首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It has been proposed that fetal adaptations to intrauterine nutrient deprivation permanently reprogram the cardiovascular system. We investigated the impact of restricted periconceptional nutrition and/or restricted gestational nutrition on fetal arterial blood pressure (BP), heart rate, rate pressure product, and the fetal BP responses to ANG II and the angiotensin-converting enzyme inhibitor captopril during late gestation. Restricted periconceptional nutrition resulted in an increase in fetal mean arterial BP between 115 and 125 days gestation (restricted 41.5 +/- 2.8 mmHg, n = 12; control 38.5 +/- 1.5 mmHg, n = 13) and between 135 and 147 days gestation (restricted 50.5 +/- 2.2 mmHg, n = 8; control 42.5 +/- 1.9 mmHg, n = 10) as well as an increase in the rate pressure product in twin, but not singleton, fetuses between 115 and 147 days gestation. Mean BP and fetal plasma ACTH were also positively correlated in twin, but not singleton, fetuses. This is the first demonstration that maternal undernutrition during the periconceptional period results in an increase in fetal arterial BP. This increase occurs concomitantly with an increase in fetal ACTH but is not dependent on activation of the fetal renin-angiotensin system.  相似文献   

2.
We have investigated the effects of maternal undernutrition during late gestation on maternal and fetal plasma concentrations of leptin and on leptin gene expression in fetal perirenal adipose tissue. Pregnant ewes were randomly assigned at 115 days of gestation (term = 147 +/- 3 days [mean +/- SEM]) to either a control group (n = 13) or an undernourished group (n = 16) that received approximately 50% of the control diet until 144-147 days of gestation. Maternal plasma glucose, but not leptin, concentrations were lower in the undernourished ewes. A significant correlation was found, however, between mean maternal plasma leptin (y) and glucose (x) concentrations (y = 2.9x - 2.4; r = 0.51, P < 0.02) when the control and undernourished groups were combined. Fetal plasma glucose and insulin, but not fetal leptin, concentrations were lower in the undernourished ewes, and no correlation was found between mean fetal leptin concentrations and either mean fetal glucose or insulin concentrations. A positive relationship, however, was found between mean fetal (y) and maternal (x) plasma leptin concentrations (y = 0.18x + 0.45; r = 0.66, P < 0.003). No significant difference was found in the relative abundance of leptin mRNA in fetal perirenal fat between the undernourished (0.60 +/- 0.09, n = 10) and control (0.70 +/- 0.08, n = 10) groups. Fetal plasma concentrations of leptin (y) and leptin mRNA levels (x) in perirenal adipose tissue were significantly correlated (y = 1.5x +/- 0.3; r = 0.69, P < 0.05). In summary, the capacity of leptin to act as a signal of moderate maternal undernutrition may be limited before birth in the sheep.  相似文献   

3.
The present study tested the hypothesis that the nocturnal melatonin rhythm in the fetal sheep results from transfer across the placenta of melatonin from maternal circulation. Pregnant ewes were exposed to an artificial reverse photoperiod at about 100 days gestation (n = 6; lights on 10 h, 2200-0800 h PST). This treatment tested for entrainment in the ewe and its fetus of the 24-h pattern of melatonin production from the pineal gland. Other ewes were pinealectomized at 55 days post-breeding (n = 6), and similarly treated. Catheters were implanted and blood samples were collected between 117 and 142 days gestation at two 48-h periods, about every 0.5-4 h, to assess the pattern of melatonin in maternal and fetal circulations. In pineal-intact ewes and their fetuses, melatonin rhythms conformed to the reverse photoperiod, i.e. plasma melatonin concentrations were relatively low during the light period and significantly increased for the duration of darkness. In contrast, maternal pinealectomy abolished the melatonin rhythms in both the ewe and fetus; melatonin concentrations remained at or below the limits of detection. Pineal-intact sheep gave birth about 139 +/- 2 days (mean +/- SE, n = 4) at 1915 +/- 0.7 h and pinealectomized ewes (n = 5 of 6) lambed at 149 +/- 2 days at 0424 +/- 0.5 h. Finally, in lambs (n = 3) born to pinealectomized ewes, typical melatonin rhythms were present within the first week of life. The findings indicate that the maternal pineal gland is responsible for the 24-h pattern of melatonin in the ewe and its fetus during the last trimester of pregnancy.  相似文献   

