首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We constructed insertion mutants of herpes simplex virus type 1 that contained a duplication of DNA sequences from the BamHI-L fragment (map units 0.706 to 0.744), which is located in the unique region of the L component (UL) of the herpes simplex virus type 1 genome. The second copy of the BamHI-L sequence was inserted in inverted orientation into the viral thymidine kinase gene (map units 0.30 to 0.32), also located within UL. A significant fraction of the progeny produced by these insertion mutants had genomes with rearranged DNA sequences, presumably resulting from intramolecular or intermolecular recombination between the BamHI-L sequences at the two different genomic locations. The rearranged genomes either had an inversion of the DNA sequence flanked by the duplication or were recombinant molecules in which different regions of the genome had been duplicated and deleted. Genomic rearrangements similar to those described here have been reported previously but only for herpes simplex virus insertion mutants containing an extra copy of the repetitive a sequence. Such rearrangements have not been reported for insertion mutants that contain duplications of herpes simplex virus DNA sequences from largely unique regions of the genome. The implications of these results are discussed.  相似文献   

2.
B Matz 《Journal of virology》1987,61(5):1427-1434
When the simian virus 40 (SV40)-transformed Syrian hamster cell line Elona is infected with herpes simplex virus type 1, an excessive amplification of SV40-specific DNA sequences occurs. Analysis of total DNA from herpes simplex virus-infected cells revealed that amplified DNA sequences were present predominantly in a high-molecular-weight form, consisting of a tandem array of many unit-length SV40 DNA molecules. Repeat units of amplified DNA were found to be very similar to standard SV40 DNA as was shown by restriction analyses, except for a small deletion close to the origin of replication, which could also be detected in the chromosomal DNA of uninfected cells. A procedure, devised for selective enrichment of amplified SV40 DNA molecules from the bulk of cellular and herpesviral DNA, allowed molecular cloning of single repeat units and nucleotide sequence analysis of the relative genomic region.  相似文献   

3.
It has been shown earlier that the reiterated regions TRS and IRS bracketing the Us segment of herpes simplex virus type 1 Angelotti DNA are heterogeneous in size by stepwise insertion of one to six copies of a 550-base-pair nucleotide sequence. Considerably higher amplification of this sequence was observed in defective viral DNA: up to 14 copies were detected to be inserted in the repeat units of a major class of defective herpes simplex virus type 1 Angelotti DNA, dDNA1, which originated from noncontiguous sites located in UL and the inverted repeats of the S component of the parental genome. Physical maps were established for the cleavage sites of KpnI, PstI, XhoI, and BamHI restriction endonucleases on the repeats of dDNA1. The map position of the insertion sequence was determined. It was demonstrated that the amplified inserts were not distributed at random among or within the repeats. A given total population of dDNA1 molecules consisted of different homopolymers, each of which contained a constant number of inserts in all of its repeats. Assuming that a rolling-circle mechanism is involved in the generation of full-length defective herpes simplex virus type 1 Angelotti DNA from single repeat units, these data suggest that the 550-base-pair sequence is amplified in the repeats before the replication process.  相似文献   

4.
Previous studies (R. R. Spaete and N. Frenkel, Cell 30:295-304, 1982) have documented the potential use of defective virus vectors (amplicons) derived from herpes simplex virus for the efficient introduction of foreign DNA sequences into eucaryotic cells. Specifically, cotransfection of cells with helper virus DNA and cloned amplicons (8 to 10 kilobases [kb]) containing bacterial plasmid DNA sequences linked to a set of herpes simplex virus cis-acting propagation signals (a replication origin and a cleavage-packaging signal) resulted in the generation of virus stocks containing packaged defective genomes that consisted of uniform head-to-tail reiterations of the chimeric seed amplicon sequences. The chimeric defective genomes could be stably propagated in virus stocks and could thus be used to efficiently infect cells. We now report on additional studies designed to propagate relatively large sets of eucaryotic DNA sequences within chimeric packaged defective genomes. These studies have utilized a 12-kb chicken DNA sequence encoding the chicken ovalbumin gene and cloned by Lai et al. (Proc. Natl. Acad. Sci. U.S.A. 77:244-248, 1980) in the plasmid pOV12. Virus stocks derived from cells cotransfected with helper virus DNA and chimeric amplicons (overall size of 19.8 kb, of which 12 kb corresponded to the chicken DNA) contained defective genomes composed of reiterations of the 19.8-kb seed amplicon sequences. However, in addition to the authentically sized repeat units, defective genomes in the derivative virus stocks contained smaller repeat units representing deleted versions of the seed 19.8-kb amplicons. The recombinational events leading to the formation of deleted repeats did not appear to occur at unique sites, as shown by comparative analyses of multiple, independently generated virus series propagated from separate transfections. In contast, seed amplicons ranging in size from 11 to 15 kb and containing subsets of the 12-kb chicken DNA sequences replicated efficiently and could be stably propagated in virus stocks. The results of these studies suggest the existence of size restrictions (up to 15 kb) on the efficient replication of seed herpes simplex virus amplicons.  相似文献   

