首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possible role of epidermal growth factor (EGF) receptor phosphorylation at threonine 654 in modulating the protein-tyrosine kinase activity of EGF-treated A431 cells has been studied. It has been suggested that EGF could indirectly activate a protein-serine/threonine kinase, protein kinase C, that can phosphorylate the EGF receptor at threonine 654. Protein kinase C is known to be activated, and threonine 654 is phosphorylated, when A431 cells are exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA). The protein-tyrosine kinase activity of EGF receptors is normally evidenced in EGF-treated cells by phosphorylation of the receptor at tyrosine. This is inhibited when TPA-treated cells are exposed to EGF. We now show that receptor phosphorylation at threonine 654 can also be detected in EGF-treated A431 cells, presumably due to indirect stimulation of protein kinase C or a similar kinase. Some receptor molecules are phosphorylated both at threonine 654 and at tyrosine. Since prior phosphorylation at threonine 654 inhibits autophosphorylation, we propose that protein kinase C can phosphorylate the threonine 654 of autophosphorylated receptors. This provides evidence for models in which protein kinase C activation, consequent upon EGF binding, could reduce the protein-tyrosine kinase activity of the EGF receptor. Indeed, we find that 12-O-tetradecanoylphorbol-13-acetate, added 10 min after EGF, further increases threonine 654 phosphorylation and induces the loss of tyrosine phosphate from A431 cell EGF receptors.  相似文献   

2.
Addition of epidermal growth factor (EGF) to many cell types activates phospholipase C resulting in increased levels of diacylglycerol and intracellular Ca2+ which may lead to activation of protein kinase C. EGF treatment of cells can also lead to phosphorylation of the EGF receptor at threonine 654 (a protein kinase C phosphorylation site) which appears to attenuate some aspects of receptor signaling. Thus, a feedback loop involving the EGF receptor, phospholipase C, and protein kinase C may regulate EGF receptor function. In this report, the role of phosphorylation of threonine 654 of the EGF receptor in regulation of EGF-stimulated activation of phospholipase C was investigated. NIH-3T3 cells expressing the normal human EGF receptor or expressing EGF receptor in which an alanine residue had been substituted at residue 654 of the receptor were used. Addition of EGF to cells expressing wild-type receptor induced a rapid, but transient, increase in phosphorylation of threonine 654. EGF addition also caused the rapid accumulation of inositol phosphates in these cells. EGF-stimulated accumulation of inositol phosphates was significantly higher in cells expressing Ala-654 receptors compared to control cells. Treatment of cells with 12-O-tetradecanoylphorbol 13-acetate (TPA), which stimulated phosphorylation of threonine 654 to a greater degree than EGF, completely inhibited EGF-dependent inositol phosphate accumulation in cells expressing wild-type receptor, but caused only a 20-30% inhibition in Ala-654 expressing cells. EGF stimulated phosphorylation of phospholipase C-gamma on serine and tyrosine residues in cells expressing wild-type of Ala-654 receptors. However, TPA treatment of cells inhibited EGF-induced tyrosine phosphorylation of phospholipase C-gamma only in cells expressing wild-type receptors. Similarly, TPA inhibited tyrosine-specific autophosphorylation of the EGF receptor and tyrosine phosphorylation of several other proteins in wild-type receptor cells, but not in Ala-654 cells. TPA treatment abolished high affinity binding of EGF to cells expressing wild-type receptors, while decreasing the number of high affinity binding sites 20-30% in Ala-654 cells. These data suggest that phosphorylation of threonine 654 can regulate early events in EGF receptor signal transduction such as phosphoinositide turnover, probably through a feedback mechanism involving protein kinase C. Subsequent dephosphorylation of threonine 654 could reactivate the EGF receptor for participation in later signaling events.  相似文献   