4.
Human epidemiological and animal experimental studies suggest that maternal undernutrition during pregnancy may alter cardiovascular development of the offspring. The extent to which these effects involve changes in fetal cardiovascular function and whether they are necessarily linked to reduced fetal growth is unknown. In sheep, we investigated the effect of a 15% reduction in maternal global nutrition for the first 70 days of gestation (term = 147 days) on fetal blood pressure development, baroreflex control of fetal heart rate (FHR), and cardiovascular responses to acute hypoxemia in late gestation. Basal mean arterial pressure (P < 0.05), systolic blood pressure (P < 0.05), diastolic blood pressure (P < 0.05), and rate-pressure product (P < 0.001) were significantly lower in fetuses of nutritionally restricted ewes (R) compared with controls (C). FHR was not altered. The operating point for the fetal baroreflex was significantly lower in R fetuses compared with C (P < 0.01), but there was no difference between the groups in the cardiovascular response to hypoxemia. We conclude that mild maternal undernutrition alters fetal cardiovascular development, producing low blood pressure and resetting of baroreflex control mechanisms. This effect occurs without any changes in fetal growth or blood gas status.  相似文献   

5.
The effect of prolonged hypobaric hypoxia on growth of fetal sheep   总被引:1,自引:0,他引:1  
The effect of prolonged hypobaric hypoxia on fetal sheep was studied. Pregnant ewes were subjected to an atmospheric pressure of 429 torr from 30 days to 135 days gestation (long-term study). Average fetal weight for the hypoxaemic group (3.35 +/- 0.53 kg; n = 4; mean +/- SD) was significantly lower than for the controls (4.23 +/- 0.29 kg; n = 7; P less than 0.05). A short-term study was undertaken with fetuses (n = 8) which were catheterized at 110 days gestation and whose dams were subjected to hypobaric hypoxia from 120 to 141 days gestation. The mean carotid PO2 of fetuses in the hypoxic group was 12.7 +/- 0.7 torr compared to 22.7 +/- 0.7 torr for the control group (n = 9; P less than 0.001) throughout the period of treatment. Fetal arterial oxygen content fell from 6.5 +/- 1.7 to 4.9 +/- 0.4 ml/dl (P less than 0.05), but rose to control values after 7 days due to an increase in fetal haemoglobin concentration (9.6 +/- 1.1 to 13.0 +/- 1.9 g/dl, P less than 0.001) and packed cell volume (33 +/- 3 to 45 +/- 4%, P less than 0.001). In the hypoxaemic fetuses, pH fell initially from 7.34 +/- 0.02 to 7.28 +/- 0.03 (P less than 0.05) and then recovered to 7.32 +/- 0.03 within 24 h. Mean fetal weight of the short-term hypoxic group was 3.46 +/- 0.72 kg compared to 4.15 +/- 0.51 for the control group (P less than 0.05). Both long- and short-term hypoxia produced a similar reduction in fetal body weight. The adrenal glands were significantly heavier in the hypoxic fetuses than in controls. Placental weight was not effected by hypoxia, but exposure from 30 days gestation reduced the average size of cotyledons (P less than 0.05). It is concluded that the fetal sheep increases its ability to acquire and transport oxygen in response to chronic hypoxia, but this compensation is not sufficient to prevent growth retardation or changes to the pattern of tissue growth.  相似文献   

6.
A range of epidemiological and experimental studies have indicated that suboptimal nutrition at different stages of gestation is associated with an increased prevalence of adult hypertension, cardiovascular disease, and obesity. The timing of prenatal nutrient restriction is important in determining postnatal outcomes-including obesity. The present study, aimed to determine the extent to which fetal adiposity and expression of the key thermogenic protein, uncoupling protein (UCP)1, are altered by restriction of maternal nutrient intake imposed during four different periods, starting from before conception. Maternal nutrient intake was restricted from 60 days before until 8 days after mating (periconceptional nutrient restriction; R-C), from 60 days before mating and throughout gestation (R-R), from 8 days gestation until term (C-R), or from 115 days gestation until term. Fetal perirenal adipose tissue (PAT) was sampled near to term at approximately 143 days. UCP1 mRNA, but not protein, abundance in PAT was increased in fetuses in the R-R group (C-C 63 +/- 18; R-C 83 +/- 43; C-R 103 +/- 38; R-R 167 +/- 50 arbitrary units (P < 0.05)). In contrast, the abundance of UCP1 mRNA, but not protein, in fetal PAT was decreased when maternal nutrition was restricted from 115 days gestation. The major effect of maternal nutrient restriction on adipose tissue deposition occurred in the C-R group, in which the proportion of fetal fat was doubled, whereas maternal nutrient restriction from 115 days gestation reduced fetal fat deposition. In conclusion, there are differential effects of maternal and therefore fetal nutrient restriction on UCP1 mRNA expression and fetal fat mass and these effects are dependent on the timing and duration of nutrient restriction.  相似文献   

