首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synaptotagmins (syts) are a family of membrane proteins proposed to regulate membrane traffic in neuronal and nonneuronal cells. In neurons, the Ca2+-sensing ability of syt I is critical for fusion of docked synaptic vesicles with the plasma membrane in response to stimulation. Several putative Ca2+-syt effectors have been identified, but in most cases the functional significance of these interactions remains unknown. Here, we have used recombinant C2 domains derived from the cytoplasmic domains of syts I-XI to interfere with endogenous syt-effector interactions during Ca2+-triggered exocytosis from cracked PC12 cells. Inhibition was closely correlated with syntaxin-SNAP-25 and phosphatidylinositol 4,5-bisphosphate (PIP2)-binding activity. Moreover, we measured the expression levels of endogenous syts in PC12 cells; the major isoforms are I and IX, with trace levels of VII. As expected, if syts I and IX function as Ca2+ sensors, fragments from these isoforms blocked secretion. These data suggest that syts trigger fusion via their Ca2+-regulated interactions with t-SNAREs and PIP2, target molecules known to play critical roles in exocytosis.  相似文献   

2.
Real-time voltammetry measurements from cracked PC12 cells were used to analyze the role of synaptotagmin-SNARE interactions during Ca2+-triggered exocytosis. The isolated C2A domain of synaptotagmin I neither binds SNAREs nor inhibits norepinephrine secretion. In contrast, two C2 domains in tandem (either C2A-C2B or C2A-C2A) bind strongly to SNAREs, displace native synaptotagmin from SNARE complexes, and rapidly inhibit exocytosis. The tandem C2 domains of synaptotagmin cooperate via a novel mechanism in which the disruptive effects of Ca2+ ligand mutations in one C2 domain can be partially alleviated by the presence of an adjacent C2 domain. Complete disruption of Ca2+-triggered membrane and target membrane SNARE interactions required simultaneous neutralization of Ca2+ ligands in both C2 domains of the protein. We conclude that synaptotagmin-SNARE interactions regulate membrane fusion and that cooperation between synaptotagmin's C2 domains is crucial to its function.  相似文献   

3.
Now that complete genome sequences are available for a variety of organisms, the elucidation of potential gene products function is a central goal in the post-genome era. Domain fusion analysis has been proposed recently to infer the functional association of the component proteins. Here, we took a new approach to the analysis of the structural features of the proteins involved in fusion events. An exhaustive survey of fusion events within 30 completely sequenced genomes and subsequent structure annotations to the component proteins at a SCOP superfamily level with hidden Markov models was carried out. A domain fusion map was then constructed. The results revealed that proteins with the class alpha/beta fold are frequently involved in fusion events, around 86% of the total 676 assigned single-domain fusion pairs including at least one component protein belonging to the alpha/beta fold class. Moreover, the domain fusion map in our work may offer an attractive framework for designing chimeric enzymes following Nature's lead, and may give useful hints for exploring the evolutionary history of proteins. (c) 2002 Elsevier Science Ltd.  相似文献   

4.
Dysferlin in membrane trafficking and patch repair   总被引:1,自引:0,他引:1  
The muscular dystrophies are a heterogeneous group of inherited disorders, defined by progressive muscle weakness and atrophy. Following the discovery of dystrophin, remarkable progress has been made in defining the molecular properties of proteins involved in the various dystrophies. This has underlined the importance of the dystrophin-associated protein complex as a cell membrane scaffold, providing structural stability to muscle cells (McNeil PL, Khakee R. Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. Am J Pathol 1992;140:1097-1109). While the dystrophies linked to loss of function of dystrophin and its associated proteins are caused by diminished membrane integrity, it is now believed that a new class of dystrophies arises because of a diminished capacity for rapid muscle membrane repair after injury. Dysferlin is the first identified member of a putative muscle-specific repair complex that permits rapid resealing of membranes disrupted by mechanical stress. Membrane resealing is a function conserved by most cells and is mediated by a mechanism closely resembling regulated, Ca2+-dependent exocytosis. A primary role for dysferlin in this pathway, as a Ca2+-regulated fusogen, has been suggested, and a number of candidate partner proteins have been identified. This review outlines the current understanding of the role of dysferlin in membrane repair and the evolving picture of dysferlin-related signaling pathways in muscle cell physiology and pathology.  相似文献   