3.
Human squamous cell carcinoma cell lines often possess increased levels of epidermal growth factor (EGF) receptor. The growth of these EGF receptor-hyperproducing cells is usually inhibited by EGF. To investigate the mechanism of EGF-mediated inhibition of cell growth, variants displaying alternate responses to EGF were isolated from two squamous cell carcinoma lines, NA and Ca9-22; these cell lines possess high numbers of the EGF receptor and an amplified EGF receptor (EGFR) gene. The variants were isolated from NA cells after several cycles of EGF treatment and they have acquired EGF-dependent growth. Scatchard plot analysis revealed a decreased level of EGF receptor in these ER variants as compared with parental NA cells. Southern blot analysis and RNA dot blot analysis demonstrated that the ER variants had lost the amplified EGFR gene. One variant isolated from Ca9-22 cells, CER-1, grew without being affected by EGF. CER-1 cells had higher numbers of EGF receptor than parental Ca9-22 but similar EGFR gene copy number. Flow cytometric analysis indicated an increase in ploidy and cell volume which may give rise to the increase in receptor number per cell. The EGF receptors on both Ca9-22 and CER-1 cells were autophosphorylated upon EGF exposure in a similar manner suggesting no obvious alteration in receptor tyrosine kinase. However, very efficient down-regulation of the EGF receptor occurred in CER-1 cells. These data suggest two independent mechanisms by which EGF receptor-hyperproducing cells escape EGF-mediated growth inhibition: one mechanism is common and involves the loss of the amplified EGFR genes, and another is novel and involves the efficient down-regulation of the cell-surface receptor.  相似文献   

4.
Heterologous regulation of the epidermal growth factor (EGF) receptor by platelet-derived growth factor (PDGF) was studied in FS4 human skin fibroblasts. The addition of PDGF to FS4 cells inhibited high affinity binding of 125I-EGF and stimulated phosphorylation of the EGF receptor. Phosphopeptide analysis by high performance liquid chromatography revealed that PDGF treatment of cells increased phosphorylation at several distinct sites of the EGF receptor. However, PDGF did not stimulate phosphorylation of threonine 654, a residue previously shown to be phosphorylated when protein kinase C is activated. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) also stimulated phosphorylation of the same peptides from the EGF receptor as PDGF, and, in addition, induced phosphorylation of threonine 654. TPA inhibited both high and low affinity 125I-EGF binding by these cells. PDGF treatment of cells had no effect on EGF-dependent, tyrosine-specific autophosphorylation of the receptor, whereas TPA treatment was inhibitory. TPA, but not PDGF, stimulated phosphorylation of a Mr = 80,000 protein, known to be a substrate for protein kinase C, even though PDGF appeared to mediate breakdown of phosphoinositides. These data suggest that regulation of EGF receptor function by PDGF and TPA are distinct in these cells, even though some elements of regulation are shared. The results differ from those previously reported for a human lung fibroblast isolate, indicating that cell type-specific differences may exist in metabolism of the EGF receptor.  相似文献   

5.
Thyrotropin releasing hormone (TRH) causes phosphatidylinositol bisphosphate hydrolysis to form inositol trisphosphate and diacylglycerol. Since diacylglycerol activates protein kinase C (Ca2+/phospholipid-dependent enzyme), this enzyme may be involved in mediating the physiological response to TRH. Activation of protein kinase C leads to phosphorylation of receptors for epidermal growth factor (EGF) and decreased EGF affinity. The present study examined the effect of TRH on EGF binding to intact GH4C1 rat pituitary tumor cells to test whether TRH activates protein kinase C. Cells were incubated with TRH at 37 degrees C and specific 125I-EGF binding was then measured at 4 degrees C. 125I-EGF binding was decreased by a 10-min treatment with 0.1-100 nM TRH to 30-40% of control in a dose-dependent manner. 125I-EGF binding was not altered if cells were incubated at 4 degrees C, although TRH receptors were saturated or in a variant pituitary cell line without TRH receptors. TRH (10 min at 37 degrees C) decreased EGF receptor affinity but caused little change in receptor density, 125I-EGF internalization, or degradation. When cells were incubated continuously with TRH, there was a recovery of 125I-EGF binding after 24 h. Incubation with the protein kinase C activating phorbol ester TPA caused an immediate (less than 10 min) profound (greater than 85%) decrease in 125I-EGF binding followed by partial recovery at 24 h. Maximally effective doses of TRH and TPA decreased EGF receptor affinity with half-times of 3 min. EGF treatment (5 min) caused an increase in the tyrosine phosphate content of several proteins; prior incubation with TRH resulted in a small decline in the EGF response. GH4C1 cells were incubated with 500 nM TPA for 24 h in order to down-regulate protein kinase C. Protein kinase C depletion was confirmed by immunoblots and the effects of TRH and TPA on 125I-EGF binding were tested. TRH and TPA were both much less effective in cells pretreated with phorbol esters. TRH increased cytoplasmic pH measured with an intracellularly trapped pH sensitive dye after mild acidification with nigericin. This TRH response is presumed to be the result of protein kinase C-mediated activation of the amiloride-sensitive Na+/H+ exchanger and was blunted in protein kinase C-depleted cells. All of these results are consistent with the view that TRH acts rapidly in the intact cell to activate protein kinase C and that a consequence of this activation is EGF receptor phosphorylation and Na+/H+ exchanger activation.  相似文献   

