首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The central nervous system (CNS) of a metamorphically competent larva of the caenogastropod Ilyanassa obsoleta contains a medial, unpaired apical ganglion (AG) of approximately 25 neurons that lies above the commissure connecting the paired cerebral ganglia. The AG, also known as the cephalic or apical sensory organ (ASO), contains numerous sensory neurons and innervates the ciliated velar lobes, the larval swimming and feeding structures. Before metamorphosis, the AG contains 5 serotonergic neurons and exogenous serotonin can induce metamorphosis in competent larvae. The AG appears to be a purely larval structure as it disappears within 3 days of metamorphic induction. In competent larvae, most neurons of the AG display nitric oxide synthase (NOS)-like immunoreactivity and inhibition of NOS activity can induce larval metamorphose. Because nitric oxide (NO) can prevent cells from undergoing apoptosis, a form of programmed cell death (PCD), we hypothesize that inhibition of NOS activity triggers the loss of the AG at the beginning of the metamorphic process. Within 24 hours of metamorphic induction, cellular changes that are typical of the early stages of PCD are visible in histological sections and results of a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in metamorphosing larvae show AG nuclei containing fragmented DNA, supporting our hypothesis.  相似文献   

2.
Production of nitric oxide (NO), an evolutionarily conserved, intercellular signaling molecule, appears to be required for the maintenance of the larval state in the gastropod mollusc Ilyanassa obsoleta. Pharmacological inactivation of endogenous nitric oxide synthase (NOS), the enzyme that generates NO, can trigger metamorphosis in physiologically competent larvae of this species. Neuropils in the brains of these competent larvae display histochemical reactivity for NADPH diaphorase (NADPHd), an indication of neuronal NOS activity. The intensity of NADPHd staining is greatest in the neuropil of the apical ganglion (AG), a region of the brain that contains the apical sensory organ and that innervates the bilobed ciliated velum, the larval swimming and feeding organ. Once metamorphosis is initiated, the intensity of NADPHd staining in the AG and presumably, concomitant NO production, decline. The AG is finally lost by the end of larval metamorphosis, some 4 days after induction. To determine if the neurons of the AG are a source of larval NO, we conducted immunocytochemical studies on larval Ilyanassa with commercially available antibodies to mammalian neuronal NOS. We localized NOS-like immunoreactivity (NOS-IR) to 3 populations of cells in competent larvae: somata of the AG and putative sensory neurons in the edge of the mantle and foot. Immunocytochemistry on pre-competent larvae demonstrated that numbers of NOS-IR cells in the AG increase throughout the planktonic larval stage.  相似文献   

3.
4.
Abstract. Light and scanning electron microscopy were used to examine protoconch form in eight species of planktotrophic heterobranch larvae, including four nudibranch species with a coiled (type 1) protoconch, two nudibranch species with an inflated (type 2) protoconch, and two cephalaspid species with a coiled protoconch. The coiled protoconchs of the cephalaspids and nudibranchs have a similar form at hatching, and shell growth up to metamorphic competence is hyperstrophic. Shell added to coiled protoconchs during the larval stage overgrows all but the left wall of the initial protoconch that exists at hatching. The entire protoconch of cephalaspids, including overgrown areas, is retained through metamorphosis. However, during later larval development in nudibranchs with a coiled protoconch, overgrown shell is completely removed by dissolution. As a result, regardless of whether nudibranch larvae hatch with an inflated or coiled protoconch type, the protoconch is a large, hollow cup at metamorphic competence. The protoconch of nudibranchs is shed at metamorphosis and absence of a post-metamorphic shell is correlated with absence of visceral coiling in this gastropod group. Internal dissolution of the coiled protoconch in nudibranchs allows the left digestive gland to uncoil prior to metamorphic shell loss. Retention of overgrown protoconch whorls in cephalaspids allows the attachment plaque of the pedal muscle to migrate onto the parietal lip of the post-metamorphic shell. Release from this constraint in nudibranchs, in which the larval pedal muscles and the entire protoconch are lost at metamorphosis, may have permitted internal protoconch dissolution and precocious uncoiling of the visceral mass, as well as evolutionary emergence of the inflated larval shell type.  相似文献   

