共查询到20条相似文献,搜索用时 9 毫秒
1.
Evidence for the interaction between the calcium indicator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid and calcium-binding proteins 总被引:2,自引:0,他引:2
E Chiancone E Thulin A Boffi S Forsén M Brunori 《The Journal of biological chemistry》1986,261(35):16306-16308
Stopped-flow and static difference spectroscopy experiments have shown that the calcium indicator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) interacts with several different calcium-binding proteins (beta-trypsin, parvalbumin, and calmodulin) and with serum albumin under experimental conditions commonly used in biophysical studies. The interaction decreases at high ionic strength. EDTA competes with BAPTA in the interaction with the proteins. 相似文献
2.
Preparation of solutions with free calcium concentration in the nanomolar range using 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid 总被引:9,自引:0,他引:9
There are many uses for solutions with a known free calcium concentration ([Ca2+]free) in the nanomolar range. Most frequently ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) has been used as a buffer for the control of [Ca2+]free; however, under a variety of conditions the use of 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) for this purpose would be advantageous. The theory and calculations necessary to make solutions with known [Ca2+]free appropriate for given conditions of pH, ionic strength, and temperature for use with EGTA or BAPTA are reviewed. Practical considerations and methods for making such solutions are detailed. The advantages and disadvantages associated with the use of each of the two chelators are discussed. As one example of the application of solutions with free calcium in the nanomolar range, the dissociation constant of the fluorescent indicator fura-2 for calcium has been determined in a physiologic buffer at 22 and 37 degrees C. For practical reasons, the use of BAPTA is advantageous when solutions with different known [Ca2+]free must be used on a daily basis. 相似文献
3.
Ismail Koyuncu Ataman Gonel Abdurrahim Kocyigit Ebru Temiz Mustafa Durgun 《Journal of enzyme inhibition and medicinal chemistry》2018,33(1):1137-1149
Selective inhibition with sulphonamides of carbonic anhydrase (CA) IX reduces cell proliferation and induces apoptosis in human cancer cells. The effect on CA IX expression of seven previously synthesised sulphonamide inhibitors, with high affinity for CA IX, as well as their effect on the proliferation/apoptosis of cancer/normal cell lines was investigated. Two normal and three human cancer cell lines were used. Treatment resulted in dose- and time-dependent inhibition of the growth of various cancer cell lines. One compound showed remarkably high toxicity towards CA IX-positive HeLa cells. The mechanisms of apoptosis induction were determined with Annexin-V and AO/EB staining, cleaved caspases (caspase-3, caspase-8, caspase-9) and cleaved PARP activation, reactive oxygen species production (ROS), mitochondrial membrane potential (MMP), intracellular pH (pHi), extracellular pH (pHe), lactate level and cell cycle analysis. The autophagy induction mechanisms were also investigated. The modulation of apoptotic and autophagic genes (Bax, Bcl-2, caspase-3, caspase-8, caspase-9, caspase-12, Beclin and LC3) was measured using real time PCR. The positive staining using γ-H2AX and AO/EB dye, showed increased cleaved caspase-3, caspase-8, caspase-9, increased ROS production, MMP and enhanced mRNA expression of apoptotic genes, suggesting that anticancer effects are also exerted through its apoptosis-inducing properties. Our results show that such sulphonamides might have the potential as new leads for detailed investigations against CA IX-positive cervical cancers. 相似文献
4.
5.
Role of reactive oxygen species (ROS) in apoptosis induction 总被引:28,自引:0,他引:28
Simon HU Haj-Yehia A Levi-Schaffer F 《Apoptosis : an international journal on programmed cell death》2000,5(5):415-418
Reactive oxygen species (ROS) and mitochondria play an important role in apoptosis induction under both physiologic and pathologic conditions. Interestingly, mitochondria are both source and target of ROS. Cytochrome c release from mitochondria, that triggers caspase activation, appears to be largely mediated by direct or indirect ROS action. On the other hand, ROS have also anti-apoptotic effects. This review focuses on the role of ROS in the regulation of apoptosis, especially in inflammatory cells. 相似文献
6.