5.
6.
R R Spaete  N Frenkel 《Cell》1982,30(1):295-304
We have employed repeat units of herpes simplex virus (HSV) defective genomes to derive a cloning-amplifying vector (amplicon) that can replicate in eucaryotic cells in the presence of standard HSV helper virus. The design of the HSV amplicon system is based on the previous observation that cotransfection of cells with helper virus DNA and seed monomeric repeat units of HSV defective genomes results in the regeneration of concatemeric defective genomes composed of multiple reiterations of the seed repeats. Cotransfection of cells with helper virus DNA and chimeric repeat units containing bacterial plasmid pKC7 DNA resulted in the generation of defective genomes composed of reiterations of the seed HSV-pKC7 repeats. These chimeric defective genomes were packaged into virus particles and could be propagated in virus stocks, with the most enriched passages containing more than 90% chimeric defective genomes. Furthermore, monomeric chimeric repeat units could be transferred back and forth between bacteria and eucaryotic cells. A derivative vector constructed so as to contain several unique restriction enzyme sites could be potentially employed in the introduction of additional viral or eucaryotic DNA sequences into eucaryotic cells.  相似文献   

7.
The herpes simplex virus type 1 genome (160 kilobases) contains three origins of DNA synthesis: two copies of oriS located within the repeated sequences flanking the short unique arm (US), and one copy of oriL located within the long unique arm (UL). Precise localization and characterization of oriL have been severely hampered by the inability to clone sequences which contain it (coordinates 0.398 to 0.413) in an undeleted form in bacteria. We report herein the successful cloning of sequences between 0.398 to 0.413 in an undeleted form, using a yeast cloning vector. Sequence analysis of a 425-base pair fragment spanning the deletion-prone region has revealed a perfect 144-base pair palindrome with striking homology to oriS. In a functional assay, the undeleted clone was amplified when functions from herpes simplex virus type 1 were supplied in trans, whereas clones with deletions of 55 base pairs or more were not amplified.  相似文献   

8.
It has been proposed by Sheldrick and Berthelot (1974) that the terminal sequences of herpes simplex virus type 1 (HSV-1) DNA are repeated in an internal inverted form and that the inverted redundant sequences delimit and separate two unique sequences, S and L. In this study the sequence arrangement in HSV-1 DNA has been investigated with restriction endonuclease cleavage, end-labeling studies, and molecular hybridization experiments. The terminal fragments in digests with restriction endonucleases Hind III, Hpa-1, EcoRI and Bum were identified and shown to be consistent with the Sheldrick and Berthelot model. Inverted fragments which contain unique sequences as well as redundant sequences, and which the model predicts, were identified by DNA-DNA hybridization studies. Further cleavage of Bum fragments with Hpa-1 also revealed inversions of the terminal sequences that contained unique sequences. The results obtained showed that the unique sequences S and L are relatively inverted in different DNA molecules in the population, resulting in the presence of four related genomes with rearranged sequences in apparently equal amounts. The redundant sequences bounding S do not share complete sequence homology with those bounding L, but hybridization studies are presented which show that the terminal 0.3% of the genome is repeated in every redundant sequence.  相似文献   

9.
10.
When herpes simplex virus DNA is digested with λ-exonuclease, annealed, and then mounted for observation in the electron microscope, two types of molecules are seen. One type is circular DNA which forms because the enzyme has revealed the terminal repetition. The other type is full length linear duplex DNA with a short single-stranded loop on one end. This latter type, which apparently represents a fold-back reaction, forms because there is a nearby inverted repeat of the terminal sequence of herpes simplex virus DNA.  相似文献   

