Cα atom of G96 in thaumatin II was observed. Furthermore, the side chain of residue 67 in thaumatin II is highly disordered. Since residue 67 is one of two residues critical to the sweetness of thaumatin, the present results suggested that the critical positive charges at positions 67 and 82 are disordered and the flexibility and fluctuation of these side chains would be suitable for interaction of thaumatin molecules with sweet receptors.  相似文献   

7.
The structural features responsible for the sensory propertiesof the sweet protein, thaumatin, have been investigated by sidechain modification of amino acid residues using pyridoxal 5'-phosphate(PLP). PLP molecules bind covalently to proteins by reactingwith the -amino group and the -amino group of lysine residues.Spectral and sensory studies have been performed on thaumatin-PLPderivatives prepared at various molar ratios. The incorporationof one mole of PLP into thaumatin causes substantial modificationof the sensory properties which include generation of astringency,an unpleasant taste and the loss of sweetness intensity. Theintroduction of more than one mole of PLP has no further effecton the gustatory properties of thaumatin. Removal by alkalinephosphatase of the phosphate group of PLP bound to thaumatinhas no influence on the ability of PLP to modify the sensorycharacteristics of thaumatin. This suggests that the sensoryalteration caused by PLP cannot be ascribed to the changes inthe net charge of the protein, but is likely to be due to themodification of specific lysine residue(s) which are thus implicatedin the sweet site.  相似文献   

8.
Expression of foreign proteins in microorganisms   总被引:1,自引:0,他引:1  
The various alternative strategies for the expression of heterologous proteins in microorganisms are reviewed. To illustrate how these general considerations can be addressed in particular cases, the expression of chimeric human-mouse antibodies in Escherichia coli and the production of thaumatin, an intensely sweet plant protein, in yeast, are described.  相似文献   

9.
Thaumatin I is an intensely sweet-tasting protein. It was photo-crosslinked with taste papillae of crab-eating monkey by using a conjugated photo-affinity reagent [3H]azidobenzoylthaumatin I. Serial sections of SDS-polyacrylamide gel electrophoresis of the 0.1 M sodium phosphate buffer-soluble fraction from taste papillae had a large peak of radioactivity at the Mr region of approx. 70,000; fractions from non-taste papillae did not. Excess unlabeled thaumatin I reduced the photo-crosslinking at the 70 kDa region; acetylated thaumatin I (which is not sweet) did not. The results show that taste papillae of the monkey contain a protein of Mr approx. 50,000, which binds to thaumatin I (Mr 22,209) but not to completely acetylated thaumatin I. The possibility that the thaumatin-binding protein is a sweet receptor protein is discussed.  相似文献   

10.
Thaumatin is an intensely sweet-tasting protein perceived by humans but not rodents. Its threshold value of sweetness in humans is 50 nM, the lowest of any sweet-tasting protein. In the present study, the sites where sweet receptors interact with thaumatin were investigated using human embryonic kidney 293 (HEK293) cells expressing the sweet receptors T1R2–T1R3. Chimeric human– mouse sweet receptors were constructed and their responses to sweeteners were investigated. The human (h) T1R2– mouse (m) T1R3 combination responded to sucralose but not to thaumatin, clearly indicating that a T1R3 subunit from humans is necessary for the interaction with thaumatin. Furthermore, results obtained from using chimeric T1R3s showed that the cysteine-rich domain (CRD) of human T1R3 is important for the interaction with thaumatin. The CRD of T1R3 would be a prominent target for designing new sweeteners.  相似文献   

11.
Thaumatin, an intensely sweet-tasting protein, elicits a sweet-taste sensation at a level as low as 50 nM. Although previous sensory analyses have suggested that Lys67 and Arg82 are important to the sweetness of thaumatin, the exact effects of each residue on sweet receptors are still unknown. In the present study, various mutants of thaumatin altered at Arg82 as well as Lys67 were prepared and their sweetness levels were quantitatively evaluated by cell-based assays using HEK293 cells expressing human sweet receptors. Mutations at Arg82 had a more deteriorative effect on sweetness than mutations at Lys67. Particularly, a charge inversion at Arg82 (R82E) resulted in an abolishment of the response to sweet receptors even at a concentration as high as 1 mM. These results indicate that Arg82 plays a central role in determining the sweetness of thaumatin. A strict spatial charge location at residue 82 appears to be required for interaction with sweet receptors.  相似文献   

12.
Thaumatin, a sweet-tasting plant protein, elicits a sweet taste sensation at 50 nM in humans but not rodents. Although it was shown that the cysteine-rich domain (CRD) of human T1R3 (hT1R3) is important for the response to thaumatin, the amino acid residues within CRD critical for response are still unknown. A comparison of the amino acid sequence (69 amino acid residues) of CRD between hT1R3 and mouse T1R3 (mT1R3) revealed sixteen amino acids that differ.  相似文献   

