首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of the enzymes 5'-nucleotidase (EC 3.1.3.5), adenosine nucleosidase (EC 3.2.2.7), adenine phosphoribosyl transferase (EC 2.4.2.7) and acid phosphatase (EC 3.1.3.2) was determined in sections of tomato plant ( Lycopersicon esculentum Mill. cv. Bellina). The distribution of the enzymes changed markedly during development and a role for these enzymes in cytokinin metabolism is suggested.  相似文献   

2.
Activities of the enzymes glutamine synthetase (EC 6.3.1.2.), glucosamine 6-phosphate acetyltransferase (EC 2.3.1.4.), uridine 5'-diphosphate (UDP)-N-acetylglucosamine pyrophosphorylase (EC 2.7.23.), UDP-N-acetylglucosamine 4-epimerase (EC 5.1.3.7.), fructose 1,6-diphosphate phosphatase (EC 3.13.11.), L-glutamine-fructose 6-phosphate transamidase (EC 5.3.1.19.), alkaline phosphatase (EC 3.1.3.1.), and malic dehydrogenase (EC 1.1.1.37) were assayed in partially purified extracts prepared at different stages of myxospore formation and germination in liquid cultures of Myxococcus xanthus. The specific activities of the first six of these enzymes increased 4.5- to 7.5-fold after 2 h of induction with 0.5 M glycerol or 0.2 M dimethyl sulfoxide. The increase in specific activities of these six enzymes was not observed in a mutant unable to be induced with glycerol. During the first 2 to 4 h of induction and during the first hour of germination, the level of these enzymes decreased to the level characteristic of vegetative cells. It is suggested that the six enzymes are responsible for the increased conversion of fructose 1,6-diphosphate to UDP-N-acetylgalactosamine, the major precursor of the myxospore coat.  相似文献   

3.
An important biochemical feature of autotrophs, land plants and algae, is their incorporation of inorganic nitrogen, nitrate and ammonium, into the carbon skeleton. Nitrate and ammonium are converted into glutamine and glutamate to produce organic nitrogen compounds, for example proteins and nucleic acids. Ammonium is not only a preferred nitrogen source but also a key metabolite, situated at the junction between carbon metabolism and nitrogen assimilation, because nitrogen compounds can choose an alternative pathway according to the stages of their growth and environmental conditions. The enzymes involved in the reactions are nitrate reductase (EC 1.6.6.1-2), nitrite reductase (EC 1.7.7.1), glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 1.4.1.13-14, 1.4.7.1), glutamate dehydrogenase (EC 1.4.1.2-4), aspartate aminotransferase (EC 2.6.1.1), asparagine synthase (EC 6.3.5.4), and phosphoenolpyruvate carboxylase (EC 4.1.1.31). Many of these enzymes exist in multiple forms in different subcellular compartments within different organs and tissues, and play sometimes overlapping and sometimes distinctive roles. Here, we summarize the biochemical characteristics and the physiological roles of these enzymes. We also analyse the molecular evolution of glutamine synthetase, glutamate synthase and glutamate dehydrogenase, and discuss the evolutionary relationships of these three enzymes.  相似文献   

