首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nisin Z and thymol were tested, alone and in combination, for antibacterial activity against Listeria monocytogenes ATCC 7644 and Bacillus subtilis ATCC 33712. The antibacterial effect of nisin Z, produced by Lactococcus lactis KE3 isolated from the traditional Moroccan fermented milk, was greatly potentiated by sub-inhibitory concentrations of thymol in both bacterial strains. Our data showed that the concentration of nisin required for effective control of food-borne pathogenic bacteria could be considerably lowered by the use of thymol in combination. The use of low concentrations of nisin could lead to a less favourable condition for the occurrence of nisin-resistant bacterial sub-populations.  相似文献   

2.
The influence of controlled pH (5.0–6.5) and initial dissolved oxygen level (0–90% air saturation) on nisin Z production in a yeast extract/Tween 80-supplemented whey permeate (SWP) was examined during batch fermentations with citrate positive Lactococcus lactis subsp. lactis UL719. The total activity corresponding to the sum of soluble and cell-bound activities, as measured by a critical dilution method, was more than 50% lower at pH 5.0 than in the range 5.5–6.5, although the specific production decreased as pH increased. A maximum nisin Z activity of 8200 AU/ml (4100IU/ml) was observed in the supernatant after 8h of culture for pH ranging from 5.5 to 6.5. Prolonging the culture beyond 12h decreased this activity at pH 6.0 and 6.5 but not at pH 5.5 or 5.0. A corresponding increase in cell-bound activity was probably due to adsorption of soluble bacteriocin to the cell wall. Aeration increased cell-bound and total activity to maximum values of 32800 and 41000 AU/ml (16400 and 20500IU/ml), respectively, with an initial level of 60% air saturation after 24h of incubation at pH 6.0. The specific production at 60% or 90% initial air saturation was eight-fold higher than at 0%.  相似文献   

3.
Abstract The biosynthesis, immunity and regulation of nisin, a lanthionine-containing antimicrobial peptide produced by Lactococcus lactis , is encoded by two gene clusters, nisAIZBTCIPRK and nisFEG . The mutant strain LAC46 with a deletion in the translocator gene nisT could not secrete nisin but nisin activity was detected from cell lysates. The nisT mutation was complemented by a NisT-expression plasmid resulting in restored capacity to secrete nisin. These results demonstrate that NisT is the transport protein dedicated to translocate nisin and that dehydration and lanthionine formation in nisin maturation can occur independently of transport.  相似文献   

4.
The rising existence of antimicrobial resistance, confirms the urgent need for new antimicrobial compounds. Lantibiotics are active in a low nanomolar range and represent good compound candidates. The lantibiotic nisin is well studied, thus it is a perfect origin for exploring novel lantibiotics via mutagenesis studies. However, some human pathogens like Streptococcus agalactiae COH1 already express resistance proteins against lantibiotics like nisin.This study presents three nisin variants with mutations in the hinge-region and determine their influence on both the growth inhibition as well as the pore-forming activity. Furthermore, we analyzed the effect of these mutants on the nisin immunity proteins NisI and NisFEG from Lactococcus lactis, as well as the nisin resistance proteins SaNSR and SaNsrFP from Streptococcus agalactiae COH1.We identified the nisin variant 20NMKIV24 with an extended hinge-region, to be an excellent candidate for further studies to eventually overcome the lantibiotic resistance in human pathogens, since these proteins do not recognize this variant well.  相似文献   

5.
6.
Nisin production of three bioengineered strains, (LAC338, LAC339 and LAC340) with immunity (nisFEG) and/or regulation (nisRK) genes of nisin biosynthesis on plasmids in the Lactococcus lactis LL27 nisin producer, was evaluated under pH-controlled and pH-uncontrolled batch fermentations. Optimization studies showed that fructose and yeast extract yielded the highest nisin activity. The strains LAC338, LAC339, and LAC340 produced 24, 45, and 44% more nisin, respectively, than wild-type L. lactis LL27 after 12-h incubation. However, sharp decreases in the yield of nisin were observed at the late phase of fermentation with LAC339 and LL27 in contrast to LAC340 and LAC338 strains for which the high level of nisin could be maintained longer. Obviously, increasing the copy number of the regulation genes together with immunity genes in the nisin producers retarded the loss of nisin in the late phase of the fermentation.  相似文献   

