首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four strains of serotype c Streptococcus mutans differing in glucosyltransferase (GTase) and fructosyltransferase (FTase) activities were examined. These strains had been made resistant to streptomycin. FTase activity of an S. mutans clinical variant, MT6801R, which forms large mucoid colonies on sucrose-containing agar, was considerably higher than that of a typical serotype c strain, MT8148R, which forms small, rough colonies on the same agar. Two mutants, NG14 and NG7183, were induced from strain MT6801R by N-methyl-N'-nitro-N-nitrosoguanidine, and were found to be streptomycin-resistant. GTase and FTase activities of mutant NG14 were similar to those of the typical serotype c strain, while in mutant NG7183 the two enzyme activities were very low. Growing cells of these strains (except NG7183) adhered firmly to a glass surface in sucrose broth. Resting cells of all strains attached in small numbers to saliva-coated hydroxyapatite in the absence of sucrose. On the other hand, the presence of sucrose markedly enhanced the attachment of cells of strains MT8148R, MT6801R and NG14, but not NG7183. Cell-surface hydrophobicity and acid production of all strains were similar. Both strain MT8148R and NG14 colonized tooth surfaces and produced significant dental caries in specific-pathogen-free rats. Strain MT6801R had lower colonization ability and cariogenicity when compared with strains MT8148R and NG14. Furthermore, mutant NG7183 was able to colonize the tooth surfaces in small numbers, but failed to cause dental caries. These results indicate that sucrose-dependent cell adherence mediated by de novo glucan synthesis is necessary for the accumulation of serotype c S. mutans cells on the tooth surface and the induction of dental caries.  相似文献   

2.
Mutacin MT6223, a cell-free bacteriocin produced by Streptococcus sobrinus MT6223, was purified by ammonium sulphate precipitation, chromatofocusing with PBE 94 and column chromatography on SP Sephadex C-25. The specific activity of the purified mutacin was increased 1950-fold with a recovery of 9.7%. The molecular mass of the purified mutacin preparation was estimated to be 6.5 kDa. The mutacin activity was stable from pH 2-7, and was resistant to treatment at 100 degrees C for 20 min. It was inactivated by papain or ficin digestion, and was partially inhibited by alpha-chymotrypsin. The mutacin was found to be active against strains of serotypes c, e and f of Streptococcus mutans and the addition of purified mutacin MT6223 to growing cells of S. mutans MT8148 resulted in a rapid inhibition of incorporation of [3H]thymidine, [3H]uracil or L-[3H]glutamic acid into DNA, RNA or protein, respectively. Specific pathogen-free Fischer rats fed diet 2000 and infected with S. mutans MT8148R showed significantly fewer caries and lower plaque scores when mutacin was administered through drinking water. The present study demonstrates that mutacin MT6223 inhibited the growth of mutans streptococci. Thus, mutacin MT6223 may be a candidate for use in dental caries prevention.  相似文献   

3.
Thirty-four female rats (18 days old) were infected with Streptococcus mutans MT8148R (serotype c) or 6715 (g). Diets containing different proportions of sucrose were used to prepare the dams which harbored various levels of S. mutans in their oral cavity. Around 66 days of age, the female rats were bred and 34 dams subsequently bore 322 offspring. The dams were killed upon weaning (20 days of age) of their respective litters. There were positive correlations between the recovery of inoculated S. mutans and the caries incidence in the dams. Transmission of S. mutans from a dam to her offspring was studied in 10-, 15-, 20-, 27-, 34-, 41-, 48-, and 55-day-old rats by evaluating the recover of S. mutans from the offspring. Positive correlation between the magnitudes of recovered S. mutans MT8148R from dams and their offspring was found in all ages of young rats examined. Furthermore, caries incidence in young rats was found to be positively correlated with the recovery of both strains of S. mutans as well as with incidence of caries in their respective dams.  相似文献   