4.
Enzymatically active cell wall isolaled from olive (Olea europaea) fruit was employed Hi investigate some hydrolytic enzymes bound to the cell wall and the changes in these during ripening. Seven glycosidases. β-glucosidase (EC 3.2.1.21) α-galactosidase (EC 3.2.1.22). β-galactosidase (EC 3.2.1.23). α-arabinosidase (EC 3.2.1.55), α-mannosidase (EC 3.2.1,24). β-xylosidase (EC 3.2.1.37) and β-N-acetylglucosamidase (EC 3.2.1.30). as well as Cx-cellulase (EC 3.2.1.4) and endo-polygalacturonase (EC 3.2.1.15). were identified in the cell wall preparation, at four stages of ripeness (mature green. changing colour, black and black-ripe). Activities of all these cell wall-associated enzymes fionicallv and covalently linked) were determined either by cell wall incubation with artificial substrate or after extraction from the cell wall with buffers of high salt concentration (Cx-cellulase). and were compared to those of forms solubilized from acetone powders with 500 nM citrate buffer (cytoplasmic and/or apoplastic plus ionically hound to cell wall) In general, the activities of low ionic strength buffer-soluble enzymes were found to be much higher than those of the bound enzymes. The bound enzymes are present in the fruit at the green colour stage, whereas the activities of the soluble enzymes only increased from the changing colour stage onwards. The tenacity of binding of enzymes to the wall was investigated by treating the walls with high salt and measuring residual activity. The nature of the ionic and covalent binding and the changes during ripening were also established for wall-hound glycosidase During ripening there was a marked change in the percentages of covalently- and tonically linked activities of β-glucosidase and β-galaclosidase: al the changing colour stages about 75–80% of the bound active in was present in high ionic strength buffer while al the black-ripe stage it was only 15–20. A possible role for these cell wall degradative enzymes in olive softening is discussed.  相似文献   

5.
Several enzymes of non–photosynthetic sugar phosphate and starch metabolism were measured in gradient–purified chloroplasts from normal rye leaves ( Secale cereale L. cv. Halo) grown at 22°C and in the non-photosynthetic plastids isolated from 70S ribosome-deficient rye leaves grown at a non–permissive elevated temperature of 32°C. Activities of the enzymes phosphoglycerate kinase (EC 2.7.2.3), hexokinase (EC 2.7.1.1), phosphoglucose isomerase (EC 5.3.1.9), phosphoglucomutase (EC 2.7.5.1), glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate de-hydrogenase (EC 1.1.1.46), ADPglucose pyrophosphorylase (EC 2.7.7.27), starch synthase (EC 2.4.1.21), and phosphorylase (EC 2.4.1.1) were present in ribosome-deficient plastids from 32°C-grown leaves indicating a cytoplasmic origin of the plastid-specific forms of these enzymes. While the photosynthetic marker enzyme NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) was considerably diminished, both the specific activities and the total activities per leaf of the plastid-specific forms of hexokinase, phosphoglucose isomerase and phosphoglucomutase were markedly increased in the ribosome–deficient plastids, relative to normal chloroplasts. The results demonstrate that after elimination of functional protein synthesis in the chloroplasts the supply of chloroplast–specific enzymes by the cytoplasm is not generally suppressed as observed for many enzymes and proteins involved in photosynthesis, but may even be increased in accord with changed metabolic demands.  相似文献   

6.
The presence of enzymes of the ascorbate–glutathione cycle was studied in mitochondria purified from green and red pepper (Capsicum annuum L.) fruits. All four enzymes, ascorbate peroxidase (APX; EC 1.11.1.11), monodehydroascorbate reductase (MDHAR; EC 1.6.5.4), dehydroascorbate reductase (DHAR; EC 1.8.5.1) and glutathione reductase (GR; EC 1.6.4.2) were present in the isolated mitochondria of both fruit ripening stages. The activity of the reductive ascorbate–glutathione cycle enzymes (MDHAR, GR and DHAR) was higher in mitochondria isolated from green than from red fruits, while APX and the antioxidative enzyme superoxide dismutase (SOD; EC 1.15.1.1) were higher in the red fruits. The levels of ascorbate and L-galactono-γ-lactone dehydrogenase (GLDH; EC 1.3.2.3) activity were found to be similar in the mitochondria of both fruits. The higher APX and Mn-SOD specific activities in mitochondria from red fruits might play a role in avoiding the accumulation of any activated oxygen species generated in these mitochondria, and suggests an active role for these enzymes during ripening.  相似文献   

