首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Brassica oleracea, sporophytic self-incompatibility prevents germination of self pollen, or normal growth of self pollen tubes. After self-pollination, the papillae of stigmas synthesize callose. The role of Ca++ in the formation of stigmatic callose was tested by adding compounds that interact with Ca++ to suspensions of pollen that were known to induce callose formation in self stigmas. The calcium channel antagonist, lanthanum, and the calcium chelating agent, EGTA, reduced or abolished the callose response to self-pollen suspensions. In the presence of Ca++, the calcium ionophore, A23187, induced callose in stigmatic papillae when added to pollen suspensions, or alone. Therefore, callose deposition in response to incompatible pollinations appears to be a calcium-dependent process. Pretreatment of pistils with 100 μm 2-deoxy-D-glucose abolished the callose response to self-pollination, while self pollen remained inhibited and cross pollen grew normally in treated pistils. Thus, callose formation in the stigma is not an essential part of the self-incompatibility mechanism preventing the growth of self pollen in Brassica.  相似文献   

2.
Abstract

The role of calcium during the synthesis, secretion and molecular organization of the primary cell-wall polysaccharides is the topic of this review. With the exception of callose synthase, the in vitro activity of all polysaccharide synthases is not controlled by Ca2+ ions. However, changes in the intracellular Ca2+ level could control the rate of exocytotic fusion of the secretory vesicles containing cell-wall matrix polysaccharides. In particular, the ability of Ca2+ to regulate the fusion of secretory vesicles with the plasma membrane is due to a class of Ca2+-dependent phospholipid-binding proteins known as annexins. The ionic interactions between calcium and the negatively charged homogalacturonan domains of the pectins are important not only for the mechanical properties of the wall but also for the gel-properties of these complex biopolymers.  相似文献   

3.
T. Waldmann  W. Jeblick  H. Kauss 《Planta》1988,173(1):88-95
In suspension-cultured cells of Glycine max and Catharanthus roseus, marked callose synthesis can be induced by digitonin and chitosan. Leakage of a limited pool of electrolytes precedes callose formation, K+ representing the major cation lost. Poly-L-ornithine, as well as the ionophores A 23187 and ionomycin, also induces some callose synthesis but to a lesser extent. Digitonin increases the net uptake of Ca2+ from the external buffer with a time course parallel to callose synthesis but lagging behind the leakage of K+. Nifedipine partly blocks callose synthesis as well as the digitonin-induced increase in net Ca2+ uptake. Taken together, the data support the hypothesis that addition of the various substances might indirectly lead to membrane perturbation causing the common event of an increase in net Ca2+ uptake which results in callose deposition by a direct activition of the Ca2+-dependent and plasma-membane-located 1,3--glucan synthase.  相似文献   

4.
Plants have developed a range of strategies for resisting environmental stresses. One of the most common is the synthesis and deposition of callose, which functions as a barrier against stress factor penetration. The aim of our study was to examine whether callose forms an efficient barrier against Pb penetration in the roots of Lemna minor L. exposed to this metal. The obtained results showed that Pb induced callose synthesis in L. minor roots, but it was not deposited regularly in all tissues and cells. Callose occurred mainly in the protoderm and in the centre of the root tip (procambial central cylinder). Moreover, continuous callose bands, which could form an efficient barrier for Pb penetration, were formed only in the newly formed and anticlinal cell walls (CWs); while in other CWs, callose formed only small clusters or incomplete bands. Such an arrangement of callose within root CWs inefficiently protected the protoplast from Pb penetration. As a result, Pb was commonly present inside the root cells. In the light of the results, the barrier role of callose against metal ion penetration appears to be less obvious than previously believed. It was indicated that induction of callose synthesis is not enough for a successful blockade of the stress factor penetration. Furthermore, it would appear that the pattern of callose distribution has an important role in this defence strategy.  相似文献   

