首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dihydrofolate reductases from different species contain several highly conserved arginines, some of which have been shown by x-ray crystallography to have their guanido groups near the p-aminobenzoyl glutamate moiety of enzyme-bound methotrexate. The orientation of one of these (Arg-52) appears to be completely reversed in comparing the crystal structures of Escherichia coli with Lactobacillus casei enzyme (Bolin, J. T., Filman, D. J., Matthews, D. A., Hamlin, R. C., and Kraut, J. (1982). J. Biol. Chem. 257, 13650-13662). We synthesized a novel antifolate containing a glyoxal group designed to react specifically with active-site guanido groups which are able to approach the p-aminobenzoyl carbonyl of methotrexate. The binding of this compound to the enzyme was competitive with dihydrofolate (DHF) in ordinary buffers. In borate buffer at pH 8.0 it inactivated dihydrofolate reductases from both E. coli and L. casei at similar maximum rates, while the chicken liver enzyme was more slowly inactivated. The inactivation was stoichiometric, paralleled the loss of the glyoxal chromophore, and showed saturation kinetics. Inhibitor binding and thus inactivation was enhanced by NADPH, while DHF protected the enzyme. This allowed calculation of the Kd for DHF which was found to be identical with its Km. The stoichiometrically inactivated enzyme displayed the 340-nm chromophore characteristic of 4-aminopteridines bound to dihydrofolate reductase confirming active-site labeling with normal orientation of the ligand. The ligand remained covalently bound to inactivated enzyme upon denaturation at low pH but dissociated at neutral pH. Computer graphic modeling of the crystal structures predicted reaction of Arg-31 but not Arg-52 in L. casei dihydrofolate reductase and of only Arg-52 in the E. coli enzyme. Purification of the CNBr fragments from the inactivated enzymes gave a single labeled peptide for each species. The particular peptide tagged in each case was unaffected by the presence of NADPH and was in excellent agreement with the crystallographic predictions.  相似文献   

2.
This communication describes the high-throughput screen of a diverse library of 50,000 small molecules against Escherichia coli dihydrofolate reductase to detect inhibitors. Sixty-two compounds were identified as having significant inhibitory activity against the enzyme. Secondary screening of these revealed twelve molecules that were competitive with dihydrofolate, nine of which have not been previously characterized as inhibitors of dihydrofolate reductase. These novel molecules ranged in potency (K(i)) from 26 nM to 11 microM and may represent fresh starting points for new small molecule therapeutics directed against dihydrofolate reductase.  相似文献   

3.
4.
R L Blakley  L Cocco 《Biochemistry》1985,24(18):4772-4777
Stopped-flow measurements of protein fluorescence quenching when methotrexate (MTX) binds to dihydrofolate reductase (isoenzyme II) of Streptococcus faecium (SFDHFR II) analyze as the sum of two differentials: a rapid binding phase and a second phase for which the observed rate constant is independent of methotrexate concentration. Analysis of variation of the ratio of the amplitude of the fast and slow phases with methotrexate concentration indicates that the second phase is an isomerization of the initial binary complex. At pH 7.3, the equilibrium constant for this isomerization is 21.9, and the forward and reverse rate constants are 0.57 and 0.026 s-1, respectively. Similar results were obtained for binding of 3-deazamethotrexate to SFDHFR II, but the forward rate constant is greater (2.9 s-1 at pH 7.3). The equilibrium constants for these isomerizations are pH independent, but the rate constants decrease as the pH is raised, probably due to deprotonation of one or more groups on the enzyme. Analysis of progress curves obtained by the development of inhibition when SFDHFR II is added last to reaction mixtures containing dihydrofolate, NADPH, and MTX gives an association constant for initial reactions of 4.3 X 10(7) M-1. Since a preliminary estimate of the association constant for the binding reaction is 7.6 X 10(5) M-1, this suggests an isomerization of the ternary complex(es) with an equilibrium constant of about 56. In addition, analysis of the progress of development of inhibition indicates a further very slow isomerization with equilibrium constant 419 and forward rate constant 2.6 min-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The program DOCK3.5 was used to search the Cambridge Structural Database for novel inhibitors of Leishmanial dihydrofolate reductase. A number of compounds were obtained and screened against the enzyme and against the intact parasite Leishmania donovani and the related organisms Trypanosoma brucei and Trypanosoma cruzi. The compounds screened showed weak activity in both the enzyme assays and the in vitro assays.  相似文献   

6.
The binding of substrates and inhibitors to dihydrofolate reductase was studied by steady-state kinetics and high-field 1H-n.m.r. spectroscopy. A series of 5-substituted 2,4-diaminopyrimidines were examined and were found to be 'tightly binding' inhibitors of the enzyme (Ki less than 10(-9) M). Studies on the binding of 4-substituted benzenesulphonamides and benzenesulphonic acids also established the existence of a 'sulphonamide-binding site' on the enzyme. Subsequent n.m.r. experiments showed that there are two binding sites for the sulphonamides on the enzyme, one of which overlaps the coenzyme (NADPH) adenine-ring-binding site. An examination of the pH-dependence of the binding of sulphonamides to the enzyme indicated the influence of an ionizable group on the enzyme that was not directly involved in the sulphonamide binding. The change in pKa value from 6.7 to 7.2 observed on sulphonamide binding suggests the involvement of a histidine residue, which could be histidine-28.  相似文献   