4.
The caries inhibitory effects of GOS-sugar in vitro and in rat experiments   总被引:6,自引:0,他引:6  
The caries inhibitory activity of GOS-sugar (panose- and maltose-rich sugar mixture) was examined and compared with that of sucrose, maltose, or glucose in in vitro and in vivo experiments. Streptococcus mutans MT8148R (serotype c) and Streptococcus sobrinus 6715 (g) did ferment GOS-sugar and produce acid in a similar way as with maltose and glucose. However, GOS-sugar could not be a substrate for the glucosyltransferases (GTases) of these mutans streptococci to synthesize the water-insoluble glucan. Also, it significantly inhibited not only the synthesis of water-insoluble glucan from sucrose by the crude GTases but also the sucrose-dependent adherence of these cells to a glass surface. In particular, adherence of growing cells of 6715 was markedly inhibited by the presence of GOS-sugar. GOS-sugar was found to induce significant but minimal dental caries in SPF rats infected with either MT8148R or 6715. Furthermore, the replacement of half of the dietary sucrose content with GOS-sugar resulted in a significant reduction of caries development in rats infected with strain 6715.  相似文献   

5.
Streptococcus mutans, a principal causative agent of dental caries, is considered to be the most cariogenic among all oral streptococci. Of the four S. mutans serotypes (c, e, f, and k), serotype c strains predominate in the oral cavity. Here, we present the complete genome sequence of S. mutans GS-5, a serotype c strain originally isolated from human carious lesions, which is extensively used as a laboratory strain worldwide.  相似文献   

6.
Rampant dental caries was induced in hyposalivated rats fed a high sucrose diet without infection of mutans streptococci, in which increased numbers of lactobacilli and S. aureus were demonstrated in the oral flora. Administration of either penicillin or piperacillin, effective against all isolates of lactobacilli, markedly inhibited the caries induction in these rats, while severe dental caries was induced in hyposalivated rats given vancomycin that is inhibitory against S. aureus. These results suggested that certain lactobacilli might induce dental caries in hyposalivated rats fed a sucrose diet. Three strains of Lactobacillus species isolated from the hyposalivated rats were made resistant to erythromycin. The caries-inducing activity of these erythromycin-resistant lactobacilli was studied in hyposalivated rats giving erythromycin in the drinking water at a concentration of 500 μg/ml. After a 61-day experimental period, severe dental caries was induced in hyposalivated rats infected with L. fermentum TY1R. On the other hand, low caries incidence was found in hyposalivated rats infected with either L. acidophilus TY7R or L. plantarum TY3R. These results indicate that L. fermentum may be one of causative agents of dental caries in hyposalivated rats fed a sucrose diet.  相似文献   

7.
Streptococcus mutans has been recognized as an important etiological agent in human dental caries. Some strains of S. mutans also produce bacteriocins. In this study, we sought to demonstrate that bacteriocin production by S. mutans strains GS5 and BM71 was mediated by quorum sensing, which is dependent on a competence-stimulating peptide (CSP) signaling system encoded by the com genes. We also demonstrated that interactions with some other oral streptococci interfered with S. mutans bacteriocin production both in broth and in biofilms. The inhibition of S. mutans bacteriocin production by oral bacteria was stronger in biofilms than in broth. Using transposon Tn916 mutagenesis, we identified a gene (sgc; named for Streptococcus gordonii challisin) responsible for the inhibition of S. mutans bacteriocin production by S. gordonii Challis. Interruption of the sgc gene in S. gordonii Challis resulted in attenuated inhibition of S. mutans bacteriocin production. The supernatant fluids from the sgc mutant did not inactivate the exogenous S. mutans CSP as did those from the parent strain Challis. S. gordonii Challis did not inactivate bacteriocin produced by S. mutans GS5. Because S. mutans uses quorum sensing to regulate virulence, strategies designed to interfere with these signaling systems may have broad applicability for biological control of this caries-causing organism.  相似文献   