5.
Alkali extracted mycelial biomass from Aspergillus niger, referred to as Biosorb, was found to sequester metal ions (Cd2+, Cu2+, Zn2+, Ni2+ and Co2+) efficiently both from dilute and concentrated solutions upto 10% of its weight (w/w). Sequestration of metal ions from a mixture was also efficient but with attendant antagonisms. The kinetics of metal binding by Biosorb indicated that it is a rapid process and about 70–80% of the metal is removed from solution in 5 min followed by a slower rate. The mechanism of metal binding is shown to be due to exchange of calcium and magnesium ions of the Biosorb during which equimolar concentrations of both the ions were released into the medium. Following this an efficient procedure for the regeneration and reuse of Biosorb was standardized by washing the biosorbent with calcium and magnesium solution (0.1 m). Biosorbents prepared from Neurospora, Fusarium and Penicillium also exhibited similar mechanisms for metal ion binding, though they had a lower metal binding capacity when compared with Biosorb. Chemical modification of carboxylic acid functional groups of the Biosorb resulted in loss of 90% of metal binding capacity which could not be restored even on regeneration. The significance of this finding on the metal sequestration mechanisms of microbial biosorbents is discussed.  相似文献   

6.
Carrot (Daucus carota L.) cell suspensions were treated witha spirostanol saponin from Yucca. This saponin is an elicitorof callose synthesis. Irrespectively of the mode of action ofspirostanol on the callose synthase activity itself, the spirostanol-inducedcallose synthesis in carrot is not preceded by changes in membranepotential, cytosolic free calcium or cytosolic pH. The inabilityof modulators of cytosolic free calcium content (verapamil,nifedipine and Br-A23187), EGTA and a proton pump inhibitor(vanadate) to inhibit or induce callose formation is consistentwith a calcium- and pH-independent mechanism for callose deposition. (Received March 20, 1995; Accepted July 18, 1995)  相似文献   

7.
The plasma membrane calcium pump in most mammalian cells is the basic mechanism for assuring a low cytoplasmic calcium concentration. In inside-out human red cell membrane vesicles /IOVs/ the substrate and metal specificity as well as the intracellular protein /calmodulin/ regulation of the ATP-dependent active calcium transport can be investigated insitu. In this paper we demonstrate that Me2+. ATP4? /in the following MeATP/ complexes, including MgATP, MnATP, CoATP, FeATP, and NiATP, can serve as substrates for the calcium pump in IOVs. Calcium pumping is activated by the above metals, while Sr, Ba, Cu, Cd ions or the trivalent cations are ineffective in this respect. Calmodulin-stimulation of the calcium transport is present independent of the metal ions used for the activation of the pump. Based on kinetic studies we suggest that divalent metal ions interact with the red cell calcium pump at four different sites: 1./ MeATP complex is the true substrate of the pump; 2./ Ca or Sr ions activate the system by binding to the transport site/s/ and other metal ions competitively inhibit this binding; 3./ the presence of free divalent metal ions /Mg, Mn, Co, Fe, or Ni, but not Ca, Sr, Ba/ is required for activating calcium translocation; 4./ interaction with a Ca — calmodulin complex specifically stimulates calcium pumping.  相似文献   

8.
The Ca2+-chelator CTC binds to a specific site on both outer surfaces of all non-meristematic cells of the unistratose thallus of Riella, known to be rich in anionic wall components and calcium, and induces there the deposition of callose. Structural changes in this region during prolonged CTC treatment have been followed by light and transmission electron microscopy. With fluorescence microscopy punctate structures can be detected after 10 min, which upon longer incubation in CTC develop into large vesicular bodies, surrounded by a circular structure. The aniline blue-derived fluorescence intensity of these structures is highest in cells of the extension growth zone. At the ultrastructural level a mosaic of numerous smooth-surfaced vesicles, presumably containing callose, initially appears subjacent to the plasma membrane. These vesicles swell and fuse with each other, forming ultimately a circular fusion profile with the plasma membrane. This complex of callose-forming vesicles is thought to develop from elements of the partially coated reticulum (PCR), based on the presence of coated vesiculation profiles on the callose vesicles and numerous aggregates of coated vesicles in their immediate vicinity. After 30 min in CTC osmiophilic particles appear around these callose vesicles and at the cytoplasmic face of mitochondria. They are later (after 60 min) deposited in the periplasmic space between wall and plasma membrane and are also released into the surrounding medium. As judged by their reaction with FeCl3, the osmiophilic particles appear to be phenolic in nature. We propose that upon binding of CTC a local increase of cytoplasmic calcium triggers callose synthesis in PCR-like compartments beneath the plasma membrane. However it remains to be shown as to why callose is synthesized exclusively in these intracellular compartments and not at the plasma membrane.  相似文献   