7.
The effect of hypobaric hypoxaemia on the concentration of metabolic substrates in the ovine fetus and pregnant ewe with implanted vascular catheters, was investigated. At 120 to 141 days of gestation sheep were subjected to hypobaria (mean fetal carotid PO2 12.7 +/- 0.7 torr; n = 9) or normobaria (mean fetal carotid PO2 22.7 +/- 0.7 torr; n = 11; P less than 0.001). At 141 days gestation mean fetal weight was 3.46 +/- 0.72 kg in the hypobaric group compared to 4.15 +/- 0.51 in the normobaric group (P less than 0.05). Concentrations of glucose in maternal and fetal plasma and fructose in fetal plasma were similar in hypobaric and normobaric fetuses. The concentration of lactate in fetal plasma rose from 1.68 +/- 1.34 to 8.79 +/- 5.8 mmol/l (P less than 0.001) within 24 h of onset of hypoxia, but fell to 3.36 +/- 1.13 mmol/l by day 3 of treatment, though still significantly above the concentration of lactate in the control fetuses (1.47 +/- 0.47; P less than 0.001). There was no significant effect of hypoxia on the concentration of lactate or alanine in maternal plasma. Alanine concentration in the plasma of fetuses subjected to hypoxia significantly increased within 24 h of exposure (0.28 +/- 0.10 vs 0.58 +/- 0.39 mmol/l; P less than 0.01) and remained elevated for the duration of the study. There was no significant effect of gestational age on the concentration of metabolic substrates in either the control or experimental groups. Hypoxia is associated with a sustained rise in the concentration of plasma lactate and alanine in the fetus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Piezoelectric transducers were implanted into the parietal bones of intact (n = 4) and hypophysectomized (n = 8) fetal sheep of approximately 110-120 days gestational age (term 145-150 days). Intertransducer distance was determined by measuring the time taken for an ultrasonic pulse, generated by one transducer, to elicit a piezoelectric response in an opposing transducer. The limit of sensitivity of the timer was +/- 0.033 microsec. The ultrasonic velocity through fetal sheep brain tissue was 1549.6 +/- 2.2 m.s-1 (SEM; n = 33). This velocity remained constant throughout the entire period studied in both intact and hypophysectomized fetuses. At this velocity, the sensitivity of the measuring device was +/- 0.05mm. The ultrasonic transit time was measured daily between 0900 and 1100h until term in all fetuses. Three hypophysectomized fetuses were allowed to remain in utero until day 163 of gestation. The mean biparietal distance growth rate prior to day 135 for the intact and hypophysectomized fetuses was 0.25 +/- 0.03 and 0.27 +/- 0.025 mm/day respectively. These values were not significantly different (P greater than 0.05). A significant decrease (P less than 0.05) in growth rate was detected in both experimental groups between days 135 and 147 and was more pronounced in the sham (0.05 +/- 0.04 mm/day) than in the hypophysectomized (0.14 +/- 0.03 mm/day) group. However, the growth rate of the sham animals after day 135 was not significantly different from that of the hypophysectomized animals. In the three hypophysectomized fetuses killed at day 163 the biparietal distance growth was maintained at 0.12 +/- 0.005 mm/day. We conclude that fetal biparietal distance growth is pituitary independent from day 110 of gestation and that this technique for measuring distance is a valid and extremely accurate method for the continuous measurement of this parameter of fetal growth and may have further applications in other areas of growth research.  相似文献   