11.
Defective herpes simplex virus type 1 genomes are composed of head-to-tail tandem repeats of small regions of the nondefective genome. Monomeric repeat units of class I defective herpes simplex virus genomes were cloned into bacterial plasmids. The repeat units functioned as replicons since both viral and convalently linked bacterial plasmid DNA replicated (with the help of DNA from nondefective virus) when transfected into rabbit skin cells. Recombinant plasmids were packaged into virions and were propagated from culture to culture by infection with progeny virus. Replication was evidently by a rolling circle mechanism since plasmid DNA was present in a high-molecular-weight form in transfected cells. Circular recombinant plasmid DNA replicated with a high degree of fidelity. In contrast, linear plasmid DNA underwent extensive deletions of both viral and bacterial sequences when transfected into rabbit skin cells. Derivative plasmids, a fraction of the size of the parental plasmid, were rescued by transforming Escherichia coli with DNA from the transfected rabbit skin cells. These plasmids functioned as shuttle vectors since they replicated faithfully in both eucaryotic and procaryotic cells.  相似文献   

12.
Electron microscope studies on self-annealed intact single strands and on partially denatured molecules show that herpes simplex virus 1 DNA consists of two unequal regions, each bounded by inverted redundant sequences. Thus the region L (70 percent of the contour length of the DNA) separates the left terminal region a1b from its inverted repeat b'a'1, each of which comprises 6 percent of the DNA. The region S (9.4 percent of DNA) separates the right terminal region cas (4.3 percent of the DNA) from its inverted repeat a'sc'. The regions of the two termini which are inverted and repeated itnernally differ in topology. Thus, cas is guanine plus cytosine rich, whereas only the terminal 1 percent of the a1b region, designated as subregion a1, is guanine plus cytosine rich.  相似文献   

13.
We previously reported that serial propagation of the Justin strain of herpes simplex virus 1 [HSV-1 (Justin)] results in the generation of defective DNA molecules consisting of tandem repetitions of sequences of limited complexity. In the present study, HSV-1 DNA was cleaved with the restriction endonucleases BglII and EcoRI. The fragments were electrophoretically separated on agarose gels, transferred to nitrocellulose strips, and then hybridized with 32P-labeled HSV-1 (Justin) defective DNA. The data allow us to conclude that DNA sequences contained in the repeat unit of defective DNA originate from the S segment of the wild-type viral DNA molecule.  相似文献   

14.
The herpes simplex virus genome consists of two components, L and S, that invert relative to each other to yield four isomeric arrangements, prototype (P), inversion of the S component (Is), inversion of the L component (Il), and inversion of both components (Isl). Previous studies have shown that the 500-base-pair a sequences flanking the two components contain a cis-acting site for inversion. In an attempt to insert a third copy of the alpha 4 gene, the major regulatory gene mapping in the repeats flanking the S component, a fragment containing the alpha 4 gene and an origin of DNA synthesis, was recombined into the thymidine kinase gene mapping in the unique sequences of the L component. The resulting recombinants showed massive rearrangements and deletions mapping in the S component and in the junction between the L and S components. One recombinant (R7023) yielded two isomeric DNA arrangements, a major component consisting of Is and a minor component consisting of Isl. In these arrangements, the genome lacked the gene specifying glycoprotein E and all contiguous genes located between it and the alpha 0 gene in the inverted repeats of the L component. Among the deleted sequences were those encoding an origin of viral DNA synthesis, the alpha 47 gene, and the a sequences located at the junction between the L and S-components. The recombinant grew well in rabbit skin, 143TK-, and Vero cell lines. We conclude that the four unique genes deleted in R7023 are not essential for the growth of herpes simplex virus, at least in the cell lines tested, and that the b sequence of the inverted repeats of the L component also contains cis-acting sites for the inversion of herpes simplex virus DNA sequences.  相似文献   