9.
In fungi, cellular resistance to heavy metal cytotoxicity is mediated either by binding of metal ions to proteins of the metallothionein type or by chelation to phytochelatin-peptides of the general formula (-Glu-Cys)n-Gly. Hitherto, only one fungus, Candida glabrata has been shown to contain both metal inactivating systems. Here we show by unambiguous FAB-MS analysis that both a metallothionein-free mutant of Saccharomyces cerevisiae as well as a wildtype strain synthesize phytochelatin (PC2) upon exposure to 250 M Cd2+ ions. The presence of Zn and/or Cu ions in the nutrient broth also induces PC2 synthesis in this organism. By 109Cd exchange and subsequent monobromobimane fluorescence HPLC, it could be shown that the presence of Cd2+ in the growth medium also induces phytochelatin synthesis in Neurospora crassa, which contains metallothioneins.  相似文献   

10.
A new method for the rapid and quantitative fluorometric determination of callose is described. In suspension-cultured cells of Glycine max, synthesis of callose starts within 20 minutes of treatment with chitosan and parallels over hours the accumulation of 1,3-linked glucose in the wall. Poly-l-lysine also elicits callose synthesis. The effect of chitosan is enhanced by Polymyxin B at low concentrations; this antibiotic alone at higher concentrations can also induce callose synthesis. Callose synthesis is immediately stopped when external Ca2+ is bound by ethylene glycolbis-(2-aminoethyl ether)-N,N′-tetraacetate or cation exchange beads, and partly recovers upon restoration of 15 micromolar Ca2+.  相似文献   

11.
The neutral protease of Bacillus amylosacchariticus was inactivated by low concentrations of several metal-chelating agents and the inactivated enzyme with EDTA restored its activity almost completely by the addition of Zn++ or Co++ and partially by Fe++ or Mn++, if these metal ions were added shortly after the EDTA-treatment. The native enzyme was found to contain 0.19% of zinc together with a significant amount of calcium. Parallel increase in specific activity and zinc content of enzyme preparation was observed throughout the purification procedure. The elution pattern of enzyme activity on a CM-cellulose column chromatography also completely coincided with that of protein-bound zinc. A zinc-free inactive enzyme was also reactivated by the addition of zinc or cobalt ions, clearly showing that the neutral protease of B. amylosacchariticus is a zinc mctalloenzyme.  相似文献   

12.
E Peggion  S Mammi  M Palumbo  L Moroder  E Wünsch 《Biopolymers》1983,22(11):2443-2457
The interactions of Des-Trp1-Nle12-minigastrin I (Nle11-HG-13) and Nle15-little gastrin I (Nle15-HG-17) with calcium ions have been investigated in water and in trifluoroethanol solution using uv and CD absorption techniques. Both hormones strongly interact with Ca2+ in the organic medium. In the case of Nle11-HG-13, the near-uv chiroptical properties (dominated by the transitions of the Trp residue in the C-terminal tetrapeptide sequence) indicate that three metal ions per mole of hormone are involved in the binding process. From the different response of near-uv and far-uv CD properties to the addition of calcium and from the change of the CD spectra in the aromatic absorption region, it is concluded that the biologically important C-terminal sequence is directly involved in the interaction with calcium. Elongation of the peptide chain from Nle11-HG-13 to Nle15-HG-17 (Nle15-little gastrin I) does not provide any additional binding site for calcium ions. The change of the CD properties in the near- and far-uv indicates that three metal ions per mole of hormone are involved in the binding process. The dichroic absorption in the aromatic region indicates that only one of the two Trp residues of the little gastrin analog is sensitive to the presence of calcium. On the assumption that the variation of the CD properties is proportional to the extent of calcium binding, the binding constants K1, K2, and K3 have been estimated roughly. Two similar sets of binding constants have been found, with K1 ≥ 106M?1 and K3 of the order of 105M?1, indicating similar binding sites in the two hormones with high affinity for calcium ions.  相似文献   