5.
New threats posed by the emerging circulating variants of SARS-CoV-2 highlight the need to find conserved neutralizing epitopes for therapeutic antibodies and efficient vaccine design. Here, we identified a receptor-binding domain (RBD)-binding antibody, XG014, which potently neutralizes β-coronavirus lineage B (β-CoV-B), including SARS-CoV-2, its circulating variants, SARS-CoV and bat SARSr-CoV WIV1. Interestingly, antibody family members competing with XG014 binding show reduced levels of cross-reactivity and induce antibody-dependent SARS-CoV-2 spike (S) protein-mediated cell-cell fusion, suggesting a unique mode of recognition by XG014. Structural analyses reveal that XG014 recognizes a conserved epitope outside the ACE2 binding site and completely locks RBD in the non-functional “down” conformation, while its family member XG005 directly competes with ACE2 binding and position the RBD “up”. Single administration of XG014 is effective in protection against and therapy of SARS-CoV-2 infection in vivo. Our findings suggest the potential to develop XG014 as pan-β-CoV-B therapeutics and the importance of the XG014 conserved antigenic epitope for designing broadly protective vaccines against β-CoV-B and newly emerging SARS-CoV-2 variants of concern.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13238-021-00871-6.  相似文献   

6.
Fusion of enveloped viruses with their target membrane is mediated by viral integral glycoproteins. A conformational change of their ectodomain triggers membrane fusion. Several studies suggest that an extended, triple-stranded rod-shaped -helical coiled coil resembles a common structural and functional motif of the ectodomain of fusion proteins. From that, it is believed that essential features of the fusion process are conserved among the various enveloped viruses. However, this has not been established so far for the highly conserved transmembrane and intraviral sequences of fusion proteins. The article will focus on the role of both sequences in the fusion process. Recent studies from various enveloped viruses strongly imply that a transmembrane domain with a minimum length is required for later steps of membrane fusion, i.e., the formation and enlargement of the aqueous fusion pore. Although no specific sequence of the TM is necessary for pore formation, distinct properties and motifs of the domain may be obligatory to ascertain full fusion activity. However, with some exceptions, the intraviral domain seems to be not required for fusion activity of viral fusion proteins.  相似文献   

7.
SNARE is the essential mediator of membrane fusion that highly relies on the molecular structure of SNAREs. For instance, the protein syntaxin-1 involved in neuronal SNAREs, has a single transmembrane domain (sTMD) leading to fast fusion, while the syntaxin 17 has a V-shape double TMDs (dTMDs), taking part in the autophagosome maturation. However, it is not clear how the TMD structure influences the fusion process. Here, we demonstrate that the dTMDs significantly reduce fusion rate compared with the sTMD by using an in vitro reconstitution system. Through theoretical analysis, we reveal that the V-shape dTMDs can significantly increase protein-lipid mismatch, thereby raising the energy barrier of the fusion, and that increasing the number of SNAREs can reduce the energy barrier or protein-lipid mismatch. This study provides a physicochemical mechanistic understanding of SNARE-regulated membrane fusion.  相似文献   

8.
对蛋白质组学的研究有许多不同的切入方法 .从研究的生物学意义和可行性考虑 ,提出从蛋白结构域入手进行蛋白质组学研究 .SH2 (Srchomology 2 )结构域是细胞信号转导中重要的元件之一 ,人SH2结构域共有约 12 0种 ,对其进行研究将深刻揭示细胞信号转导的规律 .为了得到人所有的SH2结构域序列及克隆 ,首先在公共数据库里检索出了人所有的SH2结构域序列 ,利用国际上现有的共享资源IMAGE(IntegratedMolecularAnalysisofGenomesandTheirExpression)克隆为PCR模板 ,解决了从cDNA文库中难以克隆低丰度结构域的问题 .利用有方向性的TOPO克隆技术提高克隆效率 ,从而快速高效地构建了包括 6 0个SH2结构域的克隆库 .克隆库可以方便地转换到GATEWAY系统具有各种用途的载体上 ,为SH2结构域的蛋白质组学研究奠定了坚实的基础  相似文献   

9.
Ferlins are a family of multiple C2 domain proteins with emerging roles in vesicle fusion and membrane trafficking. Ferlin mutations are associated with muscular dystrophy (dysferlin) and deafness (otoferlin) in humans, and infertility in Caenorhabditis elegans (Fer-1) and Drosophila (misfire), demonstrating their importance for normal cellular functioning. Ferlins show ancient origins in eukaryotic evolution and are detected in all eukaryotic kingdoms, including unicellular eukaryotes and apicomplexian protists, suggesting origins in a common ancestor predating eukaryotic evolutionary branching. The characteristic feature of the ferlin family is their multiple tandem cytosolic C2 domains (five to seven C2 domains), the most of any protein family, and an extremely rare feature amongst eukaryotic proteins. Ferlins also bear a unique nested DysF domain and small conserved 60-70 residue ferlin-specific sequences (Fer domains). Ferlins segregate into two subtypes based on the presence (type I ferlin) or absence (type II ferlin) of the DysF and FerA domains. Ferlins have diverse tissue-specific and developmental expression patterns, with ferlin animal models united by pathologies arising from defects in vesicle fusion. Consistent with their proposed role in vesicle trafficking, ferlin interaction partners include cytoskeletal motors, other vesicle-associated trafficking proteins and transmembrane receptors or channels. Herein we summarize the research history of the ferlins, an intriguing family of structurally conserved proteins with a preserved ancestral function as regulators of vesicle fusion and receptor trafficking.  相似文献   

