首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transformation of Saccharomyces cerevisiae strains was examined by using the URA3 and TRP1 genes cloned into M13 vectors in the absence of sequences capable of promoting autonomous replication. These constructs transform S. cerevisiae cells to prototrophy by homologous recombination with the resident mutant gene. Single-stranded DNA was found to transform S. cerevisiae cells at efficiencies greater than that of double-stranded DNA. No conversion of single-stranded transforming DNA into duplex forms could be detected during the transformation process, and we conclude that single-stranded DNA may participate directly in recombination with chromosomal sequences. Transformation with single-stranded DNA gave rise to both gene conversion and reciprocal exchange events. Cotransformation with competing heterologous single-stranded DNA specifically inhibited transformation by single-stranded DNA, suggesting that one of the components in the transformation-recombination process has a preferential affinity for single-stranded DNA.  相似文献   

2.
In the yeast Saccharomyces cerevisiae, a double-strand chromosome break created by the HO endonuclease is frequently repaired in mitotically growing cells by recombination between flanking homologous regions, producing a deletion. We showed that single-stranded regions were formed on both sides of the double-strand break prior to the formation of the product. The kinetics of the single-stranded DNA were monitored in strains with the recombination-deficient mutations rad52 and rad50 as well as in the wild-type strain. In rad50 mutants, single-stranded DNA was generated at a slower rate than in the wild type, whereas rad52 mutants generated single-stranded DNA at a faster rate. Product formation was largely blocked in the rad52 mutant. In the rad50 rad52 double mutant, the effects were superimposed in that the exonucleolytic activity was slowed but product formation was blocked. rad50 appears to act before or at the same stage as rad52. We constructed strains containing two ura3 segments on one side of the HO cut site and one ura3 region on the other side to characterize how flanking repeats find each other. Deletions formed preterentially between the homologous regions closest to the double-strand break. By varying the size of the middle ura3 segment, we determined that recombination initiated by a double-strand break requires a minimum homologous length between 63 and 89 bp. In these competition experiments, the frequency of recombination was dependent on the length of homology in an approximately linear manner.  相似文献   

3.
Optimisation of DNA triplex stability is of fundamental importance in the anti-gene strategy. In the present work, thermal denaturation studies by UV-spectrophotometry and structural and dynamical characterizations by NMR spectroscopy have been used systematically to investigate the effects on triplex stability of isolated insertions of different base triplets into an otherwise homogeneous 15-mer dT x dA-dT oligo-triplex. It is found that insertion of a single central C(+) x G-C or T x D-T triplet (D=2,6-diaminopurine) leads to a pronounced stabilization (up to 20 deg. C if the cytosine base is C5 methylated) at acidic as well as neutral pH. To a smaller degree, this is the case also for a C(+) x I-C triplet insertion.Using imino proton exchange measurements, it is shown that insertion of a DT base-pair in the underlying duplex perturbs the intrinsic A-tract structure in the same way as has been shown for a GC insert. We propose that the intrinsic properties of A-tract duplex DNA (e. g. high propeller twist and rigidity) are unfavourable for triplex formation and that GC- or DT-inserts stabilize the triplex by interfering with the A-tract features of the underlying duplex. The C(+) x I-C triplet without the N2 amino group in the minor groove is readily accommodated within the typical, highly propeller-twisted A-tract structure. This might be related to its smaller effect on the stability of the corresponding triplex.These results may be valuable for understanding DNA triplex formation in vivo as well as for the design of efficient triplex-forming oligonucleotides and in choosing suitable target sequences in the anti-gene strategy.  相似文献   