9.
Six Suffolk fetuses of known gestational age were examined every other day from Day 43 to Day 96 of gestation using transabdominal real-time ultrasound. Biparietal diameter (BPD) was measured on symmetrical fetal head images. The relationship between days gestational age (GA) and mean BPD in millimeters is described by the equation: [GA = 22.5 + 1.81 BPD]. Repeated ultrasound examination of 9 Finn ewes between 35 and 95 d of gestation revealed the relationship: [GA = 21.4 + 1.85 BPD]. Biparietal diameters were determined for 56 Suffolk X Hampshire fetuses which ranged from 41 to 77 d of gestation. The predicted fetal age using the Suffolk equation was within 1 d of the recorded age for 22 56 , +/-2 d for 34 56 , and +/-3 d for 44 56 fetuses.  相似文献   

10.
Eleven Merino sheep fetuses were supplemented with glucose by direct continuous intravenous infusion of 50% dextrose into the fetus from day 115 of gestation until spontaneous delivery. Infusion rates of 15 or 25 g/day per kg were used and equivalent volumes of saline were infused into 11 control fetuses. Infusion periods approximated 27 days in both groups. Fetal plasma glucose concentrations were significantly (P less than 0.001) elevated throughout glucose infusion and resulted in variable but consistently higher plasma insulin concentrations in the glucose than in the saline-infused fetuses. Glucose-infused fetuses were significantly heavier than controls (mean +/- SEM; 3.86 +/- 0.16 vs 3.28 +/- 0.24 kg, P less than 0.05) and body fat depots (in g/kg body wt.) were larger in glucose-infused than control fetuses (9.91 +/- 0.65 vs 6.73 +/- 0.37, P less than 0.005, for internal brown fat depots; 1.25 +/- 0.44 vs 0.27 + 0.13, P less than 0.05, for subcutaneous white adipose tissue). The results indicate that growth and lipid deposition in the sheep fetus are responsive to increased glucose supply, an effect which may be mediated through the actions of insulin. Mean gestation length was 146.60 +/- 1.45 days for controls and 144.18 +/- 1.23 days for glucose-infused animals (normal term 150 days).  相似文献   

11.
25 female sheep of the Texel breed were made hyperglycaemic by administration of alloxan monohydrate (ALX) in early pregnancy and 15 ewes served as controls. Average venous glucose levels (mean +/- standard deviation) increased from 3.5 +/- 0.2 to 14.0 +/- 1.8 mmol/l. All hyperglycaemic sheep were treated with long-acting insulin in doses adjusted individually (0.2-1.0 U/kg per day) to keep glucose levels above 8 mmol/l. After a temporary significant increase, maternal venous concentrations of urea and creatinine returned to normal levels. One sheep died on day 6 after administration of ALX. Another hyperglycaemic sheep died at induction of anaesthesia. Eight hyperglycaemic ewes aborted between days 90 and 128 of gestation. Between days 103 and 135 of gestation the remaining hyperglycaemic (n = 15) and control (n = 15) ewes were operated upon and the fetuses were provided with EEG, nuchal EMG and ECG electrodes and catheters in the trachea, amniotic fluid, jugular vein and carotid artery. Use of the chronic sheep preparation for the study of diabetes mellitus and fetal reactions was successful in 10 out of 25 cases, as in the diabetic group postoperative intra-uterine fetal survival varied between 2 and 19 days and in 10 cases was at least 5 days. Postoperative intrauterine fetal survival in the controls was significantly longer and varied between 4 and 28 days, and in 13 cases was at least 5 days. A highly significant correlation (P less than 10-6) between maternal and fetal blood glucose levels was seen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
In adults, circulating leptin concentrations are dependent on body fat content and on current nutritional status. However, the relationships among maternal nutrient intake, fetal adiposity, and circulating leptin concentrations before birth are unknown. We investigated the effects of an increase in nutrient intake in the pregnant ewe on fetal adiposity and plasma leptin concentrations during late gestation. Between 115 and 139-141 days gestation (term = 147 +/- 3 days gestation), ewes were fed a diet calculated to provide either maintenance (control, n = 6) or approximately 155% of maintenance requirements (well-fed, n = 8). The fetal fat depots (perirenal and interscapular) were dissected, and the relative proportion of unilocular and multilocular adipocytes in each depot was determined. Maternal plasma glucose and leptin concentrations were significantly increased in well-fed ewes. Fetal plasma glucose concentrations were also higher in the well-fed group (115-139 days gestation: control, 1.65 +/- 0.14 mmol/L; well-fed, 2.00 +/- 0.14 mmol/L; F = 5.76, P < 0.04). There was no effect of increasing maternal feed intake on total fat mass, the relative mass of unilocular fat, or fetal plasma leptin concentrations (115-139 days gestation: control, 5.2 +/- 0.8 ng/ml; well-fed, 4.7 +/- 0.7 ng/ml). However, in both the control and well-fed groups fetal plasma leptin concentrations (y) were positively correlated with the relative mass of unilocular fat (x): y = 1.51x + 1.70; (R = 0.76, P < 0.01). Thus, fetal leptin may play a role as a signal of unilocular fat mass in the fetus when maternal nutrient intake is at or above maintenance requirements.  相似文献   