13.
Summary Al3+, Fe3+, V2+ or Be2+ when added to shaken suspensions of Petunia hybrida pollen in 10% sucrose —0.01% H3BO3 induce a strong unscheduled DNA synthesis as measured by incorporation of 3H-thymidine into pollen DNA. The metal ions (added in most cases as the chloride) gave maximum effect at approximately 2 mM. Weaker reactions are given by Ca2+, Zn2+, Mn2+, Cd2+ and Cr3+ in decreasing order of effectiveness, while twelve other metal ions were shown to be ineffective or to give very low reaction. The unscheduled DNA synthesis induced by Al3+ was not altered by hydroxyurea, nicotinamide, caffeine or cycloheximide. It was markedly affected by the pH of the medium, the optimum pH being 5.0, where there could be a tendency for some base-binding of the metal (in contrast to phosphate binding) at the high Al3+ to DNA mole ratio used. It was considered that the DNA synthesis induced by the metal ions represents a repair synthesis. A DNA polymerase activity was detected in pollen extracts. It showed a preference for Mn2+ over Mg2+ and was estimated to have more than enough activity to account for the unscheduled DNA synthesis in pollen given by the most effective inducer, Al3+.  相似文献   

14.
Effect of calcium ions on heat tolerance of Saccharomyces cerevisiae and on the induction of Hsp104 synthesis by this microorganism was studied. Short-term (30 min) treatment with CaCl2 at 30°C enhanced the heat tolerance to the lethal heat shock (50°C); the synthesis of Hsp104 was induced as well. The effect of Ca2+ on the heat tolerance and Hsp104 synthesis was shown to be ion-specific and was inhibited by LaCl3, which is known to block calcium ion channels on the cytoplasmic membrane. The effect of Ca2+ depended on the potential of the inner mitochondrial membrane. When the cells were treated with sodium azide, which reduced the electrochemical potential, the effect of calcium both on heat tolerance and Hsp104 synthesis was suppressed. Depending on the concentration of exogenous Ca2+ and the ambient conditions, calcium ions may either induce or inhibit the expression of the stress genes and cell viability.  相似文献   

15.
Peterson CA 《Plant physiology》1979,63(6):1170-1174
Callose accumulated on sieve plates of phloem of white bean seedlings exposed to excess Co, Ni, or Zn. The callose deposits ranged in thickness and were most pronounced in midribs of unifoliate leaves and their subtending petioles. Lesser callose deposits were found in stems. Although translocation of 14C was reduced drastically in seedlings exposed to excess metal, no correlation was found between translocated 14C and the amount of callose in the petioles. It is concluded that the inhibition of phloem translocation in seedlings exposed to excess metal is due to effects other than callose deposition.  相似文献   

16.
Summary The strong enzyme histochemical reactions for adenosine triphosphatase (ATPase) seen in ependymal tanycytes after incubation in calcium-containing media have previously been reported as calcium transport ATPase. Investigation of these reactions showed that: (1) any nucleoside triphosphate can serve as a substrate; (2) diphosphates and monophosphates cannot replace triphosphates; this includes p-nitrophenyl phosphate which is readily hydrolysed by plasma membrane transport ATPases; (3) strong localization occurs in the presence of millimolar concentrations of either calcium or magnesium ions; there is no absolute requirement for calcium ions; (4) they are not inhibited by sulphydryl inhibitors or calmodulin antagonists; (5) lead phosphate precipitates are localized almost entirely on the external face of tanycyte plasma membranes. In addition, the technique gives strong localization to vessels in the choroid plexus but not to the choroidal epithelium. Immunohistochemistry with a primary antibody raised against Ca2+,Mg2+-ATPase stains the choroidal epithelium but not the vessels or the ependymal tanycytes. These results are inconsistent with identification of the reaction as calcium transport ATPase but support characterization as an ecto-ATPase.  相似文献   

