首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The vertebrate CRF signaling system consists of corticotropin-releasing factor (CRF), two types of receptors to CRF (CRF-R1 and CRF-R2), and CRF-binding protein (CRF-BP). The aim of this study was to investigate the presence and localization of CRF, CRF-R2, and CRF-BP in the snail atrial neuroendocrine complexes, which include granular cells (GCs) and tightly connected nerve fibers and gliointerstitial cells. Immunofluorescence assay and immunogold electron microscopy using polyclonal antibodies against these proteins revealed immunoreactivity in the granules of all these cells. Western-blot analysis of the snailatria lysate using rabbit anti-CRF-R2 polyclonal antibodies revealed a specific band with a weight of 56 kids. These are the first data on the molecular weight of this receptor in mollusks. Furthermore, to clarify the possible functions of CRF in the neuroendocrine complexes, the hormone was added to GCs isolated from the snail atrium. The proportion of degranulated GCs after CRF addition almost doubled (45.5 vs. 24.5% in control, p < 0.05). The results indicate the presence of all three components of the CRF signaling system in the neuroendocrine complexes of snail atrium. In addition, their presence in both secretory and nervous components of the complexes suggests that the CRF signaling system participates in the nervous regulation of secretory activity of GCs and transfer of information from GCs to the CNS.  相似文献   

2.
The aim for this study was to examine whether the F4 generation of two strains of rainbow trout divergent in their plasma cortisol response to confinement stress (HR: high responder or LR: low responder) would also differ in stress-induced effects on forebrain concentrations of mRNA for corticotropin-releasing factor (CRF), arginine vasotocin (AVT), CRF receptor type 1 (CRF-R1), CRF receptor type 2 (CRF-R2) and AVT receptor (AVT-R). In addition, plasma cortisol concentrations, brainstem levels of monoamines and monoamine metabolites, and behaviour during confinement were monitored. The results confirm that HR and LR trout differ in their cortisol response to confinement and show that fish of these strains also differ in their behavioural response to confinement. The HR trout displayed significantly higher locomotor activity while in confinement than LR trout. Moreover, following 180 min of confinement HR fish showed significantly higher forebrain concentrations of CRF mRNA than LR fish. Also, when subjected to 30 min of confinement HR fish showed significantly lower CRF-R2 mRNA concentrations than LR fish, whereas there were no differences in CRF-R1, AVT or AVT-R mRNA expression between LR and HR fish either at 30 or 180 min of confinement. Differences in the expression of CRF and CRF-R2 mRNA may be related to the divergence in stress coping displayed by these rainbow trout strains.  相似文献   

3.
Corticotropin releasing factor-binding protein (CRF-BP) binds CRF and urocortin 1 (Ucn 1) with high affinity, thus preventing CRF receptor (CRFR) activation. Despite recent progress on the molecular details that govern interactions between CRF family neuropeptides and their cognate receptors, little is known concerning the mechanisms that allow CRF-BP to bind CRF and Ucn 1 with picomolar affinity. We conducted a comprehensive alanine scan of 76 evolutionarily conserved residues of CRF-BP and identified several residues that differentially affected the affinity for CRF over Ucn 1. We determined that both neuropeptides derive their similarly high affinity from distinct binding surfaces on CRF-BP. Alanine substitutions of arginine 56 (R56A) and aspartic acid 62 (D62A) reduce the affinity for CRF by approximately 100-fold, while only marginally affecting the affinity for Ucn 1. The selective reduction in affinity for CRF depends on glutamic acid 25 in the CRF peptide, as substitution of Glu(25) reduces the affinity for CRF-BP by approximately 2 orders of magnitude, but only in the presence of both Arg(56) and Asp(62) in human CRF-BP. We show that CRF-BP(R56A) and CRF-BP(D62A) have lost the ability to inhibit CRFR1-mediated responses to CRF that activate luciferase induction in HEK293T cells and ACTH release from cultured rat anterior pituitary cells. In contrast, both CRF-BP mutants retain the ability to inhibit Ucn 1-induced CRFR1 activation. Collectively our findings demonstrate that CRF-BP has distinct and separable binding surfaces for CRF and Ucn 1, opening new avenues for the design of ligand-specific antagonists based on CRF-BP.  相似文献   