8.
The Streptococcus mutans populations in the dental plaque of two groups of monkeys were examined. In the first group of 17 monkeys the proportion of Strep. mutans in the dental plaque increased when the monkeys were fed a cariogenic high sucrose (CHS) diet. The same predominant Strep. mutans serotypes were present in the plaque of these monkeys 12 and 25 months after the change to the CHS diet. A second group of 22 monkeys was caged in two communes. As a result of a change to the CHS diet one commune harboured a plaque flora in which Strep. mutans serotype e strains predominated and the second commune harboured a plaque flora in which Strep. mutans serotypes c and h predominated. On the basis of the results from these 39 monkeys three types of Strep. mutans populations were identified: (i) serotype e dominated; (ii) serotype c dominated; and (iii) serotypes c and h in varying proportions. It was not possible to predict which Strep. mutans population would become established in a given group of monkeys. Attempts to demonstrate transmission of Strep. mutans serotypes between pairs and larger groups of monkeys caged together were not successful over periods of up to 36 weeks. The implications of these observations on the use of monkeys as a model of human dental caries is discussed.  相似文献   

9.
BACKGROUND: Monoclonal (KTmAb) and recombinant (KTscFv) anti-idiotypic antibodies, representing the internal image of a yeast killer toxin, proved to be microbicidal in vitro against important eukaryotic and prokaryotic pathogens such as Candida albicans, Pneumocystis carinii, Mycobacterium tuberculosis, Staphylococcus aureus, S. haemolyticus, Enterococcus faecalis, E. faecium, and Streptococcus pneumoniae, including multidrug-resistant strains. KTmAb and KTscFv exerted a strong therapeutic effect in well-established animal models of candidiasis and pneumocystosis. Streptococcus mutans is the most important etiologic agent of dental caries that might result from the metabolic end products of dental plaque. Effective strategies to reduce the disease potential of dental plaque have considered the possibility of using antibiotics or antibodies against oral streptococci in general and S. mutans in particular. In this study, the activity of KTmAb and KTscFv against S. mutans and the inhibition and reduction by KTmAb of dental colonization by S. mutans and other oral streptococci in an ex vivo model of human teeth were investigated. MATERIALS AND METHODS: KTscFv and KTmAb were used in a conventional colony forming unit (CFU) assay against a serotype C strain of S. mutans, and other oral streptococci (S. intermedius, S. mitis, S. oralis, S. salivarius). An ex vivo model of human teeth submerged in saliva was used to establish KTmAb potential of inhibiting or reducing the adhesion to dental surfaces by S. mutans and other oral streptococci. RESULTS: KTmAb and KTscFv kill in vitro S. mutans and other oral streptococci. KTmAb inhibit colonization of dental surfaces by S. mutans and oral streptococci in the ex vivo model. CONCLUSIONS: Killer antibodies with antibiotic activity or their engineered derivatives may have a potential in the prevention of dental caries in vivo.  相似文献   

10.
Streptococcus mutans is the major pathogen of dental caries and occasionally causes infective endocarditis. Here we report the complete genome sequence of serotype k S. mutans strain LJ23, which was recently isolated from the oral cavity of a Japanese patient.  相似文献   

11.
The aim of this study was to investigate materials which reduce saliva-promoted adhesion of Streptococcus mutans onto enamel surfaces, and their potential in preventing dental biofilm development. The effects of hydroxyapatite (HA) surface pretreatment with hydrophilic polysaccharides on saliva-promoted S. mutans adhesion in vitro and de novo dental biofilm deposition in vivo were examined. Saliva-promoted adhesion of S. mutans MT8148 was significantly reduced by pretreatment of the HA surface with tragacanth gum (TG) and yeast-derived phosphoglycans. Extracellular phosphomannan (PM) from Pichia capsulata NRRL Y-1842 and TG reduced biofilm development on lower incisors in plaque-susceptible rats when administered via drinking water at concentrations of 0.5% and 0.01%, respectively. The inhibitory effect of TG on de novo dental biofilm formation was also demonstrated when administered via mouthwash in humans. It is concluded that TG and yeast-derived PM have the potential for use as anti-adherent agents and are effective in reducing de novo dental biofilm formation.  相似文献   