6.
Epidermal growth factor (EGF) stimulated the rapid accumulation of inositol trisphosphate in WB cells, a continuous line of rat hepatic epithelial cells. Since we previously had shown that EGF stimulates EGF receptor synthesis in these cells, we tested whether hormones that stimulate PtdIns(4,5)P2 hydrolysis would increase EGF receptor protein synthesis and mRNA levels. Epinephrine, angiotensin II, and [Arg8]vasopressin activate phospholipase C in WB cells as evidenced by the accumulation of the inositol phosphates, inositol monophosphate, inositol bisphosphate, and inositol trisphosphate. A 3-4-h treatment with each hormone also increased the rate of EGF receptor protein synthesis by 3-6-fold as assessed by immunoprecipitation of EGF receptor from [35S]methionine-labeled cells. Northern blot analyses of WB cell EGF receptor mRNA levels revealed that agents linked to the phosphoinositide signaling system increased receptor mRNA content within 1-2 h. A maximal increase of 3-7-fold was observed after a 3-h exposure to EGF and hormones. The phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), which activates protein kinase C also stimulated EGF receptor synthesis. Pretreatment of WB cells for 18 h with high concentrations of TPA "down-regulated" protein kinase C and blocked TPA-directed EGF receptor mRNA synthesis. In contrast, the effect of EGF on EGF receptor mRNA levels was not significantly decreased by TPA pretreatment. Epinephrine-induced increases in EGF receptor mRNA were reduced from 4- to 2-fold. Similarly, 18 h TPA pretreatment abolished the effect of TPA on EGF receptor protein synthesis but did not affect EGF-dependent EGF receptor protein synthesis. The 18-h TPA pretreatment diminished by 30-50% the induction of receptor protein synthesis by epinephrine or angiotensin II. We conclude that in WB cells EGF receptor synthesis can be regulated by EGF and other hormones that stimulate PtdIns(4,5)P2 hydrolysis. In these cells, EGF receptor synthesis appears to be regulated by several mechanism: one pathway is dependent upon EGF receptor activation and can operate independently of protein kinase C activation; another pathway is correlated with PtdIns(4,5)P2 hydrolysis and is dependent, at least in part, upon protein kinase C activation.  相似文献   

7.
We have tested the hypothesis that the mechanism of platelet-derived growth factor (PDGF) and phorbol diester action to decrease the apparent affinity of the epidermal growth factor (EGF) receptor is the phosphorylation of the EGF receptor at the Ca2+/phospholipid-dependent protein kinase (protein kinase C) phosphorylation site, threonine 654. Protein kinase C-deficient cells were prepared by prolonged incubation of human fibroblasts with phorbol diester. Addition of phorbol diesters to these cells fails to regulate EGF receptor affinity or threonine 654 phosphorylation. In contrast, PDGF treatment of both control and protein kinase C-deficient fibroblasts causes a decrease in the apparent affinity of the EGF receptor and an increase in threonine 654 phosphorylation. Thus, the ability of PDGF or phorbol diester to modulate EGF receptor affinity occurs only when threonine 654 phosphorylation is increased. The stoichiometry of threonine 654 phosphorylation associated with a 50% decrease in the binding of 125I-EGF to high affinity sites was 0.15 versus 0.3 mol of phosphate per mole of EGF receptor when 32P-labeled fibroblasts are treated with PDGF or phorbol diester, respectively. It is concluded that EGF receptor phosphorylation at threonine 654 can be regulated by PDGF independently of protein kinase C, substoichiometric phosphorylation of the total EGF receptor pool at threonine 654 is caused by maximally effective concentrations of PDGF, and different extents of phosphorylation of EGF receptors at threonine 654 are observed for maximally effective concentrations of PDGF and phorbol diester, respectively. The data are consistent with the hypothesis that a specific subpopulation of EGF receptors that exhibit high affinity for EGF are regulated by threonine 654 phosphorylation.  相似文献   