4.
5.
Stress induces the release of the peptide corticotropin-releasing factor (CRF) into the ventral tegmental area (VTA), and also increases dopamine (DA) levels in brain regions receiving dense VTA input. Since the role of stress in drug addiction is well established, the present study examined the possible involvement of CRF1 receptor in the interaction between morphine withdrawal and catecholaminergic pathways in the reward system. The effects of naloxone-precipitated morphine withdrawal on signs of withdrawal, hypothalamo-pituitary-adrenocortical (HPA) axis activity, dopamine (DA) and noradrenaline (NA) turnover in the nucleus accumbens (NAc) and activation of VTA dopaminergic neurons, were investigated in rats pretreated with vehicle or CP-154,526 (selective CRF1R antagonist). CP-154,526 attenuated the increases in body weight loss and suppressed some of withdrawal signs. Pretreatment with CRF1 receptor antagonist resulted in no significant modification of the increased NA turnover at NAc or plasma corticosterone levels that were seen during morphine withdrawal. However, blockade of CRF1 receptor significantly reduced morphine withdrawal-induced increases in plasma adrenocorticotropin (ACTH) levels, DA turnover and TH phosphorylation at Ser40 in the NAc. In addition, CP-154,526 reduced the number of TH containing neurons expressing c-Fos in the VTA after naloxone-precipitated morphine withdrawal. Altogether, these results support the idea that VTA dopaminergic neurons are activated in response to naloxone-precipitated morphine withdrawal and suggest that CRF1 receptors are involved in the activation of dopaminergic pathways which project to NAc.  相似文献   

6.
Corticotrophin-releasing factor (CRF) is the main regulator of the body's stress axis and its signal is translated through G-protein-coupled CRF receptors (CRF-R1, CRF-R2). Even though CRF receptors are present in the midbrain dopamine neurons, the cellular mechanism of CRF action is not clear yet. Since voltage-dependent Ca(2+) channels are highly expressed and important in dopamine neuronal functions, we tested the effect of CRF on voltage-dependent Ca(2+) channels in MN9D cells, a model of dopamine neurons. The application of CRF-related peptide, urocortin 1, reversibly inhibited T-type Ca(2+) currents, which was a major Ca(2+) channel in the cells. The effect of urocortin was abolished by specific CRF-R1 antagonist and was mimicked by protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate. PKC inhibitors abolished the effect of urocortin. These results suggest that urocortin modulates T-type Ca(2+) channel by interacting with CRF-R1 via the activation of PKC signal pathway in MN9D cells.  相似文献   

7.
Considerable attention has been focused on the role of corticotropin releasing factor (CRF) as well as CRF-binding protein (CRF-BP) in neuropsychiatric disorders and neurodegenerative diseases including epilepsy. Therefore, in the present study, we investigated the temporal and spatial alteration of CRF and CRF-BP in the gerbil hippocampal complex in order to characterize the possible changes and associations with different sequelae of spontaneous seizure in these animals. CRF immunoreactivity was shown in the interneurons of the hippocampal complex at 30 min following seizure. Additionally, alteration of CRF-BP immunoreactivity was restricted to the entorhinal cortex after seizure. These results indicate some factors for consideration. First, in the gerbil hippocampal complex, the delayed increase of CRF immunoreactivity, in spite of its excitatory function, may attenuate seizure activity, but may not do so in epileptogenesis. Second, in contrast to the hippocampal complex, the increase in CRF-BP immunoreactivity in the entorhinal cortex following seizure may participate in feedback inhibitory modulation.  相似文献   

8.
The ligand-receptor interaction has been commonly used in development of high throughput screening assays for new drugs. In some cases, an endogenous ligand interacts not only with membrane receptors but also with soluble binding proteins. Corticotrophin-releasing factor (CRF) is an important stress neurotransmitter/hormone involved in both the central and peripheral nervous systems. CRF exerts its function by interacting with CRFR1 and CRFR2 receptors. In addition, CRF-binding protein (CRF-BP) binds CRF with high affinity. Accordingly, CRF-BP has been suggested to play an important role in modulating CRF function. Based on the potential involvement of CRF-BP in many neurological disorders, it is desirable to develop a screening assay to look for drugs that either mimic or interfere with CRF binding to CRF-BP. An assay was developed to monitor the interactions of radiolabeled CRF with human/rat CRF-BP and the mouse CRFR1 (mCRFR1) receptor. By carefully examining the binding characteristics of radiolabeled CRF to mCRFR1, the assay was able to identify compounds that bind to CRF-BP with high affinity and have little or no affinity for mCRFR1 receptors. Based on a mathematical model, we have verified the screening system with several well-characterized CRF ligands that all have different affinities for CRF receptors and CRF-BP.  相似文献   