12.
Adaptive acid tolerance response of Streptococcus sobrinus   总被引:1,自引:0,他引:1  
Streptococcus mutans and Streptococcus sobrinus are the bacteria most commonly associated with human dental caries. A major virulence attribute of these and other cariogenic bacteria is acid tolerance. The acid tolerance mechanisms of S. mutans have begun to be investigated in detail, including the adaptive acid tolerance response (ATR), but this is not the case for S. sobrinus. An analysis of the ATR of two S. sobrinus strains was conducted with cells grown to steady state in continuous chemostat cultures. Compared with cells grown at neutral pH, S. sobrinus cells grown at pH 5.0 showed an increased resistance to acid killing and were able to drive down the pH through glycolysis to lower values. Unlike what is found for S. mutans, the enhanced acid tolerance and glycolytic capacities of acid-adapted S. sobrinus were not due to increased F-ATPase activities. Interestingly though, S. sobrinus cells grown at pH 5.0 had twofold more glucose phosphoenolpyruvate:sugar phosphotransferase system (PTS) activity than cells grown at pH 7.0. In contrast, glucose PTS activity was actually higher in S. mutans grown at pH 7.0 than in cells grown at pH 5.0. Silver staining of two-dimensional gels of whole-cell lysates of S. sobrinus 6715 revealed that at least 9 proteins were up-regulated and 22 proteins were down-regulated in pH 5.0-grown cells compared with cells grown at pH 7.0. Our results demonstrate that S. sobrinus is capable of mounting an ATR but that there are critical differences between the mechanisms of acid adaptation used by S. sobrinus and S. mutans.  相似文献   

13.
Dextranase AD17 obtained from a culture liquor of a strain of Spicaria violacea was assessed for its ability to inhibit the development of dental caries in conventional Sprague-Dawley rats which had been infected with one of the Streptococcus mutans strains, MT6R (serotype c), OMZ 176R (d), or MT-703R (e). These experiments showed that caries was significantly inhibited when rats were given cariogenic diet # 2000 and drinking water containing AD17 at a concentration of 10 units/g, as compared to control rats not given dextranase. The inhibitory effects of AD17 were more prominent in smooth surface caries than in total caries. AD17 had a tendency to retard both the establishment of inoculated S. mutans and plaque deposition on tooth surfaces. However, S. mutans could be implanted in the rat oral cavity after repeated inoculation of the bacteria, even in the presence of AD17. These results suggest that the anticaries activity of AD17 is due to not only inhibition of adherence of S. mutans cells on tooth surfaces but also to physicochemical changes of dental plaque formed under the enzymatic action of AD17. Preliminary histopathological examination showed that AD17 had no significant toxicity in rats.  相似文献   

14.
Abstract We previously established murine hybridomas producing a monoclonal antibody monospecific against three glucosyl-transferases (I, SI and S) of Streptococcus mutans which contribute to dental caries formation. Here, we developed a new immunochemical technique (cross-dot system) with which individual levels of glucosyltransferases expressed by S. mutans can be evaluated. We also examined glucosyltransferase production and in vitro artificial plaque formation by a reference strain and several clinical isolates of S. mutans . The findings indicate that the levels of glucosyltransferases produced greatly vary with the cells and the culture medium, and that the cells producing high levels of both glucosyltransferase-SI and glucosyltransferase-I enzymes may possess high in vitro artificial plaque forming ability. We suggest that the cross-dot system will be useful for estimating the cariogenic potential of S. mutans isolates.  相似文献   

15.
Jiang P  Lan J  Hu Y  Li D  Jiang G 《Cytokine》2012,59(1):94-99
The chemokine CCL28 participates in direct antimicrobial activities as well as homing of certain types of lymphocytes. The present study was conducted to harness these properties of the chemokine for the prevention of dental caries. The gene encoding CCL28 was transferred to salivary glands to enhance the production of this chemokine locally. First, a recombinant eukaryotic plasmid expressing CCL28 was constructed. Then, the CCL28 protein from 293 cells transfected with the recombinant plasmid was verified to inhibit the caries pathogen Streptococcus mutans (S. mutans) in a biofilm. Finally, the recombinant plasmid was retrogradely administered to the parotid glands of rats through the secretory ducts. The successful transfer of the gene encoding CCL28 to rat parotid acinar cells was confirmed by immunofluorescence and real-time PCR. Increases in both CCL28 and secretory IgA (SIgA) in the rat saliva were tested by ELISA. It was revealed that the CCL28 protein obtained from the study was able to strongly inhibit S. mutans living in biofilm in vitro. The delivery of the recombinant plasmid to the rat parotid glands was able to induce high levels of CCL28 and SIgA in saliva, and the increased levels of CCL28 and SIgA in saliva were maintained for 2 weeks. Notably, the dental plaque from the rats treated with the delivery of the recombinant plasmid in the study harbored significantly less S. mutans. These data indicated that the present strategy may hold hope for the effective prevention of dental caries.  相似文献   

