首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Crystals of the high-potential iron-sulfur protein from Ectothiorhodospira halophila strain BN 9626 have been grown from 3.4 to 3.5 M ammonium sulfate solutions at pH 7.5. The crystals belong to the space group P21 with unit cell dimensions of a = 60.00 A, b = 31.94 A, c = 40.27 A, and beta = 100.5 degrees. There are 2 molecules/asymmetric unit. The crystals diffract to at least 1.8 A, are stable in the x-ray beam, and are suitable for a high resolution x-ray crystallographic analysis.  相似文献   

2.
Three soluble cytochromes were found in two strains of the halophilic non-sulfur purple bacterium Rhodospirillum salexigens. These are cytochromes C2, C and c-551. Cytochrome C2 was recognized by the presence of positive charge at the site of electron transfer (measured by laser flash photolysis), although the protein has an overall negative charge (pI = 4.7). Cytochrome C2 has a high redox potential (300 mV) and is monomeric (13 kDa). Cytochrome c was recognized from its characteristic absorption spectrum. It has a redox potential of 95 mV, an isoelectric point of 4.3, and is isolated as a dimer (33 kDa) of identical subunits (14 kDa), a property which is typical of this family of proteins. R. salexigens cytochrome c-551 has an absorption spectrum similar to the low redox potential Rb. sphaeroides cytochrome c-551.5. It also has a low redox potential (-170 mV), is very acidic (pI = 4.5), and is monomeric (9 kDa), apparently containing 1 heme per protein. The existence of abundant membrane-bound cytochromes c-558 and c-551 which are approximately half reduced by ascorbate and completely reduced by dithionite suggests the presence of a tetraheme reaction center cytochrome in R. salexigens, although reaction centers purified in a previous study (Wacker et al., Biochim. Biophys. Acta (1988) 933, 299-305) did not contain a cytochrome. The most interesting observation is that R. salexigens contains a photoactive yellow protein (PYP), previously observed only in the extremely halophilic purple sulfur bacterium Ectothiorhodospira halophila. The R. salexigens PYP appears to be slightly larger than that of Ec. halophila (16 kDa vs. 14 kDa). Otherwise, these two yellow proteins have similar absorption spectra, chromatographic properties and kinetics of photobleaching and recovery.  相似文献   

3.
The amino acid sequences of high-redox-potential ferredoxin (HiPIP) isozymes from Ectothiorhodospira halophila have been determined. These are: isozyme I, EPRAEDGHAHDYVNEAADPSHGRYQEGQLCENCAFWGEAVQDGWGRCTHPDFDEVLVKAEGWCSVYAPA S, and isozyme II, GLPDGVEDLPKAEDDHAHDYVNDAADTDHARFQEGQLCENCQFWVDYVNGWGYCQHPDFTDVLVRGEGW CSVYAPA. Isozyme II is the major form of HiPIP produced by the bacterium (65-80%) and is the most acidic of the known HiPIPs. The two isozymes are 72% identical to one another and require only a single residue deletion for alignment. Comparison of these HiPIPs with seven previously determined sequences revealed only 27% average identity. Both E. halophila HiPIP isozymes are likely to be functional since their sequences are equally distant from those of other species. The E. halophila HiPIP sequences show that H-bonding patterns recognized in Chromatium vinosum HiPIP are likely to be conserved and therefore cannot explain the unusually low redox potentials which have been reported.  相似文献   