8.
Cultured NIH-3T3 cells devoid of endogenous epidermal growth factor (EGF) receptors were transfected with cDNA expression constructs encoding either normal human EGF receptor or a receptor mutated in vitro at Lys-721, a residue that is thought to function as part of the ATP-binding site of the kinase domain. Unlike the wild-type EGF-receptor expressed in these cells, which exhibited EGF-dependent protein tyrosine kinase activity, the mutant receptor lacked protein tyrosine kinase activity and was unable to undergo autophosphorylation and to phosphorylate exogenous substrates. Despite this deficiency, the mutant receptor was normally expressed on the cell surface, and it exhibited both high- and low-affinity binding sites. The addition of EGF to cells expressing wild-type receptors caused the stimulation of various responses, including enhanced expression of proto-oncogenes c-fos and c-myc, morphological changes, and stimulation of DNA synthesis. However, in cells expressing mutant receptors, EGF was unable to stimulate these responses, suggesting that the tyrosine kinase activity is essential for EGF receptor signal transduction.  相似文献   

9.
The biosynthesis, phosphorylation, and degradation of the epidermal growth factor (EGF) receptor were examined in normal human fibroblasts. The receptor was initially synthesized as an Mr = 160,000 immature form which matured to an Mr = 170,000 form in a monensin-sensitive manner. Tunicamycin treatment led to the accumulation of an Mr = 130,000 protein. The receptor was phosphorylated on serine and threonine residues in normally growing and quiescent cells, and treatment with EGF or the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in a two- to threefold increase in receptor-bound phosphate. EGF increased the amount of phosphoserine and phosphothreonine and caused the appearance of a minor amount of phosphotyrosine. TPA increased the levels of phosphoserine and phosphothreonine exclusively. Prior treatment with TPA inhibited the EGF-dependent appearance of phosphotyrosine in the receptor. Analysis of tryptic phosphopeptides revealed that six of the seven major peptides were common to the receptor from cells treated with EGF or TPA. EGF strongly stimulated [3H]thymidine incorporation in confluent cells, increased final saturation density three to fourfold, and increased whole-cell levels of phosphotyrosine about threefold. Treatment of cells with TPA before addition of EGF inhibited all three of these EGF-dependent responses. EGF also decreased the receptor half-life from 15 h to 1 h, but this was not inhibited by TPA. TPA alone had no detectable effect on the receptor half-life.  相似文献   

10.
Previously, we and others have shown that epidermal growth factor (EGF) stimulates the synthesis of its own receptor and the accumulation of EGF receptor mRNA. Here, we demonstrate that the tumor promotor, 12-O-tetradecanoylphorbol-13-acetate (TPA), like EGF, also stimulates receptor synthesis in the human breast carcinoma cell line, MDA468 cells. The receptor synthesis rate increased 5-fold with a peak at 8 h after exposure to TPA with half-maximal stimulation at a dose of 5 ng/ml TPA. This stimulation of receptor synthesis occurred despite a 30% decrease in general cellular protein synthesis. The increased receptor synthesis rate resulted in the accumulation of 60% more receptor protein as determined by quantitative immunoblotting using a newly developed monoclonal antibody, H9B4. Although TPA treatment resulted in an immediate loss of high affinity EGF-binding sites, the long-term effect was an increase in both the low and high affinity binding sites. The effects of EGF and TPA on receptor synthesis were not additive. Furthermore, down-regulation of protein kinase C (the Ca2+/phospholipid-dependent enzyme) by long-term TPA treatment resulted in cells unable to respond to the stimulatory effects of both TPA and EGF on receptor synthesis. Nevertheless, the TPA-pretreated cells were still growth-inhibited by EGF. These results suggest that the stimulatory effect of EGF on receptor synthesis requires protein kinase C, whereas the inhibitory effect of EGF on the proliferation of these cells does not. Although we confirmed that EGF stimulated the incorporation of phosphate into phosphatidylinositol in A431 cells, it failed to do so in the MDA468 cells. Thus, in MDA468 cells, EGF may require protein kinase C for part of its action, but we could not demonstrate an associated activation of phosphatidylinositol turnover by EGF. The exact mechanism of involvement of protein kinase C in EGF action is still not clear.  相似文献   