4.
We have prepared triplex-forming oligonucleotides containing the nucleotide analogue 5-dimethylaminopropargyl deoxyuridine (DMAPdU) in place of thymidine and examined their ability to form intermolecular triple helices by thermal melting and DNase I footprinting studies. The results were compared with those for oligonucleotides containing 5-aminopropargyl-dU (APdU), 5-guanidinopropargyl-dU (GPdU) and 5-propynyl dU (PdU). We find that DMAPdU enhances triplex stability relative to T, though slightly less than the other analogues that bear positive charges (T << PdU < DMAPdU < APdU < GPdU). For oligonucleotides that contain multiple substitutions with DMAPdU dispersed residues are more effective than clustered combinations. DMAPdU will be especially useful as a nucleotide analogue as, unlike APdU and GPdU, the base does not require protection during oligonucleotide synthesis and it can therefore be used with other derivatives that require mild deprotection conditions.  相似文献   

5.
Polyamines favor DNA triplex formation at neutral pH   总被引:15,自引:0,他引:15  
K J Hampel  P Crosson  J S Lee 《Biochemistry》1991,30(18):4455-4459
The stability of triplex DNA was investigated in the presence of the polyamines spermine and spermidine by four different techniques. First, thermal-denaturation analysis of poly[d(TC)].poly[d(GA)] showed that at low ionic strength and pH 7, 3 microM spermine was sufficient to cause dismutation of all of the duplex to the triplex conformation. A 10-fold higher concentration of spermidine produced a similar effect. Second, the kinetics of the dismutation were measured at pH 5 in 0.2 M NaCl. The addition of 500 microM spermine increased the rate by at least 2-fold. Third, in 0.2 M NaCl, the mid-point of the duplex-to-triplex dismutation occurred at a pH of 5.8, but this was increased by nearly one pH unit in the presence of 500 microM spermine. Fourth, intermolecular triplexes can also form in plasmids that contain purine.pyrimidine inserts by the addition of a single-stranded pyrimidine. This was readily demonstrated at pH 7.2 and 25 mM ionic strength in the presence of 100 microM spermine or spermidine. In 0.2 M NaCl, however, 1 mM polyamine is required. Since, in the eucaryotic nucleus, the polyamine concentration is in the millimolar range, then appropriate purine-pyrimidine DNA sequences may favor the triplex conformation in vivo.  相似文献   

6.
7.
We studied the ability of single-stranded DNA (ssDNA) to participate in targeted recombination in mammalian cells. A 5' end-deleted adenine phosphoribosyltransferase (aprt) gene was subcloned into M13 vector, and the resulting ssDNA and its double-stranded DNA (dsDNA) were transfected to APRT-Chinese hamster ovary cells with a deleted aprt gene. APRT+ recombinants with the ssDNA was obtained at a frequency of 3 x 10(-7) per survivor, which was almost equal to that with the double-stranded equivalent. Analysis of the genome in recombinant clones produced by ssDNA revealed that 12 of 14 clones resulted from correction of the deletion in the aprt locus. On the other hand, the locus of the remaining 2 was not corrected; instead, the 5' deletion of the vector was corrected by end extension, followed by integration into random sites of the genome. To exclude the possibility that input ssDNA was converted into its duplex form before participating in a recombination reaction, we compared the frequency of extrachromosomal recombination between noncomplementary ssDNAs, and between one ssDNA and one dsDNA, of two phage vectors. The frequency with the ssDNAs was 0.4 x 10(-5), being 10-fold lower than that observed with the ssDNA and the dsDNA, suggesting that as little as 10% of the transfected ssDNA was converted into duplex forms before the recombination event, hence 90% remained unchanged as single-stranded molecules. Nevertheless, the above finding that ssDNA was as efficient as dsDNA in targeted recombination suggests that ssDNA itself is able to participate directly in targeted recombination reactions in mammalian cells.  相似文献   