5.
The Neritimorpha is an ancient clade of gastropods that may have acquired larval planktotrophy independently of the evolution of this developmental mode in other gastropods (caenogastropods and heterobranchs). Neritimorphs are therefore centrally important to questions about larval evolution within the Gastropoda, but there is very little information about developmental morphology through metamorphosis for this group. We used immunolabeling (antibodies binding to acetylated α-tubulin and serotonin) and serial ultrathin sections for transmission electron microscopy to characterize the apical sensory organ in planktotrophic larvae of a marine neritimorph. The apical sensory organ of gastropod larvae is a highly conserved multicellular sensory structure that includes an apical ganglion and often an associated ciliary structure. Surprisingly, the apical ganglion of Nerita melanotragus (Smith, 1884) does not have typical ampullary neurons, a type of sensory neuron consisting of a cilia filled inpocketing that has been described in all other major gastropod groups. N. melanotragus has cilia-filled pockets embedded within the apical ganglion, but these so-called “sensory cups” are cassettes of multiple cells: one supporting cell and up to three multiciliated sensory cells. We suggest that an internalized pocket that is filled with cilia and open to the exterior via a narrow pore may be essential architectural features for whatever sensory cues are detected by ampullary neurons and sensory cups; however, morphogenesis of these features at the cellular level has undergone evolutionary change. We also note a correlation between the number of sensory elements consisting of cilia-filled pockets within the larval apical sensory organ of gastropods and morphological complexity of the velum or length of the trochal ciliary bands.  相似文献   

6.
Metamorphosis of the sea lamprey, Petromyzon marinus, is a true metamorphosis. The larval lamprey is a filter-feeder who dwells in the silt of freshwater streams and the adult is an active predator found in large lakes or the sea. The transformation usually occurs in the fifth or sixth year of life. Enlargement of the eye has been long accepted as a distinctive indication of metamorphosis in the sea lamprey, but it had been thought that this was because eye development in the larva was arrested after the formation of only the small central region. Recent studies indicate that all of the retina begins its development in the larva and that ganglion, amacrine, and horizontal cells differentiate in the peripheral retina of the larva. Retinal development is arrested during the premetamorphic period, to be resumed during metamorphosis. Metamorphic contributions include the differentiation of photoreceptor and bipolar cells. With the early appearance of ganglion cells, retinal pathways to the thalamus and tectum are established in larvae, as is a centripetal pathway. Tectal development spans the larval period but a spurt in tectal growth and differentiation is correlated with the completion of the retinal circuitry late in metamorphosis. The metamorphic changes in retina and tectum complete the functional development of the visual system and provide for the adult lamprey's predatory and reproductive behavior.  相似文献   

7.
Larvae of the red abalone, Haliotis rufescens, rely on external chemical cues to trigger metamorphosis; thus, the timing of metamorphosis is dependent upon the larva's chance encounter with the appropriate substrate. We examined the effect of the timing of metamorphosis on the development of the central nervous system (CNS), concentrating on the pattern of serotonin and small cardioactive peptide- (SCP) immunopositive neurons in the cerebral ganglia. By 4 days postfertilization the cerebral ganglion has five pairs of serotonin-immunoreactive (IR) neurons, one pair of which (the V cells) innervate the velum. This complement of cells remains stable for as long as the larval stage persists but metamorphosis causes the rapid loss of the V cells. In the case of SCP-IR neurons, one pair is present prior to metamorphic competency, but as larvae continue to age in the absence of inducing cues, additional pairs are gradually added. Metamorphosis causes an acceleration in SCP-IR neuron addition. This separation of developmental patterns is well adapted for the inherent uncertainty of the timing of metamorphosis in abalone larvae.  相似文献   

8.
To date only few comparative approaches tried to reconstruct the ontogeny of the musculature in invertebrates. This may be due to the difficulties involved in reconstructing three dimensionally arranged muscle systems by means of classical histological techniques combined with light or transmission electron microscopy. Within the scope of the present study we investigated the myogenesis of premetamorphic, metamorphic, and juvenile developmental stages of the anaspidean opisthobranch Aplysia californica using fluorescence F‐actin‐labeling in conjunction with modern confocal laser scanning microscopy. We categorized muscles with respect to their differentiation and degeneration and found three true larval muscles that differentiate during the embryonic and veliger phase and degenerate during or slightly after metamorphosis. These are the larval retractor, the accessory larval retractor, and the metapodial retractor muscle. While the pedal retractor muscle, some transversal mantle fibers and major portions of the cephalopedal musculature are continued and elaborated during juvenile and adult life, the buccal musculature and the anterior retractor muscle constitute juvenile/adult muscles which differentiate during or after metamorphosis. The metapodial retractor muscle has never been reported for any other gastropod taxon. Our findings indicate that the late veliger larva of A. californica shares some common traits with veligers of other gastropods, such as a larval retractor muscle. However, the postmetamorphic stages exhibit only few congruencies with other gastropod taxa investigated to date, which is probably due to common larval but different adult life styles within gastropods. Accordingly, this study provides further evidence for morphological plasticity in gastropod myogenesis and stresses the importance of ontogenetic approaches to understand adult conditions and life history patterns. J. Morphol., 2008. © 2007 Wiley‐Liss, Inc.  相似文献   