9.
Borgland SL  Taha SA  Sarti F  Fields HL  Bonci A 《Neuron》2006,49(4):589-601
Dopamine neurons in the ventral tegmental area (VTA) represent a critical site of synaptic plasticity induced by addictive drugs. Orexin/hypocretin-containing neurons in the lateral hypothalamus project to the VTA, and behavioral studies have suggested that orexin neurons play an important role in motivation, feeding, and adaptive behaviors. However, the role of orexin signaling in neural plasticity is poorly understood. The present study shows that in vitro application of orexin A induces potentiation of N-methyl-D-aspartate receptor (NMDAR)-mediated neurotransmission via a PLC/PKC-dependent insertion of NMDARs in VTA dopamine neuron synapses. Furthermore, in vivo administration of an orexin 1 receptor antagonist blocks locomotor sensitization to cocaine and occludes cocaine-induced potentiation of excitatory currents in VTA dopamine neurons. These results provide in vitro and in vivo evidence for a critical role of orexin signaling in the VTA in neural plasticity relevant to addiction.  相似文献   

10.
Corticotropin releasing factor (CRF) is present in the adult, as well as in the embryonic and postnatal rodent cerebellum. Further, the distribution of the type 1 CRF receptor has been described in adult and postnatal animals. The focus of the present study is to determine the distribution and cellular relationships of the type 1 CRF receptor (CRF-R1) during embryonic development of the cerebellum. Between embryonic day (E)11 and E12, CRF-R1 immunoreactive puncta are uniformly distributed in the ventricular zone, the site of origin of Purkinje cells, nuclear neurons, and GABAergic interneurons, as well as the germinal trigone, the birthplace of the precursors of granule cells. Between E13 and 18, the distribution of immunolabeled puncta decreases in both the ventricular zone and the germinal trigone and increases in the intermediate zone, as well as in the dorsal aspect of the cerebellar plate. Between E14 and 18, antibodies that label specific populations of cerebellar neurons were combined with the antibody for the receptor to determine the cellular elements that expressed CRF-R1. At E14, CRF-R1 immunoreactivity is co-localized in neurons immunolabeled with PAX-2, an antibody that is specific for GABAergic interneurons. These neurons continue to express CRF-R1 as they migrate dorsally toward the cerebellar surface. Between E16 and 18, Purkinje cells, immunolabeled with calbindin, near the dorsal surface of the cerebellum express CRF-R1 in their cell bodies and apical processes. CRF has been shown to have a depolarizing effect on adult and postnatal Purkinje cells. Further, CRF has been shown to contribute to excitability of hippocampal neurons during embryonic development by binding to CRF-R1; depolarization induced excitability appears to be critical for cell survival. The location of the type one CRF receptor and the presence of its primary ligand, CRF, in the germinal zones of the cerebellum and in migrating neurons suggest that this receptor/ligand interaction could be important in the regulation of neuronal survival through cellular mechanisms that lead to depolarization of embryonic cerebellar neurons.  相似文献   