7.
8.
Previous studies have shown that the mobility of nitroxide side chains in a protein, inferred from the electron paramagnetic resonance (EPR) spectra, can be used to classify particular sites as helix surface sites, tertiary contact sites, buried sites, or loop sites. In addition, the sequence dependence of mobility can identify regular secondary structure. However, in the most widely used side chain, an apparent interaction of the nitroxide ring with the protein at some helix surface sites gives rise to EPR spectra degenerate with those at tertiary contact sites. In the present study, we use selected sites in T4 lysozyme to evaluate novel nitroxide side chains designed to resolve this degeneracy. The results indicate that the reagent 3-(methanesulfonylthiomethyl)-2,2, 5,5-tetramethylpyrrolidin-1-yloxy reacts with cysteine to give a nitroxide side chain that has a high contrast in mobility between helix surface and tertiary contact sites, effectively resolving the degeneracy. The reagent 3-(iodomercuriomethyl)-2,2,5,5-tetramethyl-2, 5-dihydro-1H-pyrrol-1-yloxy reacts with cysteine to provide a mercury-linked nitroxide that also shows reduced interaction with the protein at most helix surface sites. Thus, these new side chains may be the preferred choices for structure determination using site-directed spin labeling.  相似文献   

9.
The nature of the interactions between Plasmodium falciparum dihydrofolate reductase (pfDHFR) and antimalarial antifolates, i.e., pyrimethamine (Pyr), cycloguanil (Cyc) and WR99210 including some of their analogues, was investigated by molecular modeling in conjunction with the determination of the inhibition constants (Ki). A three-dimensional structural model of pfDHFR was constructed using multiple sequence alignment and homology modeling procedures, followed by extensive molecular dynamics calculations. Mutations at amino acid residues 16 and 108 known to be associated with antifolate resistance were introduced into the structure, and the interactions of the inhibitors with the enzymes were assessed by docking and molecular dynamics for both wild-type and mutant DHFRs. The Ki values of a number of analogues tested support the validity of the model. A 'steric constraint' hypothesis is proposed to explain the structural basis of the antifolate resistance.  相似文献   

10.
The thermodynamic parameters of the binding of antifolate drugs to bovine liver dihydrofolate reductase (EC 1.5.1.3., 5,6,7,8-tetrahydrofolate: NADP+ oxidoreductase) have been measured with a flow microcalorimetric method. These parameters are greatly influenced by the structure of the inhibitor and/or by the presence of NADPH and above all by temperature. For all the compounds studied, binding at 37 degrees C is driven by favourable enthalpy variations, whereas entropy variations are unfavourable. At 10 degrees C, reactions are both enthalpically and entropically driven. These effects can be explained by a partial thermal denaturation of dihydrofolate reductase at 37 degrees C, which is restructured by NADPH and/or the antifolate. The refolding induced by the antifolate trimetrexate may explain its high association constant in the binary system (without NADPH), and the weaker cooperative effect of NADPH in the ternary system, as compared to methotrexate. In contrast, the poor affinity of trimethoprim for mammalian dihydrofolate reductase in binary and ternary systems at 37 degrees C is the result of a weaker stabilizing effect of this compound as regards temperature increase. Heat capacity variation linked to the complex formation reaction showed that this conformational transition is more pronounced between 25 and 37 degrees C than between 10 and 25 degrees C. Thus, the ability of the inhibitors to give to dihydrofolate reductase a more stable thermal behaviour at 37 degrees C is determinant in their binding.  相似文献   

11.
We have determined the three-dimensional solution structure of the complex of Lactobacillus casei dihydrofolate reductase and the anticancer drug trimetrexate. Two thousand seventy distance, 345 dihedral angle, and 144 hydrogen bond restraints were obtained from analysis of multidimensional NMR spectra recorded for complexes containing 15N-labeled protein. Simulated annealing calculations produced a family of 22 structures fully consistent with the constraints. Several intermolecular protein-ligand NOEs were obtained by using a novel approach monitoring temperature effects of NOE signals resulting from dynamic processes in the bound ligand. At low temperature (5 degrees C) the trimethoxy ring of bound trimetrexate is flipping sufficiently slowly to give narrow signals in slow exchange, which give good NOE cross peaks. At higher temperature these broaden and their NOE cross peaks disappear thus allowing the signals in the lower-temperature spectrum to be identified as NOEs involving ligand protons. The binding site for trimetrexate is well defined and this was compared with the binding sites in related complexes formed with methotrexate and trimethoprim. No major conformational differences were detected between the different complexes. The 2,4-diaminopyrimidine-containing moieties in the three drugs bind essentially in the same binding pocket and the remaining parts of their molecules adapt their conformations such that they can make effective van der Waals interactions with essentially the same set of hydrophobic amino acids, the side-chain orientations and local conformations of which are not greatly changed in the different complexes (similar chi1 and chi2 values).  相似文献   