15.
Analysis of restriction endonuclease cleavage sites within the inverted, repeated sequences in the joint region of the DNA of herpes simplex virus type 1 strain KOS revealed the presence of two types of sequence heterogeneity. The first was an insertion of 280 base pairs or multiples of 280 base pairs which was found in approximately half of all DNA molecules from every plaque-purified stock of virus. These insertions seemed to be tandem duplications of sequences which were present at the joint and correspond closely to the inverted terminal redunancy. The second type of heterogeneity was due to variable insertions and deletions which were present in some, but not all, plaque-purified virus stocks. Comparison of restriction fragments from the joint region with fragments from the termini indicated that in the simplest observed molecules of herpes simplex virus type 1 DNA, only one copy of the inverted terminal redundancy was present at the joint. A map of restriction endonuclease cleavage sites in the joint region is presented.  相似文献   

16.
We describe the nucleotide sequence of a herpes simplex virus type 1 DNA fragment containing the intron of the immediate-early mRNA-5 (IE mRNA-5) gene. The location of the intron within this fragment was determined by a Berk & Sharp nuclease S1 protection analysis, and by cloning and sequencing cDNA containing sequences overlapping t he IE mRNA-5 splice point. We found that the 149 base pair (bp) intron contained four copies of an identical 23 bp GC rich tandem repeat followed by a further reiteration consisting of the first 15 bp only.  相似文献   

17.
The genome of equine herpesvirus 1 (EHV-1) defective interfering (DI) particle DNA originates from discrete regions within the standard (STD) EHV-1 genome: the left terminus (0.0 to 0.04 map units) and the inverted repeats (0.78 to 0.79 and 0.83 to 0.87 map units of the internal inverted repeat; 0.91 to 0.95 and 0.99 to 1.00 map units of the terminal inverted repeat). Since DI DNA must contain cis-acting DNA sequences, such as replication origins, which cannot be supplied in trans by the STD EHV-1 virus, regions of the EHV-1 genome shown to be in DI DNA were assayed for the presence of a viral origin of DNA replication. Specifically, STD EHV-1 DNA fragments encompassing the genomic regions present in DI particle DNA were inserted into the vector pAT153, and individual clones were tested by transfection assays for the ability to support the amplification and replication of plasmid DNA in EHV-1-infected cells. The Sma-1 subfragment of the internal inverted repeat sequence (0.83 to 0.85 map units) was shown to contain origin of replication activity. Subcloning and BAL 31 deletion analysis of the 2.35-kilobase-pair (kbp) Sma-1 fragment delineated a 200-bp fragment that contained origin activity. The origin activities of all EHV-1 clones which were positive by the transfection assay were confirmed by methylation analysis by using the methylation-sensitive restriction enzymes DpnI and MboI. DNA sequencing of the 200-bp fragment which contained an EHV-1 origin of replication indicated that this region has significant homology to previously characterized origins of replication of human herpesviruses. Furthermore, comparison of known origin sequences demonstrated that a 9-bp sequence, CGTTCGCAC, which is conserved among all origins of replication of human lytic herpesviruses and which is contained within the 18-bp region in herpes simplex virus type 1 origins shown by others to be protected by an origin-binding protein (P. Elias, M. E. O'Donnell, E. S. Mocarski, and I. R. Lehman, Proc. Natl. Acad. Sci. USA 83:6322-6326) is also conserved across species in the EHV-1 origin of replication.  相似文献   

18.
19.
DNA-DNA reassociation kinetics of herpes simplex virus type 1 Angelotti DNA and a class of defective viral DNA revealed that the viral standard genome has a total sequence complexity of about 93 X 10(6) daltons and that a portion of 11 X 10(6) daltons occurs twice on the viral genome. These results agree with structural features of herpes simplex virus type 1 DNA derived from electron microscopic studies and restriction enzyme analyses by several investigators. The defective viral DNA (molecular weight, about 97 X 10(6)) displays a sequence complexity of about 11 X 10(6) daltons, suggesting that the molecule is built up by repetitions of standard DNA sequences comprising about 15,000 base pairs. A 2 X 10(6)-dalton portion of these sequences maps in the redundant region and a 9 X 10(6)-dalton portion maps in the unique part of the standard herpes simplex virus type 1 Angelotti DNA, as could be shown by reassociation of viral standard DNA in the presence of defective DNA and vice versa. No cellular DNA sequences could be detected in defective DNA. A 12% molar fraction of the defective DNA consists of highly repetitive sequences of about 350 to 500 base pairs in length.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号