11.
Role of corticotropin-releasing factor receptor-1 in opiate withdrawal   总被引:3,自引:0,他引:3  
Previous studies indicate that corticotropin-releasing factor (CRF) contributes to the anxiety-like and aversive states associated with drug-induced withdrawal. The present study extends this work by analyzing the CRF receptor subtype involved in withdrawal responses. First, the influence of a selective CRF receptor-1 (CRF-R1) antagonist, CP-154,526, on opiate withdrawal behavior was examined. Pretreatment with the CRF-R1 antagonist significantly attenuated several behavioral signs of naltrexone-induced morphine withdrawal, including writhing, chewing, weight loss, lacrimation, salivation, and irritability, measured during the first hour of withdrawal. Next the expression of CRF-R1 was determined as a second measure of the involvement of this receptor in opiate withdrawal. Naltrexone-induced morphine withdrawal resulted in down-regulation of CRF-R1 mRNA in several brain regions, including the frontal cortex, parietal cortex, striatum, nucleus accumbens, and amygdala, but not in the hypothalamus or periaqueductal gray. Expression of CRF-R2, the other major CRF receptor subtype, was not down-regulated significantly by withdrawal in any of the regions examined, although morphine alone significantly increased levels of this receptor subtype. Taken together, the behavioral and receptor regulation findings indicate that CRF-R1 is the primary mediator of the actions of the CRF system on opiate withdrawal, although it is possible that CRF-R2 contributes to the response.  相似文献   

12.
Abstract: Two cDNA clones encoding distinct members of the corticotropin-releasing factor (CRF) receptor family have been isolated from Xenopus laevis with PCR-based approaches. The first full-length cDNA amplified from Xenopus brain encoded a 415-amino acid protein with ∼80% identity to mammalian CRF receptor type 1 (CRF-R1). The second full-length cDNA isolated from Xenopus brain and heart encoded a 413-amino acid protein with ∼81% identity to the α-variant of mammalian CRF receptor, type 2 (CRF-R2). No evidence could be obtained that the β-variant of CRF-R2 existed in Xenopus laevis . Binding studies using human embryonic kidney 293 (HEK 293) cells stably transfected with xenopus CRF-R2 showed that the CRF analogues urotensin I, urocortin, and sauvagine were bound with higher affinities than human/rat CRF, xenopus CRF, and ovine CRF. In contrast to human CRF-R1, xenopus CRF-R1 (xCRF-R1) was very selective for different CRF ligands. Urotensin I, urocortin, human/rat CRF, and xenopus CRF were bound with significantly (10–22-fold) higher affinities than ovine CRF ( K D = 31.7 n M ) and sauvagine ( K D = 51.4 n M ). In agreement with these binding data, EC50 values of 39.7 and 1.1 n M were found for sauvagine and for human/rat CRF or xenopus CRF, respectively, when the cyclic AMP production in HEK 293 cells stably transfected with xCRF-R1 was determined.  相似文献   

13.
Hypermetabolism and anorexia are significant problems associated with major burn trauma. Recent studies have implicated hypothalamic peptides and receptors of the corticotropin releasing factor (CRF) family as putative mediators of burn-induced hypermetabolism. Increased neuronal activity at the CRF type 2 receptor (CRF R-2) appeared particularly involved in the expression of elevated resting energy expenditure (REE) following major burn trauma. In the present study we continued these investigations of CRF R-2 mediation of burn-induced hypermetabolism, demonstrating that 3rd ventricle injection of CRF R-2 antisense oligodeoxynucleotide (ODN) normalized REE in burned rats. Similar treatments with CRF or CRF R-1 antisense ODNs had no significant effect in burned rats. In addition, 3rd ventricle injection of the selective CRF R-2 antagonist, antisauvagine-30, also reduced REE significantly in burned rats, while similar treatment with the selective CRF R-1 antagonist, antalarmin, was without effect. To determine which endogenous peptide was altered following burn we measured hypothalamic levels of urocortin (UCN) and CRF 15 days after burn injury, finding UCN was significantly elevated by nearly 3-fold, while CRF level tended to be decreased. We also assessed hypothalamic mRNA peptide and receptor expression by real-time PCR 7, 14, and 21 days post-burn, observing decreased CRF expression 7 and 21 days post-burn, decreased UCN-2 expression 7 days post-burn, and no significant alteration in UCN-1 at any time point. However, CRF R-2 mRNA was elevated at each post-burn time point. These results continue to suggest that increased neuronal activity is integrally involved in the mediation of burn-induced hypermetabolism, and that one of the UCN peptides may be the endogenous ligand affecting this receptor.  相似文献   