13.
Hypoacidity and hypergastrinaemia have been reported in the newborn human. However, little is known about in utero gastric acid secretion, and the relationship to fetal plasma gastrin levels. The longitudinal pattern of development of basal and stimulated gastric acid secretion in the non-anaesthetized fetal sheep has been studied during the last 45 days of gestation. Fetuses had cannulae inserted into the jugular vein, carotid artery and stomach. Gastric juice and blood was sampled daily from 101 days gestation until birth (145 days). Intermittent basal acid secretion began between 120 and 133 days of gestation. These fluctuations in gastric juice pH continued until birth. Overall there was a decline in gastric pH from 7.5 +/- 0.2 (SEM), for fetuses 101-105 days to 4.3 +/- 0.5 by 131-135 days. Mean fetal plasma gastrin was higher than maternal levels after 111-115 days but no correlation between fetal plasma gastrin levels and gastric pH could be demonstrated. Pentagastrin and histamine infusion did not stimulate acid secretion in fetuses younger than 115 days. After this age the fetuses became responsive to both pentagastrin and histamine. In contrast, cholinergic stimulation, using bethanechol, did not stimulate acid production until 10 to 15 days later, suggesting a hierarchy in the development of the control of acid secretion in the fetus. The lack of response to endogenous gastrin and the hierarchy in the control of acid secretion suggest either a lack of receptors on the parietal cell or the presence of an inhibitor of acid secretion. These studies are relevant to human physiology since the present findings show that the sheep and human have a similar gastrin/acid profile at birth.  相似文献   

14.
The tendency for fetuses to be evenly spaced along the uterine horn and the relationship of this to local competition between fetuses was examined in three strains of mice which characteristically produce large, medium and small litters. Local competition was assessed by correlating, within each uterine horn, the weight of each fetus or placenta with the mean distance to its immediate neighbours. Weights and distances were measured on day 19 of gestation, on the day before expected parturition and distances only on day 7. Average litter sizes (live fetuses) were 16.3 +/- 0.9, 11.7 +/- 0.6 and 7.2 +/- 0.5 (mean +/- SEM) in the large, medium and small litter strains, respectively (n = 7, 7 and 10, respectively). On day 19, the mean distance between fetuses was significantly less (P < 0.05) in the large strain (10.1 +/- 1.0 mm) than in the medium (14.0 +/- 1.2 mm) or small (13.5 +/- 1.0 mm) strains. Evenness of spacing, expressed as the standard deviation of distances between fetuses divided by the mean distance, improved from day 7 to day 19 of gestation in all three strains and effectively prevented local competition between fetuses in the medium litter (r = 0.04) and small litter strains (r = 0.17), but not in the large litter strain (r = 0.45, P < 0.01). Thus, local crowding does not seem to be detrimental to fetal growth in mice, except in strains specifically bred for large litters.  相似文献   

15.
The development of secondary wool follicles in single fetal sheep subjected to hypobaric hypoxaemia was studied. One group of pregnant ewes were exposed to 57.1 kPa from 30 to 135 days gestation. Fetal weights (mean +/- s.d.) for the hypoxaemic group (3.35 +/- 0.53 kg; n = 4) were significantly lower than for the controls (4.19 +/- 0.31 kg; n = 3, P less than 0.05). At 110 days gestation, a second group had arterial and venous catheters surgically implanted into the ewe and fetus and skin samples were taken from the fetus. At 120 days gestation (10 days after surgery) these animals were subjected to hypoxia for 20 days, at a level to maintain fetal carotid pO2 between 1.47 and 1.87 kPa (mean carotid pO2 for the control fetuses was 2.84 +/- 0.28 kPa). Fetal weight at 140 days was not significantly different in the hypoxaemic and control groups. Morphometric analysis revealed that the secondary to primary follicle ratio (S:P) was less in both groups of hypoxaemic fetuses than in their respective controls. Although hypoxia for 20 days did not significantly alter fetal weight, it produced a low S:P ratio similar to the longer-term hypoxaemic animals. It is concluded that hypoxia has a marked effect in reducing the initiation of secondary follicles in the last third of gestation.  相似文献   