10.
The synaptic vesicle protein synaptotagmin I has been proposed to serve as a Ca(2+) sensor for rapid exocytosis. Synaptotagmin spans the vesicle membrane once and possesses a large cytoplasmic domain that contains two C2 domains, C2A and C2B. Multiple Ca(2+) ions bind to the membrane proximal C2A domain. However, it is not known whether the C2B domain also functions as a Ca(2+)-sensing module. Here, we report that Ca(2+) drives conformational changes in the C2B domain of synaptotagmin and triggers the homo- and hetero-oligomerization of multiple isoforms of the protein. These effects of Ca(2)+ are mediated by a set of conserved acidic Ca(2)+ ligands within C2B; neutralization of these residues results in constitutive clustering activity. We addressed the function of oligomerization using a dominant negative approach. Two distinct reagents that block synaptotagmin clustering potently inhibited secretion from semi-intact PC12 cells. Together, these data indicate that the Ca(2)+-driven clustering of the C2B domain of synaptotagmin is an essential step in excitation-secretion coupling. We propose that clustering may regulate the opening or dilation of the exocytotic fusion pore.  相似文献   

11.
Transferases and hydrolases catalyze different chemical reactions and express different dynamic responses upon ligand binding. To insulate the ligand molecule from the surrounding water, transferases bury it inside the protein by closing the cleft, while hydrolases undergo a small conformational change and leave the ligand molecule exposed to the solvent. Despite these distinct ligand‐binding modes, some transferases and hydrolases are homologous. To clarify how such different catalytic modes are possible with the same scaffold, we examined the solvent accessibility of ligand molecules for 15 SCOP superfamilies, each containing both transferase and hydrolase catalytic domains. In contrast to hydrolases, we found that nine superfamilies of transferases use two major strategies, oligomerization and domain fusion, to insulate the ligand molecules. The subunits and domains that were recruited by the transferases often act as a cover for the ligand molecule. The other strategies adopted by transferases to insulate the ligand molecule are the relocation of catalytic sites, the rearrangement of secondary structure elements, and the insertion of peripheral regions. These findings provide insights into how proteins have evolved and acquired distinct functions with a limited number of scaffolds.  相似文献   

12.
Her2/c-erbB-2基因(其产物为膜蛋白p185)是表皮生长因子受体(EGFR)基因家族的一员,在约30%的乳腺癌中发现了其过量表达。为了鉴定抗p185单克隆抗体的抗原表位并进一步研究它们的相互作用,采用PCR的方法从含Her2/c_erbB_2基因的pBabe/erbB_2质粒中扩增了p185胞外区的富含二硫键的第一、二结构域和第四个结构域。产物克隆到pGEX/4T-1载体后,转化大肠杆菌Origami B(DE3)pLysS菌株,用低浓度IPTG进行低温过夜诱导后将菌体压力破碎,SDS-PAGE检测表达上清,得到了可溶性表达的融合有GST的目的蛋白。经ELISA、Western blot等方法鉴定,可溶性表达产物具有完全的抗体结合活性,且当用凝血酶把GST切掉后该活性仍然保留。P185胞外区融合蛋白的成功表达将为二硫键富含类蛋白的表达提供参考;并为将来具有肿瘤细胞生长抑制活性的抗p185单克隆抗体的抗原表位鉴定,以及为EGFR家族受体的结构和功能关系的研究打下基础。  相似文献   

13.
14.
In the Pseudomonas bacterial genomes, the PhzF proteins are involved in the production of phenazine derivative antibiotic and antifungal compounds. The PhzF superfamily however also encompasses proteins in all genomes from bacteria to eukaryotes, for which no function has been assigned. We have determined the three dimensional crystal structure at 2.05 A resolution of YHI9, the yeast member of the PhzF family. YHI9 has a fold similar to bacterial diaminopimelate epimerase, revealing a bimodular structure with an internal symmetry. Residue conservation identifies a putative active site at the interface between the two domains. Evolution of this protein by gene duplication, gene fusion and domain swapping from an ancestral gene containing the "hot dog" fold, identifies the protein as a "kinked double hot dog" fold.  相似文献   

15.
人肿瘤坏死因子受体I死亡域融合蛋白基因的克隆与表达   总被引:2,自引:0,他引:2  
通过设计4个引物进行重叠PCR,由此克服了人肿瘤坏死因子受体I死亡域与氯霉素乙酰转移酶(CAT)的融合蛋白基因(DdLcat)。该融合蛋白基因经测序,证明与设计的序列相同。构建成的重组表达质粒pLT10DdLcat转化大肠杆菌后发酵,IPTG诱导2h,SDS-PAGE测定DdLcat蛋白质的分子量为39kD。Western印迹实验进一步作了鉴定。表达产物大部分为包涵体。DdLcat经Q-Sepha  相似文献   