4.
A water-soluble yellow protein from E. halophila was previously shown to be photoactive (Meyer, T. E., E. Yakali, M. A. Cusanovich, and G. Tollin. 1987. Biochemistry. 26:418-423). Pulsed laser excitation in the protein visible absorption band (maximum at 445 nm) causes a rapid bleach of color (k = 7.5 x 10(3) s-1) followed by a slower dark recovery (k = 2.6 s-1). This is analogous to the photocycle of sensory rhodopsin II from Halobacterium (which also has k = 2.6 s-1 for recovery). We have now determined the quantum yield of the photobleaching process to be 0.64, which is comparable with that of bacteriorhodopsin (0.25), and is thus large enough to be biologically significant. Although the photoreactions of yellow protein were previously shown to be relatively insensitive to pH, ionic strength and the osmoregulator betaine, the present experiments demonstrate that temperature, glycerol, sucrose, and various alcohol-water mixtures strongly influence the kinetics of photobleaching and recovery. The effect of temperature follows normal Arrhenius behavior for the bleach reaction (Ea = 15.5 kcal/mol). The rate constant for the recovery reaction increases with temperature between 5 degrees C and 35 degrees C, but decreases above 35 degrees C indicating alternate conformations with differing kinetics. There is an order of magnitude decrease in the rate constant for photobleaching in both glycerol and sucrose solutions that can be correlated with the changes in viscosity. We conclude from this that the protein undergoes a conformational change as a consequence of the photoinduced bleach. Recovery kinetics are affected by glycerol and sucrose to a much smaller extent and in a more complicated manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The complete amino acid sequence of the 125-residue photoactive yellow protein (PYP) from Ectothiorhodospira halophila has been determined to be MEHVAFGSEDIENTLAKMDDGQLDGLAFGAIQLDGDGNILQYNAAEGDITGRDPKEVIGKNFFKDVAP+ ++ CTDSPEFYGKFKEGVASGNLNTMFEYTFDYQMTPTKVKVHMKKALSGDSYWVFVKRV. This is the first sequence to be reported for this class of proteins. There is no obvious sequence homology to any other protein, although the crystal structure, known at 2.4 A resolution (McRee, D.E., et al., 1989, Proc. Natl. Acad. Sci. USA 86, 6533-6537), indicates a relationship to the similarly sized fatty acid binding protein (FABP), a representative of a family of eukaryotic proteins that bind hydrophobic molecules. The amino acid sequence exhibits no greater similarity between PYP and FABP than for proteins chosen at random (8%). The photoactive yellow protein contains an unidentified chromophore that is bleached by light but recovers within a second. Here we demonstrate that the chromophore is bound covalently to Cys 69 instead of Lys 111 as deduced from the crystal structure analysis. The partially exposed side chains of Tyr 76, 94, and 118, plus Trp 119 appear to be arranged in a cluster and probably become more exposed due to a conformational change of the protein resulting from light-induced chromophore bleaching. The charged residues are not uniformly distributed on the protein surface but are arranged in positive and negative clusters on opposite sides of the protein. The exact chemical nature of the chromophore remains undetermined, but we here propose a possible structure based on precise mass analysis of a chromophore-binding peptide by electrospray ionization mass spectrometry and on the fact that the chromophore can be cleaved off the apoprotein upon reduction with a thiol reagent. The molecular mass of the chromophore, including an SH group, is 147.6 Da (+/- 0.5 Da); the cysteine residue to which it is bound is at sequence position 69.  相似文献   

6.
A cytochrome c-551 and a pair of 'high redox-potential' ferredoxins (iso-high-potential iron-sulfur proteins) were found to be the major soluble electron-transport proteins in Ectothiorhodospira halophila. Smaller amounts of 'bacterial' ferredoxin and cytochrome c' were also observed. With the exception of cytochrome c-551, these proteins are commonly encountered in the purple sulfur bacteria, family Chromatiaceae and less frequently in the purple bacteria, family Rhodospirillaceae. In addition to the cytochromes and ferredoxins, E. halophila synthesizes substantial amounts of a small yellow-colored protein, which has a chromophore spectrally similar to flavins having oxygen, nitrogen or sulfur substituents in place of the 8-methyl group such as roseoflavin and the methanogen cofactor F-420. A purple-colored protein was only partially purified, but it is spectrally similar to iron proteins having a tyrosine ligand, such as transferrin, catechuate dioxygenase, and especially the purple acid phosphatases. Neither the yellow protein nor the purple one has previously been observed in phototrophic bacteria, but may in some way be required for survival in extremely halophilic habitats. The only feature common to halophiles including E. halophila is the very acidic nature of their proteins.  相似文献   