11.
Treatment of cells with tumor-promoting phorbol diesters, which causes activation of protein kinase C, leads to phosphorylation of the epidermal growth factor (EGF) receptor at threonine-654. Addition of phorbol diesters to intact cells causes inhibition of the EGF-induced tyrosine-protein kinase activity of the EGF receptor and it has been suggested that this effect of phorbol diesters is mediated by the phosphorylation of the receptor by protein kinase C. We measured the activity of protein kinase C in A431 cells by determining the incorporation of [32P]phosphate into peptides containing threonine-654 obtained by trypsin digestion of EGF receptors. After 3 h of exposure to serum-free medium, A431 cells had no detectable protein kinase C activity. Addition of EGF to these cells resulted in [32P] incorporation into threonine-654 as well as into tyrosine residues. This indicates that EGF promotes the activation of protein kinase C in A431 cells. The phosphorylation of threonine-654 induced by EGF was maximal after only 5 min of EGF addition and the [32P] incorporation into threonine-654 reached 50% of the [32P] in a tyrosine-containing peptide. This indicates that a significant percentage of the total EGF receptors are phosphorylated by protein kinase C. A variety of external stimuli activate Na+/H+ exchange, including EGF, phorbol diesters, and hypertonicity. To ascertain whether activation of protein kinase C is an intracellular common effector of all of these systems, we measured the activity of protein kinase C after exposure of A431 cells to hyperosmotic conditions and observed no effect on phosphorylation of threonine-654, therefore, activation of Na+/H+ exchange by hypertonic medium is independent of protein kinase C activity. Since stimulation of protein kinase C by phorbol diesters results in a decrease in EGF receptor activity, the stimulation of protein kinase C activity by addition of EGF to A431 cells contributes to a feedback mechanism which results in the attenuation of EGF receptor function.  相似文献   

12.
UCVA-1 cells, derived from human pancreas adenocarcinoma, have a high number of epidermal growth factor (EGF) receptors (1.0 x 10(6) per cell) but their growth is not inhibited by EGF, unlike other EGF receptor-hyperproducing tumour cells. In UCVA-1 cells EGF activates neither the phosphatidylinositol turnover nor protein kinase C. EGF, however, enhances the phosphorylation of EGF receptors at specific tyrosine residues, indicating that the EGF receptor kinase is active and subject to autophosphorylation. Downmodulation of EGF receptors by 12-O-tetradecanoylphorbol 13-acetate (TPA) is also observed. Using an anti-phosphotyrosine antibody several phosphoproteins, including EGF receptors, were immunoprecipitated from UCVA-1 cell lysates, whereas more than 20 phosphoproteins were detected in other EGF receptor-hyperproducing tumour cells (NA), indicating that tyrosine-phosphorylation of endogenous substrates by EGF receptor kinase is significantly reduced in UCVA-1 cells. Thus, non-responsiveness of UCVA-1 cells to EGF is correlated with the reduced tyrosine phosphorylation.  相似文献   