13.
14.
植物甜蛋白Thaumatin研究进展   总被引:8,自引:0,他引:8  
甜蛋白自 2 0世纪 70年代发现以来 ,一直倍受人们关注 ,而源于自然的Thaumatin是植物甜蛋白中的一种 ,它具有低热量、高甜度、安全无毒 ,并可降解为人体所需的氨基酸等多种优点 ,是一种新型甜味剂。在物质文化生活日益丰富的今天 ,人们越来越重视饮食的科学性 ,吃饱的同时更加关注所摄入食品的品质 ,无疑具多功能的非糖类物质 Thaumatin就是人们所需求的理想食品。因此 ,Thaumatin成为热门研究领域之一也就不足为怪了。1  植物甜蛋白研究概况迄今为止 ,人们从多种植物中发现并分离出 7种甜味蛋白 [1 ]。更确切地说 ,其中 5种( Thaumatin,…  相似文献   

15.
16.
甜味蛋白研究的新进展   总被引:3,自引:0,他引:3  
甜味蛋白(thaumatin)是世界上已知最甜的物质,具有很大的应用前景.Thaumatin的基因核苷酸和蛋白质氨基酸序列都已测定.晶体分析表明它具有高稳定的四级结构.在味蕾小孔中发现了介导thaumatin发生作用的物质.Thaumatin自身的功能仍不清楚.在多种生物中发现了thaumatin类似蛋白质,具有不同的生物活性.用基因工程手段实现了thaumatin在多种原核和真核生物中的表达,但迄今仍未得到理想的基因工程产品.  相似文献   

17.
Yeast vectors suitable for high-level expression of heterologous proteins should combine a high copy number with a high mitotic stability under non-selective conditions. Since high stability can best be assured by integration of the vector into chromosomal DNA we have set out to design a vector that is able to integrate into the yeast genome in a large number of copies. The rDNA locus appeared to be an attractive target for such multiple integration since it encompasses 100-200 tandemly repeated units. Plasmids containing several kb of rDNA for targeted homologous recombination, as well as the deficient LEU2-d selection marker were constructed and, after transformation into yeast, tested for both copy number and stability. One of these plasmids, designated pMIRY2 (for multiple integration into ribosomal DNA in yeast), was found to be present in 100-200 copies per cell by restriction analysis. The pMIRY2 transformants retained 80-100% of the plasmid copies over a period of 70 generations of growth in batch culture under non-selective conditions. To explore the potential of pMIRY2 as an expression vector we have inserted the homologous genes for phosphoglycerate kinase (PGK) and Mn2+-dependent superoxide dismutase (SOD) as well as the heterologous genes for thaumatin from Thaumatococcus danielli (under the GAPDH promoter), into this plasmid and analyzed the yield of the various proteins. Under optimized conditions the level of PGK in cells transformed with pMIRY2-PGK was about 50% of total soluble protein. The yield of thaumatin in the pMIRY2-thaumatin transformants exceeded by about a factor of 100 the level of thaumatin observed in transformants carrying only a single thaumatin gene integrated at the TRP1 locus in chromosome IV.  相似文献   

18.
19.
Yalf tomato plants have been transformed with a gene for thaumatin II from Thaumatococcus daniellii Benth. The nucleotide sequence for thaumatin II cDNA was cloned in the pBI121 vector under the control of the CaMV 35S promoter of cauliflower mosaic virus. Expression of the thaumatin II gene was detected in all of the studied transgenic lines. A quantitative estimation of the thaumatin II accumulation in fruits was performed by ELISA. The highest content of thaumatin in transgenic tomato fruits (line 91) was 46.4 ± 10.5 μg/mg of total soluble protein (4.6%). In the other studied lines, the thaumatin content ranged from 17.6 ± 6.1 to 41.3 ± 12.3 μg/mg of total soluble protein (1.8–4.1%). The fruits of transgenic plants had a well-defined sweet taste with a long aftertaste typical of thaumatin II. Transgenic tomato lines with high expression levels can be potentially used as producers of thaumatin for the food and pharmaceutical industries.  相似文献   

20.
Cultured tobacco (Nicotiana tabacum var Wisconsin 38) cells adapted to grow under osmotic stress synthesize and accumulate a 26 kilodalton protein (osmotin) which can constitute as much as 12% of total cellular protein. In cells adapted to NaCl, osmotin occurs in two forms: an aqueous soluble form (osmotin-I) and a detergent soluble form (osmotin II) in the approximate ratio of 2:3. Osmotin-I has been purified to electrophoretic homogeneity, and osmotin-II has been purified to 90% electrophoretic homogeneity. The N-terminal amino acid sequences of osmotins I and II are identical through position 22. Osmotin-II appears to be much more resistant to proteolysis than osmotin-I. However, it cross-reacts with polyclonal antibodies raised in rabbits against osmotin-I. Osmotin strongly resembles the sweet protein thaumatin in its molecular weight, amino acid composition, N-terminal sequence, and the presence of a signal peptide on the precursor protein. Thaumatin does not cross-react with antiosmotin. An osmotin solution could not be detected as sweet at a concentration at least 100 times that of thaumatin which could be detected as sweet. Immunocytochemical detection of osmotin revealed that osmotin is concentrated in dense inclusion bodies within the vacuole. Although antiosmotin did not label organelles, cell walls, or membranes, osmotin appeared sparsely distributed in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号