8.
We used a molecular beacon (MB) containing a 15-mer triplex-forming oligonucleotide (TFO) to probe in real-time the kinetics of triplex DNA formation in the left side of the TCl tract (502-516) of the c-src proto-oncogene in vitro. The metal ions Na+, K+, and Mg2+ stabilized triplex DNA at this site. The pseudo-first-order rate constant (kpsi) and the second-order association rate constant (k1) for the binding of the MB to the target duplex in 10 mM sodium phosphate buffer, pH 7.3, increased from 3.2 +/- 0.9 to 15 +/- 2.8 x 10(-3) s(-1) and 6.4 +/- 1.8 to 30 +/- 5.6 x 102 M(-1) s(-1), respectively, on increasing the MgCl2 concentration from 1 to 2.5 mM. Similar values were obtained for the triplex DNA stabilized by NaCl (100-250 mM). Surprisingly, the values were around 2 times higher in the presence of KCl. The AG of triplex formation in the presence of 1 mM MgCl2, 150 mM NaCl, and 150 mM KCl were -7.8 +/- 0.3, -8.2 +/- 0.3 and -8.7 +/- 0.7 kcal/mol respectively, despite significant differences in the values of deltaH and deltaS, suggesting enthalpy-entropy compensation in the stabilization of the triplex DNA by these metal ions. These results show the utility of MBs ih probing triplex DNA formation and in evaluating kinetic and thermodynamic parameters important for the design and development of TFOs as triplex DNA-based therapeutic agents.  相似文献   

9.
Transient generation of displaced single-stranded DNA during nick translation   总被引:10,自引:0,他引:10  
R C Lundquist  B M Olivera 《Cell》1982,31(1):53-60
We show that displaced single-stranded overhangs are transiently generated and destroyed during nick translation by E. coli DNA polymerase I. Evidence that hyper-rec mutants have an increased frequency of such overhang structures is discussed. The transient generation of overhangs may be significant for general recombination. The 5' leads to 3' exonuclease activity of polymerase I specifically hydrolyzes such overhangs to yield a nick. Overhangs are generated by polymerization, but after every polymerization step, either polymerase or exonuclease can act--55% of the time, polymerization occurred first. At this frequency overhangs of greater than or equal to 12 nucleotides are generated every 1300 nucleotides polymerized. We suggest that many DNA strand discontinuities are displaced single-stranded overhangs, rather than gaps or simple nicks.  相似文献   

10.
11.
RECQ5 is one of five RecQ helicases found in humans and is thought to participate in homologous DNA recombination by acting as a negative regulator of the recombinase protein RAD51. Here, we use kinetic and single molecule imaging methods to monitor RECQ5 behavior on various nucleoprotein complexes. Our data demonstrate that RECQ5 can act as an ATP-dependent single-stranded DNA (ssDNA) motor protein and can translocate on ssDNA that is bound by replication protein A (RPA). RECQ5 can also translocate on RAD51-coated ssDNA and readily dismantles RAD51–ssDNA filaments. RECQ5 interacts with RAD51 through protein–protein contacts, and disruption of this interface through a RECQ5–F666A mutation reduces translocation velocity by ∼50%. However, RECQ5 readily removes the ATP hydrolysis-deficient mutant RAD51–K133R from ssDNA, suggesting that filament disruption is not coupled to the RAD51 ATP hydrolysis cycle. RECQ5 also readily removes RAD51–I287T, a RAD51 mutant with enhanced ssDNA-binding activity, from ssDNA. Surprisingly, RECQ5 can bind to double-stranded DNA (dsDNA), but it is unable to translocate. Similarly, RECQ5 cannot dismantle RAD51-bound heteroduplex joint molecules. Our results suggest that the roles of RECQ5 in genome maintenance may be regulated in part at the level of substrate specificity.  相似文献   

12.
A method to rapidly generate single stranded DNA for dideoxy sequencing following the polymerase chain reaction is described. By incorporating biotin in one of the amplification primers, we are able to physically separate the two DNA strands produced in the polymerase chain reaction. After amplification, the mixture is passed through a column containing streptavidin agarose. The strand produced by the biotinylated primer is bound in this matrix. The unbiotinylated strand is eluted with 0.2 N NaOH and sequenced by the dideoxy method. This method was utilized to sequence mitochondrial DNA from crude genomic DNA and to determine the sequences of four clones containing human mitochondrial DNA as a test of its accuracy. The use of biotin-facilitated separation permitted us to amplify and sequence DNA samples in a single day.  相似文献   