7.
乳链菌肽自身免疫基因nisI的表达对乳链菌肽产量的影响   总被引:1,自引:0,他引:1  
【目的】通过基因工程手段增加乳链菌肽(nisin)自身免疫基因nisI在nisin产生菌Lactococcus lactisNZ9800/pHJ201中的表达水平,增强该菌对nisin的抗性,从而达到提高nisin产量的目的。【方法】将带有强组成型启动子P59的免疫基因nisI克隆到nisin表达质粒pHJ201上,将重组质粒引入L.lactis NZ9800中,使nisI基因过量表达,得到重组菌株L.lactis NZ9800/pHMI,并比较该重组菌株与对照菌株L.lactis NZ9800/pHJ201的生长曲线、对nisin的抗性水平、抑菌活性及nisin产量的差异。【结果】nisI的表达对重组菌的生长速度没有明显的影响,却能促使重组菌株对nisin的抗性水平提高25%、在发酵6h和8h时,nisin的产量分别提高32%和25%。【结论】增加乳链菌肽自身免疫基因nisI的表达可以提高产生菌对nisin的抗性,从而提高乳链菌肽产量。  相似文献   

8.
乳酸乳酸球菌AL2产生的乳链菌肽的提纯和性质   总被引:12,自引:2,他引:10  
用NaCl饱和的乳酸乳酸球菌(Lactococcus lactis subsp. Lactis)AL2发酵液经正丙醇提取和CM-Sephadex C-25柱层析,得到聚丙烯酰胺凝胶电泳纯的乳链菌肽组分,比活力从24427IU/mg提高到39865IU/mg,活力回收为41.7%。Α—胰凝乳蛋白酶可使乳链菌肽丧失活性;在低pH条件下,乳链菌肽对热较稳定;对许多革兰氏阳性菌有强烈抑制作用,而对革兰氏阴性菌、酵母菌和霉菌没有作用。  相似文献   

9.
10.
Lactic acid bacteria (LAB) have been used successfully to express a wide variety of recombinant proteins, ranging from flavor-active proteins to antibiotic peptides and oral vaccines. The nisin-controlled expression (NICE) system is the most prevalent of the systems for production of heterologous proteins in LAB. Previous optimization of the NICE system has revealed a strong limit on the concentration of the inducer nisin that can be tolerated by the culture of host cells. In this work, the nisin immunity gene, nisI, has been inserted into the recently reported pMSP3535H2 vector that contains the complete NICE system on a high-copy Escherichia coli-LAB shuttle vector. Fed-batch fermentation data show that Lactococcus lactis IL1403 cells transformed with the new vector, pMSP3535H3, tolerate a 5-fold increase in the concentration of the inducer nisin, and, at this elevated concentration, produce a 1.8-fold increased level of green fluorescent protein (GFP), a model recombinant protein. Therefore, the incorporation of nisI in the pMSP3535H3 NICE system described here unveils new ranges of induction parameters to be studied in the course of optimizing recombinant protein expression in LAB.  相似文献   

11.
Aims: To characterize the genetic and biochemical features of nisin Q. Methods and Results: The nisin Q gene cluster was sequenced, and 11 putative orfs having 82% homology with the nisin A biosynthesis gene cluster were identified. Nisin Q production was confirmed from the nisQ‐introduced nisin Z producer. In the reporter assay, nisin Q exhibited an induction level that was threefold lower than that of nisin A. Nisin Q demonstrated an antimicrobial spectrum similar to those of the other nisins. Under oxidizing conditions, nisin Q retained a higher level of activity than nisin A. This higher oxidative tolerance could be attributed to the presence of only one methionine residue in nisin Q, in contrast to other nisins that contain two. Conclusions: The 11 orfs of the nisin producers were identical with regard to their functions. The antimicrobial spectra of the three natural nisins were similar. Nisin Q demonstrated higher oxidative tolerance than nisin A. Significance and Impact of the Study:  Genetic and biochemical features of nisin Q are similar to those of other variants. Moreover, owing to its higher oxidative tolerance, nisin Q is a potential alternative for nisin A.  相似文献   

12.
Anthrax lethal toxin-induced mitogenic response of human T-cells   总被引:2,自引:0,他引:2  
Bacillus anthracis lethal toxin (PALF) stimulated the proliferation of human peripheral blood T-cells in vitro. Activation of T-lymphocytes by PALF required the presence of monocytes and did not result from a collaborative effect between T-cells and B-cells. PALF acted directly on monocytes and independently of T-cells. The monocytes contributed to the proliferation of T-cells by secretion of mediator(s). The mitogenic activity of the lethal toxin was dependent on its metalloprotease activity.  相似文献   

13.
乳链菌肽高产菌株的选育及其基因定位   总被引:7,自引:4,他引:7  
以乳酸乳酸球菌7962为原始菌株,用紫外线、LiCl、(60)~Co及8-MOP+NUV等多种理化诱变剂对其进行诱变处理,获得一株乳链菌肽高产突变株AL2。其效价稳定在2300~2500Iu/ml。经DNA杂交证实,编码乳链菌肽的前体基因位于染色体上,其遗传性状是稳定的。毒理试验表明AL2及其产物属于实际无毒类物质。  相似文献   