12.
13.
B Roth 《Federation proceedings》1986,45(12):2765-2772
Dihydrofolate reductase (DHFR) is an important therapeutic target for treatment of cancer and microbial disease. Its species specificity has resulted in the sequencing of a number of vertebrate and bacterial DHFRs, and the three-dimensional structure of isozymes from Escherichia coli, Lactobacillus casei, and chicken liver has been elucidated, in the presence of the coenzyme NADPH and of a number of inhibitors. This information has enabled scientists to try to design improved and more selective inhibitors, based on the known coordinates of the enzyme features. Simple use of computer graphics or wire models has resulted in the design of inhibitors with 50 times the activity of trimethoprim, an antibacterial DHFR inhibitor, by making use of an unused ionic binding site. However, in a number of instances this approach was completely unsuccessful because hydrophobic sites of interaction were preferred. More sophisticated techniques involve energy minimization of the small molecule-macromolecule interactions to optimize the geometry. In this paper I describe the use of a molecular mechanics program, AMBER, for predicting the geometry and relative energetics of binding. Very encouraging results have been obtained for a closely related series of compounds. Where differing entropic and solvent effects are involved, predictions may be poor. The use of super computers and molecular dynamics methods should increase this capability in the near future.  相似文献   

14.
Dihydroquinolines with aminoalkyl side chains have been synthesized and have been shown to be potent n-NOS inhibitors. A marked selectivity versus e-NOS of up to approximately 300-fold was observed, whereas i-NOS was moderately inhibited.  相似文献   

15.
This paper describes the synthesis of 4'-substituted and 3',4'-disubstituted 5-benzyl-2,4-diaminopyrimidines as selective inhibitors of leishmanial and trypanosomal dihydrofolate reductase. Compounds were then assayed against the recombinant parasite and human enzymes. Some of the compounds showed good activity. They were also tested against the intact parasites using in vitro assays. Good activity was found against Trypanosoma cruzi, moderate activity against Trypanosoma brucei and Leishmania donovani. Molecular modeling was undertaken to explain the results. The leishmanial enzyme was found to have a more extensive lipophilic binding region in the active site than the human enzyme. Compounds which bound within the pocket showed the highest selectivity.  相似文献   

16.
17.
18.
Human dihydrofolate reductase (DHFR) protein levels rapidly increase upon exposure to methotrexate, a potent inhibitor of this enzyme. A model to explain this increase proposes that DHFR inhibits its own translation by binding to its cognate mRNA and that methotrexate disrupts the DHFR protein-mRNA complex allowing its translation to resume. In the present study, Chinese hamster ovary cells lacking DHFR were transfected with wild type and mutants of human DHFR to identify amino acids that are essential for increases in DHFR in response to methotrexate. Glu-30, Leu-22, and Ser-118 were involved in the up-regulation of DHFR protein levels by methotrexate and certain other antifolates. Cells transfected with E30A, L22R, and S118A mutants that did not respond to methotrexate up-regulation had higher basal levels of DHFR, consistent with the model, i.e. lack of feedback regulation of these enzymes. Although cells containing the S118A mutant enzyme had higher levels of DHFR and had catalytic activity similar to that of wild type DHFR, they had the same sensitivity to the cytotoxicity of methotrexate, as were cells with wild type DHFR. This finding provides evidence that the adaptive up-regulation of DHFR by methotrexate contributes to the decreased sensitivity to this drug. Based on these observations, a new model is proposed whereby DHFR exists in two conformations, one bound to DHFR mRNA and the other bound to NADPH. The mutants that are not up-regulated by methotrexate are unable to bind their cognate mRNA.  相似文献   

19.
In this review we summarize our approach to the study of Intermediate Filament (IF) structure and assembly by electron paramagnetic resonance (EPR) spectroscopy of site-directed spin labels. Using vimentin, a homopolymeric type III IF protein, we demonstrate that this approach serves as a general paradigm for studying protein filament structure and assembly. These strategies will be useful in exploring the structure and assembly properties of other filamentous or aggregation-prone systems.  相似文献   

20.
Dihydrofolate reductase (DHFR) of the parasite Trypanosoma cruzi (T. cruzi) is a potential target for developing drugs to treat Chagas’ disease. We have undertaken a detailed structure–activity study of this enzyme. We report here synthesis and characterization of six potent inhibitors of the parasitic enzyme. Inhibitory activity of each compound was determined against T. cruzi and human DHFR. One of these compounds, ethyl 4-(5-[(2,4-diamino-6-quinazolinyl)methyl]amino-2-methoxyphenoxy)butanoate (6b) was co-crystallized with the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of T. cruzi and the crystal structure of the ternary enzyme:cofactor:inhibitor complex was determined. Molecular docking was used to analyze the potential interactions of all inhibitors with T. cruzi DHFR and human DHFR. Inhibitory activities of these compounds are discussed in the light of enzyme–ligand interactions. Binding affinities of each inhibitor for the respective enzymes were calculated based on the experimental or docked binding mode. An estimated 60–70% of the total binding energy is contributed by the 2,4-diaminoquinazoline scaffold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号