Hiramatsu R Hara T Akimoto H Takikawa O Kawabe T Isobe K Nagase F 《Journal of cellular biochemistry》2008,103(1):42-53
3-Hydroxyanthranilic acid (3HAA) is one of the tryptophan metabolites along the kynurenine pathway and induces apoptosis in T cells. We investigated the mechanism of 3HAA-induced apoptosis in mouse thymocytes. The optimal concentration of 3HAA for apoptosis induction was 300-500 microM. The induction of apoptosis by a suboptimal concentration (100 microM) of 3HAA was enhanced by superoxide dismutase (SOD) as well as MnCl2 and further promoted in the presence of catalase. The 3HAA-mediated generation of intracellular reactive oxygen species (ROS) was enhanced by SOD or MnCl2 and inhibited by catalase. Corresponding to apoptosis induction, the generation of cinnabarinic acid (CA) through the oxidation of 3HAA was enhanced by SOD or MnCl2 in the presence of catalase. The synthesized CA possessed more than 10 times higher apoptosis-inducing activity than 3HAA. The intracellular ROS generation was induced by CA within 15 min and decreased to the control levels within 4 h, whereas the 3HAA-induced ROS generation increased gradually up to 4 h. Corresponding to ROS generation, the mitochondrial membrane potential was downregulated within 15 min and retained by the CA treatment. Apoptosis induction by 3HAA or CA was dependent on caspases, and caspase-3 was much more strongly activated by CA than 3HAA. In conclusion, the CA generated from 3HAA possesses a strong apoptosis-inducing activity in thymocytes through ROS generation, the loss of mitochondrial membrane potential, and caspase activation. 相似文献
7.
Hardie RC 《Cell calcium》2005,38(6):547-556
In vivo light-induced and basal hydrolysis of phosphatidyl inositol 4,5-bisphosphate (PIP2) by phospholipase C (PLC) were monitored in Drosophila photoreceptors using genetically targeted PIP2-sensitive ion channels (Kir2.1) as electrophysiological biosensors for PIP2. In cells loaded via patch pipettes with varying concentrations of Ca2+ buffered by 4 mM free BAPTA, light-induced PLC activity, showed an apparent bell-shaped dependence on free Ca2+ (maximum at "100 nM", approximately 10-fold inhibition at <10nM or approximately 1 microM). However, experiments where the total BAPTA concentration was varied whilst free [Ca2+] was maintained constant indicated that inhibition of PLC at higher (>100 nM) nominal Ca2+ concentrations was independent of Ca2+ and due to inhibition by BAPTA itself (IC50 approximately 8 mM). Di-bromo BAPTA (DBB) was yet more potent at inhibiting PLC activity (IC50 approximately 1mM). Both BAPTA and DBB also appeared to induce a modest, but less severe inhibition of basal PLC activity. By contrast, EGTA, failed to inhibit PLC activity when pre-loaded with Ca2+, but like BAPTA, inhibited both basal and light-induced PLC activity when introduced without Ca2+. The results indicate that both BAPTA and DBB inhibit PLC activity independently of their role as Ca2+ chelators, whilst non-physiologically low (<100 nM) levels of Ca2+ suppress both basal and light-induced PLC activity. 相似文献
8.