17.
The production and purification of a calcium-dependent protease by Bacillus cereus BG1 were studied. The production of the protease was found to depend specifically on the calcium concentration in the culture medium. This suggests that this metal ion is essential for the induction of protease production and/or stabilisation of the enzyme after synthesis. The calcium requirement is highly specific since other metal ions (such as Mg2+ and Ba2+, which both activate the enzyme) are not able to induce protease production. The most appropriate medium for growth and protease production comprises (g L–1) starch 5, CaCl2 2, yeast extract 2, K2HPO4 0.2 and KH2PO4 0.2. The protease of BG1 strain was purified to homogeneity by ultrafiltration, heat treatment, gel filtration on Sephacryl S-200, ion exchange chromatography on DEAE-cellulose and, finally, a second gel filtration on Sephacryl S-200, with a 39-fold increase in specific activity and 23% recovery. The molecular weight was estimated to be 34 kDa on SDS-PAGE. The optimum temperature and pH of the purified enzyme were determined to be 60°C and 8.0, respectively, in 100 mM Tris-HCl buffer + 2 mM CaCl2.  相似文献   

18.
Radford JE  White RG 《Protoplasma》2011,248(1):205-216
Actin and myosin are components of plasmodesmata, the cytoplasmic channels between plant cells, but their role in regulating these channels is unclear. Here, we investigated the role of myosin in regulating plasmodesmata in a well-studied, simple system comprising single filaments of cells which form stamen hairs in Tradescantia virginiana flowers. Effects of myosin inhibitors were assessed by analysing cell-to-cell movement of fluorescent tracers microinjected into treated cells. Incubation in the myosin inhibitor, 2,3-butanedione monoxime (BDM) or injection of anti-myosin antibodies increased cell–cell transport of fluorescent dextrans, while treatment with the myosin inhibitor N-ethylmaleimide (NEM) decreased cell–cell transport. Pretreatment with the callose synthesis inhibitor, deoxy-d-glucose (DDG), enhanced transport induced by BDM treatment or injection of myosin antibodies but did not relieve NEM-induced reduction in transport. In contrast to the myosin inhibitors, cell-to-cell transport was unaffected by treatment with the actin polymerisation inhibitor, latrunculin B, after controlling for callose synthesis with DDG. Transport was increased following azide treatment, and reduced after injection of ATP, as in previous studies. We propose that myosin detachment from actin, induced by BDM, opens T. virginiana plasmodesmata whereas the firm attachment of myosin to actin, promoted by NEM, closes them.  相似文献   

19.
Inhibition of the novel oligopeptidase B from Serratia proteamaculans (PSP) by basic pancreatic trypsin inhibitor, Zn2+ ions, and o- and m-phenanthroline was investigated. A pronounced effect of calcium ions on the interaction of PSP with inhibitors was demonstrated. Inversion voltamperometry and atomic absorption spectrometry revealed no zinc ions in the PSP molecule. Hydrophobic nature of the enzyme inhibition by o- and m-phenanthroline was established.  相似文献   

20.
Summary Conductometry, circular dichroism and fluorescence spectroscopy are the techniques employed to investigate the effect of added calcium ions and other monovalent and divalent metal ions on aqueous solutions of nonionic peptide aggregates, Boc-Leu-Asn-OEt (1). It is observed that among all the metal ions studied, Ca2+ ions facilitate the aggregation of the peptide. The interior dielectric constant of the micelles (ε) was found to depend upon the proportion of Ca2+ complexed peptide with the peptide mononers in the micelles. When Ca2+ ion becomes 1/4th of the peptide concentration, there is a structural transition leading to drastic change in the interior of the micro dielectric constant (ɛ m).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号