13.
K B Palter  V E Foe  B M Alberts 《Cell》1979,18(2):451-467
Using histones reconstituted with RNA and DNA celluloses, we have shown elsewhere that histones elute identically with salt from single- and double-stranded DNA, but differently from RNA (Palter and Alberts, 1979). In this paper we characterize further the suspected specific binding interactions between histones and single-stranded DNA. Nuclease digestion of complexes of histone reconstituted with single-stranded DNA generates only a small yield of discrete (approximately 9S) particles. We can, however, efficiently obtain such 9S "nucleosome-like" complexes when nuclease treatment is avoided and histones are reconstituted directly with short single-stranded DNA pieces. Strikingly, these 9S subunits contain an equimolar composition of the four nucleosomal histones. When these subunits are visualized in the electron microscope, they appear as globular particles which are morphologically indistinguishable from normal mononucleosomes. Based on their sedimentation properties, histone-to-DNA ratio, histone composition and particle diameter, we conclude that they represent an octamer of the four histones (containing two molecules of each histone) associated with single-stranded DNA. These data, viewed in the context of other information concerning chromatin, suggest that nucleosome cores may become transiently bound to single strands of DNA as DNA and RNA polymerases pass.  相似文献   

14.
The formation of triplex DNA using unmodified, purine-rich oligonucleotides (ODNs) is inhibited by physiologic levels of potassium. Changing negative phosphodiester bonds in a triplex forming oligonucleotide (TFO) to neutral linkages causes a small increase in triplex formation. When phosphodiester bonds in a TFO are converted to positively-charged linkages the formation of triplex DNA increases dramatically. In the absence of KCl, a 17mer TFO containing 11 positively-charged linkages at a concentration of 0.2 microM converts essentially all of a 30 bp target duplex to a triplex. Less than 15% of the target duplex is shifted by 2 microMolar of the unmodified TFO. In 130 mM KCl, triplex formation is undetectable using the unmodified TFO, while triplex formation is nearly complete with 2 microM positively-charged TFO. With increasing potassium, TFOs containing a higher proportion of modified linkages show enhanced triplex formation compared with those less modified. In contrast with unmodified TFOs, triplex formation with more heavily modified TFOs can occur in the absence of divalent cations. We conclude that replacement of phosphodiester bonds with positively-charged phosphoramidate linkages results in more efficient triplex formation, suggesting that these compounds may prove useful for in vivo applications.  相似文献   

15.
We demonstrate that RecA protein can mediate annealing of complementary DNA strands in vitro by at least two different mechanisms. The first annealing mechanism predominates under conditions where RecA protein causes coaggregation of single-stranded DNA (ssDNA) molecules and where RecA-free ssDNA stretches are present on both reaction partners. Under these conditions annealing can take place between locally concentrated protein-free complementary sequences. Other DNA aggregating agents like histone H1 or ethanol stimulate annealing by the same mechanism. The second mechanism of RecA-mediated annealing of complementary DNA strands is best manifested when preformed saturated RecA-ssDNA complexes interact with protein-free ssDNA. In this case, annealing can occur between the ssDNA strand resident in the complex and the ssDNA strand that interacts with the preformed RecA-ssDNA complex. Here, the action of RecA protein reflects its specific recombination promoting mechanism. This mechanism enables DNA molecules resident in the presynaptic RecA-DNA complexes to be exposed for hydrogen bond formation with DNA molecules contacting the presynaptic RecA-DNA filament.  相似文献   