9.
Abstract. Larvae of the freshwater mussel Utterbackia imbecillis metamorphose to juveniles either during their attachment to a host fish, or in vitro in a culture medium. This transformation includes degeneration of larval structures and development of the juvenile morphology. Early in metamorphosis the cells comprising the larval mantle enlarge and project into the mantle cavity, forming a structure referred to as the mushroom body. Its cells, which are ultrastructurally very similar to digestive cells of adult bivalves, are involved in pinocytosis or phagocytosis of the larval adductor muscle and of tissue from the host fish that is enclosed between the larval shells. Ingested material is passed from pinosomes to heterophagosomes which in turn fuse with heterolysosomes, where final degradation of ingested material occurs. Acid phosphatase activity was detected in heterophagosomes and heterolysosomes of all animals examined. In larvae that metamorphosed in vitro , the apical cytoplasm of the cells of the mushroom body, and the extracellular spaces among them, also exhibited acid phosphatase activity. Larvae reared on a host fish accumulated substantial deposits of lipids and glycogen within larval mantle cells during metamorphosis, whereas larvae reared in vitro did not. The larval mantle cells which constitute the mushroom body appear to be the primary sites of intracellular digestion of the larval adductor muscle and host tissue during metamorphosis.  相似文献   

10.
The marine mud snail, Tritia (=Ilyanassa) obsoleta, displays a biphasic life cycle. During the initial phase of early development, embryos hatch from benthic egg capsules to become weakly swimming veliger larvae. In the second phase, adult T. obsoleta are facultative carnivores and major agents of community disturbance. Metamorphosis is the irreversible developmental event that links these two life history stages. When physiologically competent, larvae can respond to appropriate environmental cues by settling onto their mudflat habitat and transforming themselves into miniature adult snails. Two neurotransmitters—serotonin and nitric oxide—have opposing effects on the metamorphic process in this species. In multiple other species of gastropod and bivalve molluscs, a third neurotransmitter, the classically inhibitory compound γ‐aminobutyric acid (GABA), can induce settlement or metamorphosis upon external application to competent larvae. In this situation, GABA is presumed to mimic the action of ligands from the juvenile environment that bind to larval chemosensory receptors and activate the metamorphic pathway. Results of our experiments contradict this commonly reported action of GABA on molluscan larvae. External application of GABA to competent larvae of T. obsoleta elicited no response, but instead attenuated the action of serotonin (5‐HT), a metamorphic inducer. Our investigations into the responses of larval T. obsoleta to multiple GABAergic reagents support our hypothesis that GABA functions internally as a neurotransmitter in the pathway that controls the initiation of metamorphosis. Our results also suggest that GABA acts directly on or downstream from serotonergic neurons to regulate the metamorphosis‐inducing effects of this neurotransmitter. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 736–753, 2018  相似文献   

11.
Summary The larval integument and juvenile girdle integument of Mopalia muscosa (Mollusca: Polyplacophora) were studied by light microscopy. Within 24 h of settlement, eight distinctive changes occur that characterize metamorphosis: loss of the functional prototroch and apical tuft, secretion of a cuticle over the mantle field followed by the secretion of calcareous shell plates and the extrusion of spicules into the cuticle, a 20% decrease in length, secretion of chitinous hairs and the incorporation of the lateral ciliated bands into the pallial grooves. Similar changes which were often not recognized as metamorphic have been reported for other species. Evidence for metamorphosis being a common developmental feature of chitons is presented.  相似文献   

12.
The tornaria larva of hemichordates occupies a central position in phylogenetic discussions on the relationships between Echinodermata, Hemichordata, and Chordata. Dipleurula-type larvae (tornaria and echinoderm larvae) are considered to be primary in the life cycle and thus provide a model for the ancestral animal common to all three taxa (the theory of W. Garstang). If the similarities between tornaria and the larvae in Echinodermata result from homology, their nervous systems should be basically similar as well. The present study utilizes anti-serotonin and FMRFamide antisera together with laser scanning microscopy, and transmission electron microscopy, to describe in detail the nervous system of the tornaria of Balanoglossus proterogonius. Serotonin immunoreactive neurons were found in the apical and esophageal ganglia, and in the stomach epithelium. FMRFamide immunoreactive neurons, probably sensory in nature, were detected in the apical ganglion and in the equatorial region of the stomach epithelium. At the ultrastructural level, the apical organ consists of a columnar epithelium of monociliated cells and includes a pair of symmetrical eyespots. The apical ganglion is located at its base and has a well-developed neuropil. Different types of neurons are described in the apical organ, esophagus, and stomach. Comparison with larvae in Echinodermata shows several significant differences in the way the larval nervous system is organized. This calls into question the homology between tornariae and echinoderm larvae. The possibility of convergence between the two larval types is discussed.  相似文献   