7.
Light-dependent pH changes were measured in unbuffered solutions of wild type photoactive yellow protein (PYP) and its H108F and E46Q variants, using two independent techniques: transient absorption changes of added pH indicator dyes and direct readings with a combination pH electrode. Depending on the absolute pH of the sample, a reversible protonation as well as a deprotonation can be observed upon formation of the transient, blue-shifted photocycle intermediate (pB) of this photoreceptor protein. The latter is observed at very alkaline pH, the former at acidic pH values. At neutral pH, however, the formation of the pB state is not paralleled by significant protonation/deprotonation of PYP, as expected for concomitant protonation of the chromophore and deprotonation of Glu-46 during pB formation. We interpret these results as further evidence that a proton is transferred from Glu-46 to the coumaric acid chromophore of PYP, during pB formation. One cannot exclude the possibility, however, that this transfer proceeds through the bulk aqueous phase. Simultaneously, an amino acid side chain(s) (e.g. His-108) changes from a buried to an exposed position. These results, therefore, further support the idea that PYP significantly unfolds in the pB state and resolve the controversy regarding proton transfer during the PYP photocycle.  相似文献   

8.
We have studied the kinetics of the blue light-induced branching reaction in the photocycle of photoactive yellow protein (PYP) from Ectothiorhodospira halophila, by nanosecond time-resolved UV/Vis spectroscopy. As compared to the parallel dark recovery reaction of the presumed blue-shifted signaling state pB, the light-induced branching reaction showed a 1000-fold higher rate. In addition, a new intermediate was detected in this branching pathway, which, compared to pB, showed a larger extinction coefficient and a blue-shifted absorption maximum. This substantiates the conclusion that isomerization of the chromophore is the rate-controlling step in the thermal photocycle reactions of PYP and implies that absorption of a blue photon leads to cis-->trans isomerization of the 4-hydroxy-cinnamyl chromophore of PYP in its pB state.  相似文献   

9.
Previous studies have shown that the room temperature photocycle of the photoactive yellow protein (PYP) from Ectothiorhodospira halophila involves at least two intermediate species: I1, which forms in <10 ns and decays with a 200-micros lifetime to I2, which itself subsequently returns to the ground state with a 140-ms time constant at pH 7 (Genick et al. 1997. Biochemistry. 36:8-14). Picosecond transient absorption spectroscopy has been used here to reveal a photophysical relaxation process (stimulated emission) and photochemical intermediates in the PYP photocycle that have not been reported previously. The first new intermediate (I0) exhibits maximum absorption at approximately 510 nm and appears in </=3 ps after 452 nm excitation (5 ps pulse width) of PYP. Kinetic analysis shows that I0 decays with a 220 +/- 20 ps lifetime, forming another intermediate (Idouble dagger0) that has a similar difference wavelength maximum, but with lower absorptivity. Idouble dagger0 decays with a 3 +/- 0.15 ns time constant to form I1. Stimulated emission from an excited electronic state of PYP is observed both within the 4-6-ps cross-correlation times used in this work, and with a 16-ps delay for all probe wavelengths throughout the 426-525-nm region studied. These transient absorption and emission data provide a more detailed understanding of the mechanistic dynamics occurring during the PYP photocycle.  相似文献   

10.
Femtosecond time-resolved absorbance measurements were used to probe the subpicosecond primary events of the photoactive yellow protein (PYP), a 14-kD soluble photoreceptor from Ectothiorhodospira halophila. Previous picosecond absorption studies from our laboratory have revealed the presence of two new early photochemical intermediates in the PYP photocycle, I(0), which appears in 相似文献   