16.
PriB is a basic 10-kDa protein that acts as a facilitator in PriA-dependent replication restart in Escherichia coli. PriB has an OB-fold dimer structure and exhibits single-stranded DNA (ssDNA)-binding activities similar to single-stranded binding protein (SSB). In this study, we examined PriB's interaction with ssDNA (oligo-dT35, -dT15, and -dT7) using heteronuclear NMR analysis. Interestingly, 1H or 15N chemical shift changes of the PriB main-chain showed two distinct modes using oligo-dT35. The chemical shift perturbation sites in the primary mode were consistent with the main contact site in PriB–ssDNA, which was previously determined by crystal structure analysis. The results also suggested that approximately 8 nt in ssDNA was the main contact site to PriB. In the secondary mode, residues in the α-helix region (His57–Ser65) and in β4–loop3–β5 were mainly perturbed. On the other hand, we examined the state of ssDNA by FRET using 5′-Cy3- and 3′-Cy5-modified oligo-dT35. As the PriB concentration increased, two-step saturation curves were observed in the FRET assay, suggesting a compact structure of ssDNA. Moreover, we confirmed two-step PriB binding to oligo-dT35 using EMSA. The pH dependence of FRET suggested contribution of the His residues. Therefore, we prepared His mutants of PriB and found that His64 in the α-helix region contributed to the second interaction between PriB and ssDNA using FRET and EMSA. Thus, from a structural standpoint, we suggested the role of His64 on the compactness of the PriB–ssDNA complex and on the positive cooperativity of PriB.  相似文献   

17.
PKD1 intron 21: triplex DNA formation and effect on replication   总被引:2,自引:0,他引:2  
Although autosomal dominant polycystic kidney disease is transmitted in an autosomal dominant fashion, there is evidence that the pathophysiology of cystogenesis involves a second hit somatic mutation superimposed upon the inherited germline mutation within the renal tubule cells. The polypurine·polypyrimidine (Pu·Py) tract of PKD1 intron 21 may play a role in promoting somatic mutations. To better characterize this tract and to evaluate its potential to participate in mutagenesis, we investigated the thermodynamics of intramolecular triplex formation by 15 Pu·Py mirror repeat tracts from PKD1 intron 21 by 2D gel electrophoresis. We demonstrate that intramolecular triplexes form with modest superhelical tensions for all the tracts examined. Primer extension studies demonstrated significant polymerase arrest within the Pu·Py tracts in one direction of replication only. We found correlation between polymerization arrest and both the potential length of the triplex and superhelical tension of intramolecular triplex formation. The presence of a Pu·Py tract also led to a replication blockade and double-strand breakage using an SV40 in vitro replication assay with HeLa cell extracts. During DNA replication, the G-rich template of the PKD1 Pu·Py tracts may form a triplex structure with the nascent strand, thereby blocking replication and potentially leading to recombination and mutation.  相似文献   

18.
19.
J S Mudgett  W D Taylor 《Gene》1986,49(2):235-244
Plasmid DNA substrates were used to study ultraviolet (UV)-induced recombination events in Escherichia coli host cells. Plasmids derived from pBR322, containing all or part of the lac operon of E. coli, were irradiated with ultraviolet light before transformation into E. coli strains of different recA and lacY genotypes. Recombinational exchanges were identified by phenotypic changes in lactose utilization and were confirmed by restriction analysis of isolated plasmids. Ultraviolet-induced reciprocal plasmid-chromosome recombination occurred at a slightly higher frequency then non-reciprocal chromosome-to-plasmid recombination, and at a much higher frequency than non-reciprocal plasmid-to-chromosome recombination. These frequencies did not depend on segregative mechanisms. The asymmetry of non-reciprocal exchange was not due to the particular arrangement of wild-type and lacY1 alleles because the same results were observed when these were interchanged. The host recA gene was required for plasmid-chromosome recombination, and slightly enhanced plasmid survival. Evidence for plasmid replication prior to recombination was found in reciprocal recombinants, but rarely in the non-reciprocal recombinants analyzed. Irradiation of competent bacterial host cells prior to transformation did not effectively induce plasmid-chromosome recombination.  相似文献   

20.
A functionality for regulating hole transport efficiency is a prerequisite for the utilization of DNA duplexes as nanodevices. Herein, we report the regulation of hole transport in anthraquinone-tethered DNA with dual triplex forming sites. Long-range photooxidation experiments showed that hole transport was effectively suppressed by the formation of triplex at low temperature, while it was recovered by dissociation to the duplex at higher temperature. Variation of temperature induced the formation and dissociation of the third strand at each triplex region individually, leading to the stepwise regulation of hole transport in DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号