13.
Larvae of the red abalone, Haliotis rufescens, rely on external chemical cues to trigger metamorphosis; thus, the timing of metamorphosis is depedent upon the larva's chance encounter with the appropriate substrate. We examined the effect of the timing of metamorphosis on the development of the central nervous system (CNS), concentrating on the pattern of serotonin and small cardioactive peptide- (SCP) immunopositive neurons in the cerebral ganglia. By 4 days postfertilization the cerebral ganglion has five pairs of serotonin-immunoreactive (IR) neurons, one pair of which (the V cells) innervate the velum. This complement of cells remains stable for as long as the larval stage persists but metamorphosis causes the rapid loss of the V cells. In the case of SCP-IR neurons, one pair is present prior to metamorphic competency, but as larvae continue to age in the absence of inducing cues, additional pairs are gradually added. Metamorphosis causes an acceleration in SCP-IR neuron addition. This separation of developmental patterns is well adapted for the inherent uncertainty of the timing of metamorphosis in abalone larvae. © 1992 John Wiley & Sons, Inc.  相似文献   

14.
15.
The morphogenesis of serotonin- and FMRF-amide-bearing neuronal elements in the scaphopod Antalis entalis was investigated by means of antibody staining and confocal laser scanning microscopy. Nervous system development starts with the establishment of two initial, flask-like, serotonergic central cells of the larval apical organ. Slightly later, the apical organ contains four serotonergic central cells which are interconnected with two lateral serotonergic cells via lateral nerve projections. At the same time the anlage of the adult FMRF-amide-positive cerebral nervous system starts at the base of the apical organ. Subsequently, the entire neuronal complex migrates behind the prototroch and the six larval serotonergic cells lose transmitter expression prior to metamorphic competence. There are no strictly larval FMRF-amide-positive neuronal structures. The development of major adult FMRF-amide-containing components such as the cerebral system, the visceral loop, and the buccal nerve cords, however, starts before the onset of metamorphosis. The anlage of the putative cerebral system is the only site of adult serotonin expression in Antalis larvae. Establishment of the adult FMRF-amidergic and serotonergic neuronal bauplan proceeds rapidly after metamorphosis. Neurogenesis reflects the general observation that the larval phase and the expression of distinct larval morphological features are less pronounced in Scaphopoda than in Gastropoda or Bivalvia. The degeneration of the entire larval apical organ before metamorphic competence argues against an involvement of this sensory system in scaphopod metamorphosis. The lack of data on the neurogenesis in the aplacophoran taxa prevent a final conclusion regarding the plesiomorphic condition in the Mollusca. Nevertheless, the results presented herein shed doubts on general theories regarding possible functions of larval "apical organs" of Lophotrochozoa or even Metazoa.  相似文献   

16.
Larval development in crabs is characterized by a striking double metamorphosis in the course of which the animals change from a pelagic to a benthic life style. The larval central nervous system has to provide an adequate behavioural repertoire during this transition. Thus, processes of neuronal reorganization and refinement of the early larval nervous system could be expected to occur in the metamorphosing animal. In order to follow identified sets of neurons throughout metamorphosis, whole mount preparations of the brain and ventral nerve cord of laboratory reared spider crab larvae (Hyas araneus) were labelled with an antibody against the neurotransmitter serotonin. The system of serotonin-immunoreactive cell bodies, fibres and neuropils is well-developed in newly hatched larvae. Most immunoreative structures are located in the protocerebrum, with fewer in the suboesophaegeal ganglia, while the thoracic and abdominal ganglia initially comprise only a small number of serotonergic neurons and fibres. However, there are significant alterations in the staining pattern through larval development, some of which are correlated to metamorphic events. Accordingly, new serotonin-immunoreactive cells are added to the early larval set and the system of immunoreactive fibres is refined. These results are compared to the serotonergic innervation in other decapod crustaceans.  相似文献   