16.
Synthetic human pancreatic growth hormone releasing factor 1-44-amide was administered (8 micrograms/kg iv bolus) to chronically catheterised fetal sheep between 77 and 135 days of gestation and to infant sheep. At all ages human pancreatic growth hormone releasing factor induced a significant growth hormone response. In fetuses less than 120 days the integrated growth hormone response to human pancreatic growth hormone releasing factor (n = 5) was 250 +/- (SE) 50 ng X hr X ml-1 compared (p less than 0.001) to -22.8 +/- 8.6 ng X hr X ml-1 in saline treated controls (n = 7). In fetuses older than 120 days (n = 5), the response to human pancreatic growth hormone releasing factor was 110.8 +/- 15.6 ng X hr X ml-1 compared to -12.0 +/- 17.6 ng X hr X ml-1 in saline treated controls (n = 4 p less than 0.001). In 4 infant lambs (4-12 days) the response to human pancreatic growth hormone releasing factor (56.5 +/- 14.5 ng X hr X ml-1) was greater than in 6 control injected lambs (0.95 +/- 1.5 ng X hr X ml-1). The magnitude of the response to growth releasing factor decreased progressively with increasing postconceptual age (r = -0.80, p less than 0.001). These observations demonstrate that the fetal somatotrope can respond to exogenous growth releasing factor from at least 77 days of gestation. The progressive decrease in responsiveness may reflect the gradual development of somatostatin mediated inhibitory control or altered responsiveness of the somatotrope.  相似文献   

17.
It has been proposed that maternal nutrient restriction may alter the functional development of the adipocyte and the synthesis and secretion of the adipocyte-derived hormone, leptin, before birth. We have investigated the effects of restricted periconceptional undernutrition and/or restricted gestational nutrition on fetal plasma leptin concentrations and fetal adiposity in late gestation. There was no effect of either restricted periconceptional or gestational nutrition on maternal or fetal plasma leptin concentrations in singleton or twin pregnancies during late gestation. In ewes carrying twins, but not singletons, maternal plasma leptin concentrations in late gestation were directly related to the change in ewe weight that occurred during the 60 days before mating [maternal leptin = 0.9 (change in ewe weight) + 7.8; r = 0.6, P < 0.05]. In twin, but not singleton, pregnancies, there was also a significant relationship between maternal and fetal leptin concentrations (maternal leptin = 0.5 fetal leptin + 4.2, r = 0.63, P < 0.005). The relative mass of perirenal fat was also significantly increased in twin fetal sheep in the control-restricted group (6.0 +/- 0.5) compared with the other nutritional groups (control-control: 4.1 +/- 0.4; restricted-restricted: 4.4 +/- 0.4; restricted-control: 4.3 +/- 0.3). In conclusion, the impact of maternal undernutrition on maternal plasma leptin concentrations during late gestation is dependent on fetal number. Furthermore, we have found that there is an increased fetal adiposity in the twins of ewes that experienced restricted nutrition throughout gestation, and this may be important in the programming of postnatal adiposity.  相似文献   