13.
14.
Rat mammary carcinoma (RMC) cells derived from serially transplantable mammary tumors are independent of epidermal growth factor (EGF) for long-term growth in serum-free medium. This phenotype is in contrast to that of normal mammary epithelial cells or cells derived from nontransplantable tumors that express an absolute requirement for EGF for growth in culture. The results of the experiments reported here indicate that EGF-independent RMC cells secrete a growth factor with potent EGF-like mitogenic activity. Conditioned media obtained from these cells can substitute for EGF for the growth of the EGF-dependent cell line MCF-10. This growth factor is neither EGF nor transforming growth factor alpha and does not compete with 125I-EGF for binding to EGF receptors. Phosphotyrosine Western blot analysis of lysates obtained from EGF-independent RMC cells revealed the presence of a 190 kilodalton (kDa) protein that was distinct from the EGF receptor. Similarly, growth of MCF-10 cells to confluence in serum-free medium supplemented with conditioned medium growth factor in place of EGF resulted in the disappearance of the EGF receptor band and appearance of the 190 kDa band in phosphotyrosine Western blots. The 190 kDa tyrosine-phosphorylated protein detected in cells stimulated by the conditioned medium factor is unlikely to be the c-erbB-2 protein, as indicated by negative results in immunoprecipitation experiments and in vitro kinase assays. In summary, EGF-independent RMC cells secrete a factor with potent EGF-like mitogenic activity. This suggests that an autocrine loop involving this growth factor mediates EGF independence in these cells.  相似文献   

15.
We compared the abilities of the muscarinic agonist carbachol, epidermal growth factor (EGF), and phorbol 12-myristate 13-acetate (PMA) to induce proto-oncogene mRNA accumulation and other cellular responses in normal and protein kinase C-deficient 1321-N1 human astrocytoma cells. PMA, carbachol, and EGF all stimulated rapid accumulation of mRNA for the proto-oncogenes c-fos and c-myc in the normal cells; in the protein kinase C-deficient cells, carbachol and EGF, but not PMA, retained this effect, which was not mimicked by the calcium ionophore A23187. Both carbachol and PMA activated protein kinase C in these cells, as evidenced by the stimulated phosphorylation of an acidic Mr 80,000 protein kinase C substrate protein with phosphoamino acid and peptide map identity. This response was mimicked by several other neurotransmitters in these cells, including epinephrine, histamine, oxotremorine, and serotonin, and was abolished in cells made protein kinase C-deficient by preincubation with high concentrations of PMA. Both PMA and carbachol promoted the phosphorylation of the ribosomal protein S6 and activated an S6 protein kinase in the normal but not in the protein kinase C-deficient cells. EGF, in contrast, did not appear to activate protein kinase C, but promoted the phosphorylation of S6 and activation of the S6 kinase in both normal and protein kinase C-deficient cells. We conclude that, in 1321-N1 cells, induction of c-fos and c-myc mRNA can occur through a protein kinase C-dependent pathway and one or more independent pathways, exemplified by the responses to carbachol and EGF in the protein kinase C-deficient cells.  相似文献   

16.
Grb2-associated binder-1 (Gab1) is an adapter protein related to the insulin receptor substrate family. It is a substrate for the insulin receptor as well as the epidermal growth factor (EGF) receptor and other receptor-tyrosine kinases. To investigate the role of Gab1 in signaling pathways downstream of growth factor receptors, we stimulated rat aortic vascular smooth muscle cells (VSMC) with EGF and platelet-derived growth factor (PDGF). Gab1 was tyrosine-phosphorylated by EGF and PDGF within 1 min. AG1478 (an EGF receptor kinase-specific inhibitor) failed to block PDGF-induced Gab1 tyrosine phosphorylation, suggesting that transactivated EGF receptor is not responsible for this signaling event. Because Gab1 associates with phospholipase Cgamma (PLCgamma), we studied the role of the PLCgamma pathway in Gab1 tyrosine phosphorylation. Gab1 tyrosine phosphorylation by PDGF was impaired in Chinese hamster ovary cells expressing mutant PDGFbeta receptor (Y977F/Y989F: lacking the binding site for PLCgamma). Pretreatment of VSMC with (a specific PLCgamma inhibitor) inhibited Gab1 tyrosine phosphorylation as well, indicating the importance of the PLCgamma pathway. Gab1 was tyrosine-phosphorylated by phorbol ester to the same extent as PDGF stimulation. Studies using antisense protein kinase C (PKC) oligonucleotides and specific inhibitors showed that PKCalpha and PKCepsilon are required for Gab1 tyrosine phosphorylation. Binding of Gab1 to the protein-tyrosine phosphatase SHP2 and phosphatidylinositol 3-kinase was significantly decreased by PLCgamma and/or PKC inhibition, suggesting the importance of the PLCgamma/PKC-dependent Gab1 tyrosine phosphorylation for the interaction with other signaling molecules. Because PDGF-mediated ERK activation is enhanced in Chinese hamster ovary cells that overexpress Gab1, Gab1 serves as an important link between PKC and ERK activation by PDGFbeta receptors in VSMC.  相似文献   