14.
Besides lactic acid, many lactic acid bacteria also produce proteinaceous metabolites (bacteriocins) such as nisin. As catabolite repression and end-product inhibition limit production of both products, we have investigated the use of alternative methods of supplying substrate and neutralizing or extracting lactic acid to increase yields. Fed-batch fermentation trials using a stillage-based medium with pH control by NH4OH resulted in improved lactic acid (83.4 g/l, 3.18 g/l/h, 95% yield) and nisin (1,260 IU/ml, 84,000 IU/l/h, 14,900 IU/g) production. Removing particulate matter from the stillage-based medium increased nisin production (1,590 IU/ml, 33,700 IU/g), but decreased lactic acid production (58.5 g/l, 1.40 g/l/h, 96% yield). Removing lactic acid by ion exchange resins stimulated higher lactic acid concentrations (60 to 65 g/l) and productivities (2.0 to 2.6 g/l/h) in the filtered stillage medium at the expense of nisin production (1,500 IU/ml, 25,800 IU/g).  相似文献   

15.
A membrane bioreactor for production of nisin Z was constructed using Lactococcus lactis IO-1 in continuous culture using hydrolyzed sago starch as carbon source. A strategy used to enhance the productivity of nisin Z was to maintain the cells in a continuous growth at high cell concentration. This resulted in a volumetric productivity of nisin Z, as 50,000 IU l−1 h−1 using a cell concentration of 15 g l−1, 30°C, pH 5.5 and a dilution rate of 1.24 h−1. Adding 10 g l−1 YE and 2 g l−1 polypeptone, other inducers were unnecessary to maintain production of nisin. The operating conditions of the reactor removed nisin and lactate, thus minimizing their effects which allowed the maintenance of cells in continuous exponential growth phase mode with high metabolic activity.  相似文献   

16.
Streptococcus suis serotype 2 is known to cause severe infections in pigs, including meningitis, endocarditis and pneumonia. Furthermore, this bacterium is considered an emerging zoonotic agent. Recently, increased antibiotic resistance in S. suis has been reported worldwide. The objective of this study was to evaluate the potential of nisin, a bacteriocin of the lantibiotic class, as an antibacterial agent against the pathogen S. suis serotype 2. In addition, the synergistic activity of nisin in combination with conventional antibiotics was assessed. Using a plate assay, the nisin-producing strain Lactococcus lactis ATCC 11454 proved to be capable of inhibiting the growth of S. suis (n = 18) belonging to either sequence type (ST)1, ST25, or ST28. In a microdilution broth assay, the minimum inhibitory concentration (MIC) of purified nisin ranged between 1.25 and 5 μg/mL while the minimum bactericidal concentration (MBC) was between 5 and 10 μg/mL toward S. suis. The use of a capsule-deficient mutant of S. suis indicated that the presence of this polysaccharidic structure has no marked impact on susceptibility to nisin. Following treatment of S. suis with nisin, transmission electron microscopy observations revealed lysis of bacteria resulting from breakdown of the cell membrane. A time-killing curve showed a rapid bactericidal activity of nisin. Lastly, synergistic effects of nisin were observed in combination with several antibiotics, including penicillin, amoxicillin, tetracycline, streptomycin and ceftiofur. This study brought clear evidence supporting the potential of nisin for the prevention and treatment of S. suis infections in pigs.  相似文献   

17.
18.
19.
Gene expression signals derived from Lactococcus lactis were linked to lacZ-fused genes with different 5'-nucleotide sequences. Computer predictions of mRNA secondary structure were combined with lacZ expression studies to direct base-substitutions that could possibly influence gene expression. Mutations were made such that the DNA sequence upstream of the ATG start codon was not changed. Moreover, care was taken that the substitutions, which were all within the first six codons, neither affected the amino acid sequence of the gene product nor introduced codons rarely used in L. lactis. The results suggest that mRNA secondary structure contributes to the efficiency of translation initiation in L. lactis.  相似文献   

20.
AIMS: To develop an economical, safe and simple vaccination system against swine erysipelas using SpaA-antigen producing Lactococcus lactis. METHODS AND RESULTS: The spaA gene of Erysipelothrix rhusiopathiae was inserted into a shuttle plasmid pSECE1 to construct pSECE1.3. The SpaA produced in L. lactis maintained a stable antigenicity without degrading in growth. After mice were inoculated intranasally and orally with pSECE1.3-carrying L. lactis cells, IgG and IgA specific to SpaA were detected, and all the mice survived a challenge with 100 LD(50) of E. rhusiopathiae Tama-96 in the inner thigh. CONCLUSIONS: SpaA-producing L. lactis appears useful as an effective subunit vaccine against swine erysipelas. SIGNIFICANCE AND IMPACT OF THE STUDY: In this vaccination system, purification of the antigen and injection are unnecessary, leading to a reduced production cost, reduced labour and less stress to the animals. This vaccination system of the lactic acid bacteria should be a safe and suitable vehicle for a polyvalent vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号