18.
Evidence from epidemiologic, clinical, and experimental studies has shown that a suboptimal intrauterine environment during early pregnancy can alter fetal growth and gestation length and is associated with an increased prevalence of adult hypertension and cardiovascular disease. It has been postulated that maternal nutrient restriction may act to reprogram the development of the pituitary-adrenal axis, resulting in excess glucocorticoid exposure and adverse health outcomes in later life. It is unknown, however, whether maternal nutrient restriction during the periconceptional period alters the development of the fetal pituitary-adrenal axis or whether the effects of periconceptional undernutrition can be reversed by the provision of an adequate level of maternal nutrition throughout the remainder of pregnancy. We have investigated the effect of restricted periconceptional nutrition (70% of control feed allowance) from 60 days before until 7 days after mating and the effect of restricted gestational nutrition from Day 8 to 147 of gestation on the development of the fetal hypothalamo-pituitary adrenal (HPA) axis in the sheep. In these studies, we have also investigated the effects of fetal number and sex on the pituitary-adrenal responses to periconceptional and gestational undernutrition. In ewes maintained on a control diet throughout the periconceptional and gestational periods, fetal plasma ACTH concentrations were higher and the prepartum surge in cortisol occurred earlier in singletons compared with twins. Plasma ACTH concentrations were also significantly higher in male compared with female singletons, and in twin fetuses, the prepartum surge in cortisol concentrations occurred earlier in males than in females. Periconceptional undernutrition resulted in higher fetal plasma concentrations of ACTH between 110 and 145 days of gestation and a significantly greater cortisol response to a bolus dose of corticotropin-releasing hormone in twin, but not singleton, fetuses in late gestation. We have therefore demonstrated that fetal number and sex each has an impact on the timing of the prepartum activation of the HPA axis in the sheep. Restriction of the level of maternal nutrition before and in the first week of a twin pregnancy results in stimulation of the fetal pituitary-adrenal axis in late gestation, and this effect is not reversed by the provision of a maintenance control diet from the second week of pregnancy.  相似文献   

19.
Functional development of the adrenal cortex is critical for fetal maturation and postnatal survival. In the present study, we have determined the developmental profile of expression of the mRNA and protein of an essential cholesterol-transporting protein, steroidogenic acute regulatory protein (StAR), in the adrenal of the sheep fetus. We have also investigated the effect of placental restriction (PR) on the expression of StAR mRNA and protein in the growth-restricted fetus. Adrenal glands were collected from fetal sheep at 82-91 days (n = 10), 125-133 days (n = 10), and 140-144 days (n = 9) and from PR fetuses at 141-145 days gestation (n = 9) (term = 147 +/- 3 days gestation). The adrenal StAR mRNA:18S rRNA increased (P < 0.05) between 125 days (7.44 +/- 1.61) and 141-144 days gestation (13.76 +/- 1.88). There was also a 13-fold increase (P < 0.05) in the amount of adrenal StAR protein between 133 and 144 days gestation in these fetuses. However, the amount of StAR protein (6.9 +/- 1.7 arbitrary densitometric units [AU]/microg adrenal protein) in the adrenal of the growth-restricted fetal sheep was significantly reduced, when compared with the expression of StAR protein (17.1 +/- 1.9 AU/microg adrenal protein) in adrenals from the age-matched control group. In summary, there is a developmental increase in the expression of StAR mRNA and protein in the fetal sheep adrenal during the prepartum period when adrenal growth and steroidogenesis is dependent on ACTH stimulation. We have found that, while the level of expression of StAR protein is decreased in the adrenal gland of the growth-restricted fetus during late gestation, this does not impair adrenal steroidogenesis. Our data also suggest that the stimulation of adrenal growth and steroidogenesis in the growth-restricted fetus may not be ACTH dependent.  相似文献   

20.
In the intact, unstressed ovine fetus, both plasma immunoreactive adrenocorticotrophin (ACTH) and blood cortisol concentrations increased after 121 days gestation. The mean ACTH and cortisol concentrations in intact fetuses of 90-121, 122-135 and 136-144 days gestation were for ACTH 20.4 +/- 3.9 (50) (mean +/- SEM, n), 30.2 +/- 5.6 (26) and 56.0 +/- 6.3 pg/ml (37) respectively, and for cortisol 0.07 +/- 0.01 (24), 0.17 +/- 0.03 (21) and 0.64 +/- 0.13 microgram/100 ml (15), respectively. After 121 days ACTH and cortisol concentrations were correlated positively. Cortisol infused into intact or adrenalectomized fetuses and corticosterone infused into adrenalectomized fetuses suppressed fetal plasma ACTH concentrations. In summary, ACTH and cortisol increase concomitantly after 122 days, so that it is highly probable that ACTH is the trophic stimulus for fetal adrenal maturation. The suppression of ACTH by cortisol and corticosterone suggests that these are the natural feedback regulators. It is proposed that while the mechanism for cortisol feedback may exist early in gestation, it is not until after 121 days that feedback control of ACTH becomes evident and physiologically important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号