17.
NA and Ca9-22 cells derived from squamous cell carcinomas of the tongue possess a large number of epidermal growth factor (EGF) receptors (2.0 X 10(6) and 1.3 X 10(6) receptors/cell, respectively). In these cell lines, EGF stimulated receptor autophosphorylation and phosphatidylinositol (PI) turnover. Furthermore, EGF enhanced the phosphorylation of an acidic protein of Mr 80,000. Phosphorylation of this protein was also stimulated by 12-O-tetradecanoyl-phorbol-13-acetate (TPA), a phorbol ester tumor promoter, and was mainly at serine residues. Phosphopeptide mapping using protease V8 or trypsin indicated that Mr 80,000 proteins isolated from the EGF- and TPA-treated cells were identical. The Mr 80,000 protein was present mainly in the cytosol, but it became closely associated with the membrane as a phosphorylated form upon EGF or TPA stimulation. These results suggest that the EGF-stimulated phosphorylation of the Mr 80,000 acidic phosphoprotein in EGF receptor-hyperproducing tumor cells is mediated through the activation of PI turnover and protein kinase C.  相似文献   

18.
Human acidic and basic fibroblast growth factors (aFGF and bFGF) inhibit epidermal growth factor (EGF) receptor binding in mouse Swiss 3T3 cells. Scatchard analysis indicates that aFGF and bFGF cause a decrease in the high affinity EGF receptor population, similar to that observed for activators of protein kinase C such as phorbol esters, platelet-derived growth factor (PDGF) and bombesin. However, unlike phorbol esters, aFGF and bFGF inhibit EGF binding in protein kinase C-deficient cells. The time course and dose response of inhibition of EGF binding by both aFGF and bFGF are very similar, with an ID50 of approximately 0.10 ng/ml. In contrast to bombesin but like PDGF, neither aFGF nor bFGF act on the EGF receptor through a pertussis toxin-sensitive G protein. These results indicate that both acidic and basic FGF depress high affinity EGF binding in Swiss 3T3 cells with similar potency through a protein kinase C/Gi-independent pathway.  相似文献   

19.
20.
To assess the functional significance of phosphorylation of the epidermal growth factor (EGF) receptor at Thr654, we compared the effects of 12-O-tetradecanoyl-13-acetate (TPA) on ligand-induced internalization and down-regulation between wild-type and mutant receptors that contain an alanine substitution at position 654. Activation of protein kinase C with TPA blocked EGF-induced internalization and down-regulation of Thr654 receptors and inhibited in vivo tyrosine kinase activity by 80%. TPA did not inhibit transferrin receptor internalization or constitutive EGF receptor internalization, suggesting that protein kinase C activation inhibits only the ligand-induced process. Inhibition by TPA of induced internalization, down-regulation, and kinase activity required threonine at position 654 since full-length Ala654 EGF receptors were significantly resistant to TPA inhibition of these ligand-induced activities. However, C'-terminal truncation further enhanced this resistance to TPA inhibition. The EGF-dependent internalization of kinase-inactive receptors truncated at residue 1022 was also impaired by TPA in Thr654 receptors, but not in Ala654 receptors, indicating that phosphorylation at Thr654 also interferes with tyrosine kinase-independent receptor activities. We conclude that the dominant regulatory effect of protein kinase C on the EGF receptor is mediated through phosphorylation at Thr654 which effectively inactivates the receptor. The submembrane region of the EGF receptor appears to regulate transmission of conformational information from the extracellular ligand-binding site to the cytoplasmic kinase and regulatory domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号