Yagami T Ueda K Asakura K Nakazato H Hata S Kuroda T Sakaeda T Sakaguchi G Itoh N Hashimoto Y Hori Y 《Journal of neurochemistry》2003,85(3):749-758
Mammalian group IIA secretory phospholipase A2 (sPLA2-IIA) generates prostaglandin D2 (PGD2) and triggers apoptosis in cortical neurons. However, mechanisms of PGD2 generation and apoptosis have not yet been established. Therefore, we examined how second messengers are involved in the sPLA2-IIA-induced neuronal apoptosis in primary cultures of rat cortical neurons. sPLA2-IIA potentiated a marked influx of Ca2+ into neurons before apoptosis. A calcium chelator and a blocker of the L-type voltage-sensitive Ca2+ channel (L-VSCC) prevented neurons from sPLA2-IIA-induced neuronal cell death in a concentration-dependent manner. Furthermore, the L-VSCC blocker ameliorated sPLA2-IIA-induced morphologic alterations and apoptotic features such as condensed chromatin and fragmented DNA. Other blockers of VSCCs such as N type and P/Q types did not affect the neurotoxicity of sPLA2-IIA. Blockers of L-VSCC significantly suppressed sPLA2-IIA-enhanced Ca2+ influx into neurons. Moreover, reactive oxygen species (ROS) were generated prior to apoptosis. Radical scavengers reduced not only ROS generation, but also the sPLA2-IIA-induced Ca2+ influx and apoptosis. In conclusion, we demonstrated that sPLA2-IIA potentiates the influx of Ca2+ into neurons via L-VSCC. Furthermore, the present study suggested that eicosanoids and ROS generated during arachidonic acid oxidative metabolism are involved in sPLA2-IIA-induced apoptosis in cooperation with Ca2+. 相似文献
9.
Feng Z Wenying L 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2010,878(30):3052-3058
BAPTA free acid was identified as the main metabolic product of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(actoxymethyl ester) (BAPTA-AM), a neuroprotective agent in cerebral ischemia, in rats. In this paper, liquid chromatography-ultraviolet (LC-UV) and mass spectrometry/mass spectrometry (LC-MS/MS) methods were employed for the determination of BAPTA free acid in rat urine and feces and rat plasma, respectively. By liquid-liquid extraction and LC-UV analysis, a limit of quantitation of 1000 ng/ml using 0.2 ml rat urine for extraction and 250 ng/ml using 1 ml rat fecal homogenate supernatant for extraction could be reached. The assay was linear in the range of 1000-50,000 ng/ml for rat urine and 250-10,000 ng/ml for rat fecal homogenate supernatant. Because the sensitivity of the LC-UV method was apparently insufficient for evaluating the pharmacokinetic profile of BAPTA in rat plasma, a LC-MS/MS method was subsequently developed for the analysis of BAPTA free acid. By protein precipitation and LC-MS/MS analysis, the limit of quantitation was 5 ng/ml using 0.1 ml rat plasma and the linear range was 5.0-500 ng/ml. Both methods were validated and can be used to support a thorough preclinical pharmacokinetic evaluation of BAPTA-AM liposome injection. 相似文献
10.
Gáspár T Kis B Snipes JA Lenzsér G Mayanagi K Bari F Busija DW 《Journal of neurochemistry》2006,98(2):555-565
Several studies have demonstrated that glucose deprivation, combined either with anoxia or with the inhibition of oxidative phosphorylation, leads to the development of ischemic tolerance in neurons. The aim of our experiments was to investigate whether similar effects could be achieved by transient energy deprivation without either anoxia or the inhibition of the electron transfer chain. Preconditioning was carried out by incubating primary rat cortical neuronal cultures for 3, 6 or 9 h in a glucose- and amino acid-free balanced salt solution supplemented with B27 in normoxic conditions. After 24 h, neuronal cultures were exposed to oxygen-glucose deprivation, glutamate or hydrogen peroxide. Cell viability was measured 24 h after the lethal insults. Potential mechanisms that can influence free radical production were also examined. Energy deprivation protected neuronal cells against lethal stimuli (e.g. cell survival after oxygen-glucose deprivation was 33.1 +/- 0.52% in the untreated group and 80.1 +/- 1.27% in the 9-h energy deprivation group), reduced mitochondrial membrane potential, decreased free radical formation, attenuated the intracellular free calcium surge upon glutamate receptor stimulation, and resulted in an elevated level of GSH. Our findings show that transient energy deprivation induces delayed preconditioning and prevents oxidative injuries and neuronal cell death. 相似文献
11.