17.
Summary

At metamorphosis the attachment of the Plumatella larva to the substrate is effected by secretions from glandular cells in the apical plate, the leading pole during swimming. The larval mantle folds back and slides down towards the substrate. By ciliary activity an adhesive secretion is spread over the metamorphosing larva and the attachment area. Two polypides appear through the larval terminal opening. The mantle fold, together with gland cells, nerve cells, sensory cells, and muscle cells from the larva form a nutritive cell mass. Reduction of this nutritive cell mass is accomplished by autolysis and phagocytosis. An invaginated area of the nutritive cell mass is provided with a dense layer of microvilli, which seem to have an absorbtive function. The nutritive cell mass consisting of transitory larval tissues provides a significant source of nutrient for the developing polypide buds.  相似文献   

18.
In many organisms, genotypic selection may be a less effective means of adapting to unpredictable environments than is selection for phenotypic plasticity. To determine whether genotypic selection is important in the evolution of complex life cycles of amphibians that breed in seasonally ephemeral habitats, we examined whether mortality risk from habitat drying in natural populations of small-mouthed salamanders (Ambystoma texanum) corresponded to length of larval period when larvae from the same populations were grown in a common laboratory environment. Comparisons were made at two levels of organization within the species: 1) among geographic races that are under strongly divergent selection regimes associated with the use of pond and stream habitats and 2) among populations within races that use the same types of breeding habitats. Morphological evidence indicates that stream-breeding A. texanum evolved from pond-breeding populations that recently colonized streams. Larvae in streams incur heavy mortality from stream drying, so the upper bound on length of larval period is currently set by the seasonal duration of breeding sites. We hypothesized that selection would reduce length of larval period of pond-breeders that colonize streams if their larval periods are inherently longer than those of stream-breeders. The results of laboratory experiments support this hypothesis. When grown individually in a common environment, larvae from stream populations had significantly shorter larval periods than larvae from pond populations. Within races, however, length of larval period did not correlate significantly with seasonal duration of breeding sites. When males of both races were crossed to a single pond female, offspring of stream males had significantly shorter larval periods than offspring of pond males. Collectively, these data suggest that differences in complex life cycles among pond and stream-breeders are due to genotypic selection related to mortality from habitat drying. Stream larvae in the common-environment experiment were significantly smaller at metamorphosis than pond larvae. Yet, the evolution of metamorphic size cannot be explained readily by direct selection: there are no intuitively obvious advantages of being relatively small at metamorphosis in streams. A positive phenotypic correlation was observed between size at metamorphosis and length of larval period in most laboratory populations. A positive additive genetic correlation between these traits was demonstrated recently in another amphibian. Thus, we suspect that metamorphic size of stream-breeders evolved indirectly as a consequence of selection to shorten length of larval period.  相似文献   

19.
The utility of length and mass measurements to predict the larval metamorphosis of Pacific lamprey Entosphenus tridentatus was evaluated. During 2004–2008, larval E. tridentatus were collected from Cedar Creek (Washington, USA) in either the spring or autumn, measured for total length and total mass, reared in captivity and monitored for metamorphosis. The minimum total length, total mass and condition factor of larvae that were observed to go through metamorphosis were 102 mm, 2.0 g and 1.52, respectively. Logistic models indicated that total length and condition factor in both spring and autumn were the most significant variables for predicting metamorphosis of Pacific lamprey during the subsequent summer. Mass in the autumn also appeared important to predict whether metamorphosis occurred in the subsequent summer. Collectively, all models using specific minimums of total length, total mass or condition factor of larvae as criteria for them to metamorphose were sometimes (5 of 14 cases) able to predict the percentage of larvae that would metamorphose but rarely (1 of 12 cases) able to predict which individual larvae would metamorphose. Similar to other anadromous species of lampreys, the size and condition of larval E. tridentatus have utility for predicting metamorphic fate.  相似文献   

20.
Summary Topological organization of identified neurons has been characterized for the larval, pupal and imaginal suboeosphageal neuropil of the meal-worm beetleTenebrio molitor. Neuronal fate mapping allows identification of individually persisting neurons in the metamorphosing suboesophageal ganglion ofTenebrio. Analysis was performed on interneurons characterized by serotonin and CCAP (crustacean cardioactive peptide) immunohistochemistry, on motoneurons that innervate the dorsal and ventral longitudinal muscles, and on suboesophageal descending neurons. All these different populations of neurons show topologically invariant features throughout metamorphosis. Motoneurons, interneurons, and descending suboesophageal neurons of the imaginal suboeosphageal ganglion embody individually persisting larval interneurons. Impacts for a functional interpretation of the neuronal architecture of the suboesophageal ganglion are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号