14.
Regulation of neuronal NMDA receptor (NMDAR) is critical in synaptic transmission and plasticity. Protein kinase C (PKC) promotes NMDAR trafficking to the cell surface via interaction with NMDAR-associated proteins (NAPs). Little is known, however, about the NAPs that are critical to PKC-induced NMDAR trafficking. Here, we showed that calcium/calmodulin-dependent protein kinase II (CaMKII) could be a NAP that mediates the potentiation of NMDAR trafficking by PKC. PKC activation promoted the level of autophosphorylated CaMKII and increased association with NMDARs, accompanied by functional NMDAR insertion, at postsynaptic sites. This potentiation, along with PKC-induced long term potentiation of the AMPA receptor-mediated response, was abolished by CaMKII antagonist or by disturbing the interaction between CaMKII and NR2A or NR2B. Further mutual occlusion experiments demonstrated that PKC and CaMKII share a common signaling pathway in the potentiation of NMDAR trafficking and long-term potentiation (LTP) induction. Our results revealed that PKC promotes NMDA receptor trafficking and induces synaptic plasticity through indirectly triggering CaMKII autophosphorylation and subsequent increased association with NMDARs.  相似文献   

15.
Reduced corticotropin-releasing factor (CRF) receptor activation in the postpartum period is essential for adequate maternal behavior. One of the factors contributing to this hypo-activity might be the CRF-binding protein (CRF-BP), which likely reduces the availability of free extracellular CRF/urocortin 1. Here, we investigated behavioral effects of acute CRF-BP inhibition using 5 μg of CRF(6-33) administered either centrally or locally within different parts of the bed nucleus of the stria terminalis (BNST) in lactating rats. Additionally, we assessed CRF-BP expression in the BNST comparing virgin and lactating rats.Central CRF-BP inhibition increased maternal aggression during maternal defense but did not affect maternal care or anxiety-related behavior. CRF-BP inhibition in the medial-posterior BNST had no effect on maternal care under non-stress conditions but impaired the reinstatement of maternal care following stressor exposure. Furthermore, maternal aggression, particularly threat behavior, and anxiety-related behavior were elevated by CRF-BP inhibition in the medial-posterior BNST. In the anterior–dorsal BNST, CRF-BP inhibition increased only non-maternal behaviors following stress. Finally, CRF-BP expression was higher in the anterior compared to the posterior BNST but was not different between virgin and lactating rats in either region.Our study demonstrates a key role of the CRF-BP, particularly within the BNST, in modulating CRF's impact on maternal behavior. The CRF-BP is important for the reinstatement of maternal care after stress, for modulating threat behavior during an aggressive encounter and for maintaining a hypo-anxious state during lactation. Thus, the CRF-BP likely contributes to the postpartum-associated down-regulation of the CRF system in a brain region-dependent manner.  相似文献   

16.
Intracerebroventricular (icv) injections of corticotropin-releasing factor (CRF; 25 ng) given to male rough-skinned newts (Taricha granulosa) stimulated locomotor activity tested in a circular arena starting 35 min after the injection. The CRF receptor antagonist, alpha-helical CRF9-41 (ahCRF; 250 or 500 ng), injected icv concurrently with CRF blocked CRF-induced locomotor activity. In contrast, icv injection of ahCRF had no effect on spontaneous locomotor activity. Other studies examined the effect of ahCRF on the elevated locomotor activity that was observed when the animals were stressed (handled or placed in warm water). The CRF antagonist dose dependently attenuated the response to either handling or warm stress tested 2 hr after drug treatment. We also examined the effect of the alpha 2-adrenergic agonist, clonidine, on spontaneous and CRF-induced locomotor activity. Clonidine injected icv dose dependently suppressed spontaneous locomotor activity but not CRF-induced locomotor activity. These studies support the hypothesis that endogenous CRF is involved in mediating stress-induced locomotor activity and indicate that the effects of CRF on locomotor activity are independent of activation of the alpha 2-adrenergic system.  相似文献   

17.
The hypocretins (also know as orexins) are two neuropeptides now commonly described as critical components for maintaining and regulating the stability of arousal. Several lines of evidence have raised the hypothesis that hypocretin-producing neurons are part of the circuitries that mediate the hypothalamic response to acute stress. New data indicate that the corticotrophin-releasing factor (CRF) peptidergic system directly innervates hypocretin-expressing neurons. CRF depolarizes hypocretin neurons, and this effect is blocked by a CRF-R1 antagonist. Furthermore, activation of hypocretinergic neurons by stress is impaired in CRF-R1 knockout mice. These data suggest that CRF-R1 receptor mediates the stress-induced activation of the hypocretinergic system. A significant amount of evidence also indicates that hypocretin cells connect reciprocally to the CRF system. We propose that upon stressor stimuli, CRF activates the hypocretin system, which relays these signals to brain stem nuclei involved in the modulation of arousal as well as to the extended amygdala, a structure involved in the negative motivational state that drives addiction.  相似文献   