AGEs induces apoptosis and autophagy via reactive oxygen species in human periodontal ligament cells
You-Min Mei Lu Li Xiao-Qian Wang Min Zhang Li-Fang Zhu Yong-Wei Fu Yan Xu 《Journal of cellular biochemistry》2020,121(8-9):3764-3779
The apoptosis of human periodontal ligament cells (HPDLCs) may be an important factor of the negative effect of advanced glycation end products (AGEs) on the periodontal tissue of diabetic patients. However, the pathways or potential effects of apoptosis in AGEs-treated HPDLCs have not been fully elucidated. Autophagy is closely related to apoptosis. Herein, we investigated the potential mechanism of apoptosis and autophagy in HPDLCs treated with AGEs via an in vitro model. We found that AGEs-treated HPDLCs showed a time- and concentration-dependent reduction in the cell survival rate. The mitochondrial-dependent apoptosis was induced in AGEs-treated HPDLCs, as confirmed by the mitochondrial membrane potential depolarization, decreased Bcl-2 expression, increased Bax expression, and increased caspase-3 and PARP cleavage. Autophagy was also induced in AGEs-treated HPDLCs, as indicated by the conversion of LC3-II/LC3-I and the presence of autophagosomes. Interestingly, our study results suggested that apoptosis and autophagy were related to reactive oxygen species (ROS) production. In addition, AGEs-induced autophagy acted as a latent factor in decreasing the generation of ROS in HPDLCs and protecting against the AGEs-induced apoptosis. In summary, our study shows that ROS are essential in AGEs-induced HPDLCs apoptosis and autophagy, which may be a molecular mechanism for the repairment of ROS-induced damage in HPDLCs treated with AGEs to promote cell survival. The present study might provide new insights into the therapeutic targeting of HPDLCs autophagy, which could be an additional strategy for periodontitis in patients with diabetes mellitus. 相似文献
12.
A. A. Aver’yanov V. P. Lapikova M. -H. Lebrun 《Russian Journal of Plant Physiology》2007,54(6):749-754
Effects of tenuazonic acid (TA) on rice leaf segments and on their interaction with compatible races of the blast fungus (Magnaporthe grisea, former name is Pyricularia oryzae) were studied. TA induced small brown necrotic spots on leaves Application of TA (1 or 5 mM) to leaves in mixtures with M. grisea spores induced a local disease resistance, which reduced the frequency of compatible lesions. TA was not fungitoxic but, in contact with the leaf, increased the capability of leaf diffusates to inhibit germination of M. grisea spores. In the infected leaves, the diffusate fungitoxicity was higher than in the healthy ones. Antioxidant enzymes, superoxide dismutase and catalase, and scavengers of hydroxyl radical, mannitol and formate, strongly inhibited the TA-induced diffusate fungitoxicity. It is suggested that the disease resistance induced by TA is mediated, at least partially, by generation of reactive oxygen species by rice leaves, which inhibit the development of the fungus directly or indirectly. 相似文献
13.
Poly(ADP-ribose) polymerase inhibition prevents both apoptotic-like delayed neuronal death and necrosis after H(2)O(2) injury 总被引:2,自引:0,他引:2
Toxic reactive oxygen species (ROS) such as hydrogen peroxide, nitric oxide, superoxide, and the hydroxyl radical are generated in a variety of neuropathological conditions and cause significant DNA damage. We determined the effects of 3-aminobenzamide (AB), an inhibitor of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP), on cell death in differentiated PC12 cells, a model of sympathetic neurons, after H(2) O(2) injury. Exposure to 0.5 mm H(2) O(2) resulted in a significant decrease in intracellular NAD(H), NADP(H), and ATP levels. This injury resulted in the death of 90% of the cells with significant necrosis early (2 h) after injury and increased apoptosis (12-24 h after injury), as measured by PS exposure and the presence of cytoplasmic oligonucleosomal fragments. Treatment with 2.5 mm AB restored pyridine nucleotide and ATP levels and ameliorated cell death (65% versus 90%) by decreasing the extent of both necrosis and apoptosis. Interestingly, we observed that H(2) O(2) -induced injury caused a delayed cell death exhibiting features of apoptosis but in which caspase-3 like activity was absent. Moreover, pretreatment with AB restored caspase-3-like activity. Our results suggest that apoptosis and necrosis are both triggered by PARP overactivation, and that maintenance of cellular energy levels after injury by inhibiting PARP shifts cell death from necrosis to apoptosis. 相似文献
14.