11.
12.
The photocycle of the photoactive yellow protein (PYP) from Ectothiorhodospira halophila was examined by time-resolved difference absorption spectroscopy in the wavelength range of 300-600 nm. Both time-gated spectra and single wavelength traces were measured. Global analysis of the data established that in the time domain between 5 ns and 2 s only two intermediates are involved in the room temperature photocycle of PYP, as has been proposed before (Meyer T.E., E. Yakali, M. A. Cusanovich, and G. Tollin. 1987. Biochemistry. 26:418-423; Meyer, T. E., G. Tollin, T. P. Causgrove, P. Cheng, and R. E. Blankenship. 1991. Biophys. J. 59:988-991). The first, red-shifted intermediate decays biexponentially (60% with tau = 0.25 ms and 40% with tau = 1.2 ms) to a blue-shifted intermediate. The last step of the photocycle is the biexponential (93% with tau = 0.15 s and 7% with tau = 2.0 s) recovery to the ground state of the protein. Reconstruction of the absolute spectra of these photointermediates yielded absorbance maxima of about 465 and 355 nm for the red- and blue-shifted intermediate with an epsilon max at about 50% and 40% relative to the epsilon max of the ground state. The quantitative analysis of the photocycle in PYP described here paves the way to a detailed biophysical analysis of the processes occurring in this photoreceptor molecule.  相似文献   

13.
14.
The photocycle of the photoactive yellow protein (PYP) isolated from Ectothiorhodospira halophila was analyzed by flash photolysis with absorption detection at low excitation photon densities and by temperature-dependent laser-induced optoacoustic spectroscopy (LIOAS). The quantum yield for the bleaching recovery of PYP, assumed to be identical to that for the phototransformation of PYP (pG), to the red-shifted intermediate, pR, was phi R = 0.35 +/- 0.05, much lower than the value of 0.64 reported in the literature. With this value and the LIOAS data, an energy content for pR of 120 kJ/mol was obtained, approximately 50% lower than for excited pG. Concomitant with the photochemical process, a volume contraction of 14 ml/photoconverted mol was observed, comparable with the contraction (11 ml/mol) determined for the bacteriorhodopsin monomer. The contraction in both cases is interpreted to arise from a protein reorganization around a phototransformed chromophore with a dipole moment different from that of the initial state. The deviations from linearity of the LIOAS data at photon densities > 0.3 photons per molecule are explained by absorption by pG and pR during the laser pulse duration (i.e., a four-level system, pG, pR, and their respective excited states). The data can be fitted either by a simple saturation process or by a photochromic equilibrium between pG and pR, similar to that established between the parent chromoprotein and the first intermediate(s) in other biological photoreceptors. This nonlinearity has important consequences for the interpretation of the data obtained from in vitro studies with powerful lasers.  相似文献   

15.
The photoactive yellow protein (PYP) from the phototrophic bacterium Ectothiorhodospira halophila is a small, soluble protein that undergoes reversible photobleaching upon blue light irradiation and may function to mediate the negative phototactic response. Based on previous studies of the effects of solvent viscosity and of aliphatic alcohols on PYP photokinetics, we proposed that photobleaching is concomitant with a protein conformational change that exposes a hydrophobic region on the protein surface. In the present investigation, we have used surface plasmon resonance (SPR) spectroscopy to characterize the binding of PYP to lipid bilayers deposited on a thin silver film. SPR spectra demonstrate that the net negatively charged PYP molecule can bind in a saturable manner to electrically neutral, net positively, and net negatively charged bilayers. Illumination with either blue or white light of a PYP solution, which is in contact with the bilayer, at concentrations below saturation results in an increase in the extent of binding, consistent with exposure of a high affinity hydrophobic surface in the photobleached state, a property that may contribute to its biological function. A value for the thickness of the bound PYP layer (23 A), obtained from theoretical fits to the SPR spectra, is consistent with the structure of the protein determined by x-ray crystallography and indicates that the molecule binds with its long axis parallel to the membrane surface.  相似文献   