18.
Two receptors activated by the corticotropin-releasing factor (CRF) family of peptides have been identified, the CRF 1 receptor (CRF1R) and the CRF 2 receptor (CRF2R). Of these, the CRF2R is expressed in skeletal muscle. To understand the role of the CRF2R in skeletal muscle, we utilized CRFR knockout mice and CRF2R-selective agonists to modulate nerve damage and corticosteroid- and disuse-induced skeletal muscle atrophy in mice. These analyses demonstrated that activation of the CRF2R decreased nerve damage and corticosteroid- and disuse-induced skeletal muscle mass and function loss. In addition, selective activation of the CRF2R increased nonatrophy skeletal muscle mass. Thus we describe for the first time a novel activity of the CRF2R, modulation of skeletal muscle mass.  相似文献   

19.
Corticotropin-releasing factor (CRF) signaling pathways are involved in the stress response, and there is growing evidence supporting hair growth inhibition of murine hair follicle in vivo upon stress exposure. We investigated whether the blockade of CRF receptors influences the development of hair loss in CRF over-expressing (OE)-mice that display phenotypes of Cushing''s syndrome and chronic stress, including alopecia. The non-selective CRF receptors antagonist, astressin-B (5 µg/mouse) injected peripherally once a day for 5 days in 4–9 months old CRF-OE alopecic mice induced pigmentation and hair re-growth that was largely retained for over 4 months. In young CRF-OE mice, astressin-B prevented the development of alopecia that occurred in saline-treated mice. Histological examination indicated that alopecic CRF-OE mice had hair follicle atrophy and that astressin-B revived the hair follicle from the telogen to anagen phase. However, astressin-B did not show any effect on the elevated plasma corticosterone levels and the increased weights of adrenal glands and visceral fat in CRF-OE mice. The selective CRF2 receptor antagonist, astressin2-B had moderate effect on pigmentation, but not on hair re-growth. The commercial drug for alopecia, minoxidil only showed partial effect on hair re-growth. These data support the existence of a key molecular switching mechanism triggered by blocking peripheral CRF receptors with an antagonist to reset hair growth in a mouse model of alopecia associated with chronic stress.  相似文献   

20.

Background

The initiation of behavioral sensitization to cocaine and other psychomotor stimulants is thought to reflect N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic plasticity in the mesolimbic dopamine (DA) circuitry. The importance of drug induced NMDAR mediated adaptations in ventral tegmental area (VTA) DA neurons, and its association with drug seeking behaviors, has recently been evaluated in Cre-loxp mice lacking functional NMDARs in DA neurons expressing Cre recombinase under the control of the endogenous dopamine transporter gene (NR1DATCre mice).

Methodology and Principal Findings

Using an additional NR1DATCre mouse transgenic model, we demonstrate that while the selective inactivation of NMDARs in DA neurons eliminates the induction of molecular changes leading to synaptic strengthening, behavioral measures such as cocaine induced locomotor sensitization and conditioned place preference remain intact in NR1DATCre mice. Since VTA DA neurons projecting to the prefrontal cortex and amygdala express little or no detectable levels of the dopamine transporter, it has been speculated that NMDA receptors in DA neurons projecting to these brain areas may have been spared in NR1DATCre mice. Here we demonstrate that the NMDA receptor gene is ablated in the majority of VTA DA neurons, including those exhibiting undetectable DAT expression levels in our NR1DATCre transgenic model, and that application of an NMDAR antagonist within the VTA of NR1DATCre animals still blocks sensitization to cocaine.

Conclusions/Significance

These results eliminate the possibility of NMDAR mediated neuroplasticity in the different DA neuronal subpopulations in our NR1DATCre mouse model and therefore suggest that NMDARs on non-DA neurons within the VTA must play a major role in cocaine-related addictive behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号