Wogonin is a one of the bioactive compounds of Scutellaria baicalensi Georgi which has been shown to have antiinflammatory, anticancer, antiviral and neuroprotective effects. However, the underlying
mechanisms by which wogonin induces apoptosis in cancer cells still remain speculative. Here we investigated the potential
activation of MAPKs and generation of reactive oxygen species (ROS) by wogonin on MCF-7 human breast cancer cells. These results
showed that wogonin induced mitochondria and death-receptor-mediated apoptotic cell death, which was characterized by activation
of several caspases, induction of PARP cleavage, change of antiapoptotic/proapoptotic Bcl-2 family member ratios and cleavage
of Bid. We also found that generation of ROS was an important mediator in wogonin-induced apoptosis. Further investigation
revealed that wogonin activated ERK and p38 MAPKs, which was inhibited by N-acetyl cysteine (NAC), a ROS scavenger, indicating
that wogonin-induced ROS are associated with MAPKs activation. These data demonstrate that wogonin may be a novel anticancer
agent for treatment of breast cancer. 相似文献
15.
16.
Sendai virus strain Tianjin, a novel genotype of Sendai virus, has been proven to possess potent antitumor effect on certain cancer cell types although inactivated by ultraviolet (UV). This study was carried out to investigate the in vitro anticancer properties of UV-inactivated Sendai virus strain Tianjin (UV-Tianjin) on human osteosarcoma cells and the underlying molecular mechanism. Our studies demonstrated UV-Tianjin significantly inhibited the viability of human osteosarcoma cell lines and triggered apoptosis through activation of both extrinsic and intrinsic pathways in MG-63 cells. Meanwhile, autophagy occurred in UV-Tianjin-treated cells. Blockade of autophagy with 3-methyladenine remarkably attenuated the inhibition of cell proliferation by UV-Tianjin, suggesting that UV-Tianjin-induced autophagy may be contributing to cell death. Furthermore, UV-Tianjin induced reactive oxygen species (ROS) production, which was involved in the execution of MG-63 cell apoptosis and autophagy, as evidenced by the result that treatment of N-acetyl-L-cysteine, a ROS scavenger, attenuated both apoptosis and autophagy. In addition, inhibition of apoptosis promoted autophagy, whereas suppression of autophagy attenuated apoptosis. Our results suggest that UV-Tianjin triggers apoptosis and autophagic cell death via generation of the ROS in MG-63 cells, which might provide important insights into the effectiveness of novel strategies for osteosarcoma therapy. 相似文献
17.
Shanshan Zhu Jing Zhou Zhonglou Zhou Qiqi Zhu 《Journal of biochemical and molecular toxicology》2019,33(7)
Abamectin (ABA) is one of the most widely used compounds in agriculture and veterinary medicine. However, the cytotoxicity of ABA in human gastric cells is utterly unknown. In this study, ABA suppressed the proliferation of MGC803 cells by arresting the cell cycle at the G0/G1‐phase. Moreover, ABA induced mitochondrial‐mediated apoptosis by inducing the loss of mitochondrial membrane potential, upregulation of Bax/Bcl‐2, and activation of caspase‐3. ABA significantly improved the LC3‐II/LC3‐I ratio and reduced P62 protein expression in a dose‐dependent manner. Through detection of the reactive oxygen species (ROS) levels, we found ABA induced the accumulation of intracellular ROS and then reduced PI3K/AKT signaling activation related to MGC803 cell apoptosis and autophagy. Our results indicate that ABA exerts cytotoxic effects on human MGC803 cells through apoptosis and autophagy by inhibiting ROS‐mediated PI3K/AKT signaling. Furthermore, ABA may be a potential risk to human gastric health. 相似文献
18.