16.
17.
为原核表达严重急性呼吸综合征冠状病毒2(简称新型冠状病毒,severe acute respiratory syndrome-coronavirus 2,SARS-CoV-2)S蛋白受体结合域(receptor binding domain, RBD)并制备多克隆抗体,利用基因克隆技术将RBD基因连接到原核表达载体pGEX-6p-1和pET-32a(+)上,电转化至大肠杆菌XL1-Blue感受态细胞,利用优化后的表达条件大量表达重组蛋白,经亲和层析纯化后通过SDS-PAGE检测蛋白的表达情况。利用GST-RBD融合蛋白作为免疫抗原免疫小鼠制备多克隆抗体,ELISA和Western blot分析抗血清的效价和特异性。PCR鉴定和序列测定结果显示,成功构建了重组载体pGEX-RBD和pET-RBD,在大肠杆菌中实现了GST-RBD和RBD-His融合蛋白的可溶性高效表达。研究获得的多克隆抗体的滴度达到约1∶3 000,并具有良好的结合特异性。原核表达的可溶性新型冠状病毒RBD重组蛋白具有良好的免疫原性,为后续制备基因工程抗体奠定了实验基础。  相似文献   

18.
Arachidonic acid derived endogenous electrophile 15d-PGJ2 has gained much attention in recent years due to its potent anti-proliferative and anti-inflammatory actions mediated through thiol modification of cysteine residues in its target proteins. Here, we show that 15d-PGJ2 at 1 μM concentration converts normal mitochondria into large elongated and interconnected mitochondria through direct binding to mitochondrial fission protein Drp1 and partial inhibition of its GTPase activity. Mitochondrial elongation induced by 15d-PGJ2 is accompanied by increased assembly of Drp1 into large oligomeric complexes through plausible intermolecular interactions. The role of decreased GTPase activity of Drp1 in the formation of large oligomeric complexes is evident when Drp1 is incubated with a non-cleavable GTP analog, GTPγS or by a mutation that inactivated GTPase activity of Drp1 (K38A). The mutation of cysteine residue (Cys644) in the GTPase effector domain, a reported target for modification by reactive electrophiles, to alanine mimicked K38A mutation induced Drp1 oligomerization and mitochondrial elongation, suggesting the importance of cysteine in GED to regulate the GTPase activity and mitochondrial morphology. Interestingly, treatment of K38A and C644A mutants with 15d-PGJ2 resulted in super oligomerization of both mutant Drp1s indicating that 15d-PGJ2 may further stabilize Drp1 oligomers formed by loss of GTPase activity through covalent modification of middle domain cysteine residues. The present study documents for the first time the regulation of a mitochondrial fission activity by a prostaglandin, which will provide clues for understanding the pathological and physiological consequences of accumulation of reactive electrophiles during oxidative stress, inflammation and degeneration.  相似文献   

19.
海栖热袍菌内切葡聚糖酶Cel12B是极耐热胞外酶,氨基酸序列分析表明不含有纤维素结合结构域(CBD),对结晶纤维素无活性,但同样菌种来源的木聚糖酶XynA有催化结构域和纤维素结合结构城。用同样极耐热酶CBD区域和Cel12B融合构建重组质粒pET-20b-Cel12B-CBD,经诱导表达后,对结晶纤维素有活性,酶学特性研究表明:最适反应温度为100℃、最适pH为5.8、在pH4.5~7.0时酶活力稳定,90℃保温2h仍有87%的酶活。  相似文献   

20.
A novel protein phosphatase in Arabidopsis thaliana was identified by database searching. This protein, designated AtPTPKIS1, contains a protein tyrosine phosphatase (PTP) catalytic domain and a kinase interaction sequence (KIS) domain. It is predicted to interact with plant SNF1-related kinases (SnRKs), representing central regulators of metabolic and stress responses. AtPTPKIS1 has close homologues in other plant species, both dicots and monocots, but is not found in other kingdoms. The tomato homologue of AtPTPKIS1 was expressed as a recombinant protein and shown to hydrolyse a generic phosphatase substrate, and phosphotyrosine residues in synthetic peptides. The KIS domain of AtPTPKIS1 was shown to interact with the plant SnRK AKIN11 both in vivo in the yeast two-hybrid system, and in vitro in a GST-fusion 'pull down' assay. The genomes of Arabidopsis and other plants contain further predicted proteins related to AtPTPKIS1, which could also interact with SnRKs and act in novel regulatory and signalling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号