16.
A gene for photoactive yellow protein (PYP) was identified from the genome sequence of the extremely halophilic aerobic bacterium Salinibacter ruber (Sr). The sequence is distantly related to the prototypic PYP from Halorhodospira halophila (Hh) (37% identity) and contains most of the amino acid residues identified as necessary for function. However, the Sr pyp gene is not flanked by its two biosynthetic genes as in other species. To determine as to whether the Sr pyp gene encodes a functional protein, we cloned and expressed it in Escherichia coli, along with the genes for chromophore biosynthesis from Rhodobacter capsulatus. The Sr PYP has a 31-residue N-terminal extension as compared to other PYPs that appears to be important for dimerization; however, truncation of these extra residues did not change the spectral and photokinetic properties. Sr PYP has an absorption maximum at 431 nm, which is at shorter wavelengths than the prototypical Hh PYP (at 446 nm). It is also photoactive, being reversibly bleached by either blue or white light. The kinetics of dark recovery is slower than any of the PYPs reported to date (4.27 x 10(-4) s(-1) at pH 7.5). Sr PYP appears to have a normal photocycle with the I1 and I2 intermediates. The presence of the I2' intermediate is also inferred on the basis of the effects of temperature and alchohol on recovery. Sr PYP has an intermediate spectral form in equilibrium with the 431 nm form, similar to R. capsulatus PYP and the Y42F mutant of Hh PYP. Increasing ionic strength stabilizes the 431 nm form at the expense of the intermediate spectral form, and the kinetics of recovery is accelerated 6.4-fold between 0 and 3.5 M salt. This is observed with ions from both the chaotropic and the kosmotropic series. Ionic strength also stabilizes PYP against thermal denaturation, as the melting temperature is increased from 74 degrees C in buffer alone to 92 degrees C in 2 M KCl. Sr accumulates KCl in the cytoplasm, like Halobacterium, to balance osmotic pressure and has very acidic proteins. We thus believe that Sr PYP is an example of a halophilic protein that requires KCl to electrostatically screen the excess negative charge and stabilize the tertiary structure.  相似文献   

17.
The motile, alkalophilic, and extremely halophilic purple sulfur bacterium Ectothiorhodospira halophila is positively photophobotactic. This response results in the accumulation of bacteria in light spots (E. Hustede, M. Liebergesell, and H. G. Schlegel, Photochem. Photobiol. 50:809-815, 1989; D. E. McRee, J. A. Tainer, T. E. Meyer, J. Van Beeumen, M. A. Cusanovich, and E. D. Getzoff, Proc. Natl. Acad. Sci. USA 86:6533-6537, 1989; also, this work). In this study, we demonstrated that E. halophila is also negatively phototactic. Video analysis of free-swimming bacteria and the formation of cell distribution patterns as a result of light-color boundaries in an anaerobic suspension of cells revealed the existence of a repellent response toward intense (but nondamaging) blue light. In the presence of saturating background photosynthetic light, an increase in the intensity of blue light induced directional switches, whereas a decrease in intense blue light gave rise to suppression of these reversals. To our knowledge, this is the first report of a true repellent response to light in a free-swimming eubacterium, since the blue light response in Escherichia coli and Salmonella typhimurium (B. L. Taylor and D. E. Koshland, Jr., J. Bacteriol. 123:557-569, 1975), which requires an extremely high light intensity, is unlikely to be a sensory process. The wavelength dependence of this negative photoresponse was determined with narrow band pass interference filters. It showed similarity to the absorption spectrum of the photoactive yellow protein from E. halophila.  相似文献   

18.
The halophilic phototrophic bacterium Ectothiorhodospira marismortui produces three organic osmolytes to counterbalance the osmotic pressure of the surrounding medium: glycine betaine, sucrose, and a novel compound. This new compound, which accounts for approximately 30% of the cells' compatible solutes, was isolated and identified by mass spectrometry and nuclear magnetic resonance. It was characterized as N alpha-carbamoyl-L-glutamine 1-amide, an unusual amino acid derivative with no previous reference in the chemical literature. The relatively high cytoplasmic concentration of this compound (approximately 0.5 M) observed at all growth conditions suggests that it may serve a vital function as an osmoticum and/or protectant for Ectothiorhodospira marismortui in a saline environment.  相似文献   

19.
20.
The fluorescence emission kinetics at 740 nm of the retinylidence chromophore of the purple membrane protein of Halobacterium halobium have been studied. Using picosecond laser pulses and an optical Kerr gate, the fluorescence risetime is found to be less than 8 ps and its lifetime is 40 +/- 5 ps at 90 degrees K and is estimated to be less than 3 ps at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号