Sanguinarine is a benzophenanthridine alkaloid derived from the root of Sanguinaria canadensis and other poppy-fumaria species, possessing potent antibacterial, antifungal, and anti-inflammatory activities. In this study, we investigated the underling mechanisms by which sanguinarine induce apoptosis in human breast cancer MDA-231 cells. Treatment of MDA-231 cells with sanguinarine induced remarkable apoptosis accompanying the generation of ROS. Consistently, sanguinarine-induced apoptosis was mediated by the increased reproductive cell death. Pretreatment with NAC or GSH attenuated sanguinarine-induced apoptosis, suggesting the involvement of ROS in this cell death. During sanguinarin-induced apoptosis, protein levels of pro-caspase-3, Bcl-2, cIAP2, XIAP, and c-FLIPs were reduced. Sanguinarine-mediated apoptosis was substantially blocked by ectopic expression of Bcl-2 and cFLIPs. Additionally, we found that sub-lethal doses of sanguinarine remarkably sensitized breast cancer cells to TRAIL-mediated apoptosis, but the cell death induced by sanguinarine and TRAIL in combination was not blocked by overexpression of Bcl-2 or Akt. Therefore, combinatory treatment of sanguinarine and TRAIL may overcome the resistance of breast cancer cells due to overexpression of Akt or Bcl-2. 相似文献
19.
Methylmercury (MeHg) is one of the ubiquitous environmental toxicant that leads to long-lasting neurological deficits in animals and humans. However, the mechanisms of MeHg-induced neuronal cell death are incompletely understood. Treatment of neuronal cells with MeHg (0-2?μM) for 0.5-12?h, or pretreated with LA (12.5-100?μM) for 0.5-6?h resulted in toxic effects of primary cultured neurons concentration- and time-dependently. For further experiments, 12.5, 25, and 50?μM of LA pretreatment for 3?h followed by 1?μM MeHg for 6?h were performed for the examination of the responses of neurons. Exposure of MeHg resulted in damages of neurons, which were shown by a loss of cell viability, and supported by high levels of lactate dehydrogenase (LDH) release, apoptosis, and morphological changes. In addition, neurons were sensitive to MeHg-mediated oxidative stress, a finding that is consistent with ROS over-production, leading to decrease Ca2+-ATPase activity and increase intracellular free calcium. Moreover, expressions of NMDA receptor subunits in neurons were down-regulated after MeHg exposure, and expression of NR2A mRNA and protein were much more sensitive to MeHg than those of NR1 and NR2B. On the contrary, pretreatment with LA presented a concentration-dependent prevention against MeHg-mediated cytotoxic effects of neurons. In conclusion, present results showed that oxidative stress and intracellular Ca2+?dyshomeostasis resulting from MeHg exposure contributed to neuronal injury. LA could attenuate MeHg-induced neuronal toxicity via its antioxidant properties in primary cultured neurons. 相似文献
20.
,β-Unsaturated carbonyl compounds have been implicated in a number of environmentally-related diseases. Often, the presence of ,β-unsaturated carbonyl functionality as part of either an aliphatic or cyclic structure is considered a structural alert for cytotoxicity. We examined the cytotoxicity of methyl vinyl ketone (MVK), an aliphatic, straight-chain ,β-unsaturated carbonyl compound, in murine GT1-7 hypothalamic neurons. In addition to its widespread environmental occurrence, MVK was selected due to its extensive use in the chemical industry. Also, MVK is a close structural analog of hydroxymethylvinyl ketone that, in part, mediates the cytotoxic effects of 1,3-butadiene in vivo. It was found that MVK at low micromolar concentrations induced extensive cell death that retained key features of apoptosis such as chromatin condensation and DNA fragmentation. The MVK-induced apoptosis was associated with depletion of glutathione, disruption of mitochondrial transmembrane potential, and increased generation of reactive oxygen species (ROS). Supplementation of neuronal cells with Trolox offered partial, but significant, protection against the MVK-induced cytotoxicity, presumably due to scavenging of ROS in situ. The suggested sequence of events in the MVK-induced apoptosis in neuronal cells involves the depletion of cellular glutathione followed by an increased generation of ROS and finally the loss of mitochondrial function. 相似文献