16.
Transport and metabolism of citrate by Streptococcus mutans   总被引:3,自引:0,他引:3       下载免费PDF全文
Streptococcus mutans, a normal inhabitant of dental plaque, is considered a primary etiological agent of dental caries. Two virulence determinants of S. mutans are its acidogenicity and aciduricity (the ability to produce acid and the ability to survive and grow at low pH, respectively). Citric acid is ubiquitous in nature; it is a component of fruit juices, bones, and teeth. In lactic acid bacteria citrate transport has been linked to increased survival in acidic conditions. We identified putative citrate transport and metabolism genes in S. mutans, which led us to investigate citrate transport and metabolism. Our goals in this study were to determine the mechanisms of citrate transport and metabolism in S. mutans and to examine whether citrate modulates S. mutans aciduricity. Radiolabeled citrate was used during citrate transport to identify citrate metal ion cofactors, and thin-layer chromatography was used to identify metabolic end products of citrate metabolism. S. mutans was grown in medium MM4 with different citrate concentrations and pH values, and the effects on the growth rate and cell survival were monitored. Intracellular citrate inhibited the growth of the bacteria, especially at low pH. The most effective cofactor for citrate uptake by S. mutans was Fe(3+). The metabolic end product of citrate metabolism was aspartate, and a citrate transporter mutant was more citrate tolerant than the parent.  相似文献   

17.
Several foods have been shown to contain natural components (especially polyphenols) which display anti-adhesive properties against Streptococcus mutans, the aetiological agent responsible for dental crown caries, as well as inhibition of glucosyltransferases, which are the S. mutans enzymes involved in the synthesis of an adherent, water-insoluble glucan from sucrose. Other studies have demonstrated an in vitro action on oral plaque biofilm formation and desorption. This study evaluated whether the activity displayed in vitro by food compounds could affect the microbiological composition of saliva and dental plaque of subjects with a diet rich in these foods, comparing the results with those obtained from subjects with a different diet. The foods considered were: coffee, barley coffee, tea and wine. A total of 93 subjects were recruited into the study. Six samples of both plaque and saliva were collected from each subject at roughly one-monthly intervals. Total bacteria, total streptococci, S. mutans and lactobacilli counts were determined by culture in both saliva and dental plaque. The highest bacterial titres were recorded for the control population, while each drinking habit subgroup showed counts roughly one log lower than the controls. These differences in bacterial counts proved statistically significant (P<0.05). As far as dental plaque was concerned, while total counts did not significantly vary per mg of plaque in the subjects belonging to the different drinking habit subgroups, a significant decrease (P<0.05) was observed in those subjects drinking coffee, tea, barley coffee and wine when mutans streptococci and lactobacilli were evaluated. In several cases a more than one log decrease was observed. Plaque indices were also determined, and a significant (P<0.05) reduction in values was recorded in the subjects belonging the specific drinking habit subgroups compared to the control group. This study indicates that there is a correlation between consumption of specific foods and oral health in terms of reduced plaque deposition and lower counts of odontopathogens.  相似文献   

18.
Streptococcus mutans normally colonizes dental biofilms and is regularly exposed to continual cycles of acidic pH during ingestion of fermentable dietary carbohydrates. The ability of S. mutans to survive at low pH is an important virulence factor in the pathogenesis of dental caries. Despite a few studies of the acid adaptation mechanism of this organism, little work has focused on the acid tolerance of S. mutans growing in high-cell-density biofilms. It is unknown whether biofilm growth mode or high cell density affects acid adaptation by S. mutans. This study was initiated to examine the acid tolerance response (ATR) of S. mutans biofilm cells and to determine the effect of cell density on the induction of acid adaptation. S. mutans BM71 cells were first grown in broth cultures to examine acid adaptation associated with growth phase, cell density, carbon starvation, and induction by culture filtrates. The cells were also grown in a chemostat-based biofilm fermentor for biofilm formation. Adaptation of biofilm cells to low pH was established in the chemostat by the acid generated from excess glucose metabolism, followed by a pH 3.5 acid shock for 3 h. Both biofilm and planktonic cells were removed to assay percentages of survival. The results showed that S. mutans BM71 exhibited a log-phase ATR induced by low pH and a stationary-phase acid resistance induced by carbon starvation. Cell density was found to modulate acid adaptation in S. mutans log-phase cells, since pre-adapted cells at a higher cell density or from a dense biofilm displayed significantly higher resistance to the killing pH than the cells at a lower cell density. The log-phase ATR could also be induced by a neutralized culture filtrate collected from a low-pH culture, suggesting that the culture filtrate contained an extracellular induction component(s) involved in acid adaptation in S. mutans. Heat or proteinase treatment abolished the induction by the culture filtrate. The results also showed that mutants defective in the comC, -D, or -E genes, which encode a quorum sensing system essential for cell density-dependent induction of genetic competence, had a diminished log-phase ATR. Addition of synthetic competence stimulating peptide (CSP) to the comC mutant restored the ATR. This study demonstrated that cell density and biofilm growth mode modulated acid adaptation in S. mutans, suggesting that optimal development of acid adaptation in this organism involves both low pH induction and cell-cell communication.  相似文献   

19.
Mutans streptococci have been implicated as cariogenic bacteria in dental caries because they can produce high levels of dental caries-causing lactic acid and extracellular polysaccharide. The aim of this study was to isolate and characterize the mutans streptococci from the dental plaque obtained from Koreans. The dental plaque samples were collected from the anterior and molar teeth of both jaws in 155 subjects (aged 2 to 33.2 years, average age 13.7+/-4.7 years). The samples were diluted by 100-fold in 1x PBS and plated on mitis-salivarius bacitracin (MSB) agar plates. The mutans streptococci grown on MSB plates were screened by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) targeting dextranase gene (dex). The mutans streptococci were identified at the species level using a 16S rDNA sequencing comparison method. The biochemical tests were carried out to biotype the mutans streptococci. Ninety-five strains of the mutans streptococci out of 358 colonies, which were derived from 141 subjects, were isolated. Of them, 77 strains and 18 strains were Streptococcus mutans and Streptococcus sobrinus, respectively. The biotyping data showed that 62, 1, 20, 10, and 2 strains were biotypes I, II, IV, V and variant, respectively. Of the two strains of variant biotype, one strains was similar to biotype IV except that it was positive to the arginine hydrolysis test. We considered this one strain a new biotype, and classified it as biotype VII. In conclusion, S. mutans and its biotype I was most frequently isolated in Korean dental plaque. The mutans streptococci strains isolated in this study might be useful for the study of the pathogenesis and the prevention of dental caries.  相似文献   

20.
Streptococcus mutans is the major microbial pathogen associated with dental caries in children. The objectives of this study were to design and evaluate species-specific primers for the identification of S. mutans. Validation of the best primer set, Sm479F/R, was performed using seven S. mutans reference strains, 48 ATCC non-S. mutans strains, 92 S. mutans clinical isolates, DNA samples of S. mutans-Streptococcus sobrinus or S. mutans-Streptococcus sanguinis, and mixed bacterial DNA of saliva samples from 33 18-month-old children. All of the S. mutans samples tested positive, and no PCR products were amplified from members of the other streptococci or nonstreptococci strains examined. The lowest detection level for PCR was 10(-2) ng of S. mutans DNA (c. 4.6 x 10(3) copies) in the test samples. The results of this study suggest that the Sm479F/R primer pair is highly specific and sensitive for identification of S. mutans in either purified or mixed DNA samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号