7.
He J  Chen F  Chen S  Lv G  Deng Y  Fang W  Liu Z  Guan Z  He C 《Journal of plant physiology》2011,168(7):687-693
Artificial aphid infestation experiments on the three chrysanthemum cultivars ‘Keiun’, ‘Han6’ and ‘Jinba’ showed that the three cultivars vary markedly in their resistance. Of the three cultivars, the most resistant (‘Keiun’) produced the longest, highest and densest trichomes, the largest and fullest gland cells, and the most wax on the lower leaf epidermis. Superoxide dismutase (EC 1.15.1.1), peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11), polyphenol oxidase activity (EC 1.14.18.1) and phenylalanine ammonia lyase (EC 4.3.1.5) were enhanced by aphid herbivory. In the two more resistant cultivars (‘Keiun’ and ‘Han6’), the activity of superoxide dismutase and ascorbate peroxidase enzymes rapidly increased following infestation, and their levels remained high from seventy-two to one hundred and sixty-eight hours after inoculation. We suggest that these two antioxidant enzymes contribute to aphid resistance of these chrysanthemum cultivars. All three cultivars showed quick responses to aphid infestation by increasing polyphenol oxidase and phenylalanine ammonia lyase activities during the early period after inoculation. Activities of these two defense enzymes were higher in the two resistant cultivars after 72 h after inoculation, suggesting involvement of these two enzymes in aphid resistance.  相似文献   

8.
Pseudomonas aeruginosa (ATCC 9027) releases four periplasm-located enzymes, i.e., ribonuclease (EC 3.1.4.22; EC 3.1.4.23), alkaline phosphatase (EC 3.1.3.1), cyclic-2', 3'-phosphodiesterase (EC 3.1.4.d), and 5'-nucleotidase (EC 3.1.3.5) into the medium during growth. Ribonuclease and alkaline phosphatase are classed as enzymes which are readily extracted by osmotic shock and spheroplast formation whereas cyclic-2',3'-phosphodiesterase and 5'-nucleotidase are classed as enzymes which are not readily extracted by these procedures. In view of the relative ease of extraction of the former enzymes it is suggested that the lattter enzymes, cyclic-2',3'-phosphodiesterase and 5'-nucleotidase, are bound and located in the periplasm in a manner different to ribonuclease and alkaline phosphatase.  相似文献   

9.
The protein concentration in bile from several species is reported. The changes in output of protein, bile salts and several enzymes have been followed in rat bile over a 48 h cannulation period. Bile-salt concentration dropped rapidly owing to interruption of the enterohepatic circulation but the output of protein, lysosomal enzymes [acid phosphatase (EC 3.1.3.2) and beta-D-glucuronidase (EC 3.2.1.31)] and plasma-membrane enzymes [5'-nucleotidase (EC 3.1.3.5) and phosphodiesterase I (EC 3.1.4.1)] was maintained. Liver cell damage, monitored by output of lactate dehydrogenase, was very low throughout. Protein, lysosomal enzymes and plasma-membrane enzymes showed different patterns of output with time, but all showed a net increase between 12 and 24 h. The output of lysosomal and plasma-membrane enzymes was between 1 and 5% of the total liver complement over the first 24 h; if inhibition by biliary components is taken into account the output of some of these enzymes, particularly acid phosphatase, may be greater. Ultracentrifugation of bile showed that as the concentration of bile salts decreases the proportion of plasma-membrane enzymes in a sedimentable form increases. The results are discussed in relation to other studies of biliary proteins and to studies of the perturbation of membranes and cells with bile salts.  相似文献   

10.
Superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6) are important enzymes involved in protection of the cell from harmful effects of oxidative degradation. The respective substrates for these enzymes, superoxide anion and hydrogen peroxide, can be generated within the cell either by normal metabolism or by ionizing radiation. The hypothesis that the inherent radiosensitivity associated with the human autosomal recessive disease Ataxia telangiectasia is due to decreased levels of SOD and/or catalase was tested. The results suggest that fibroblast cells derived from ataxia patients are normal with respect to these two enzymes.  相似文献   

11.
Burke RM  Cairney JW 《Mycorrhiza》2002,12(3):105-116
  相似文献   

12.
The mechanism of adaptation of the acrylamide producing strain Rhodococcus rhodochrous M8 to changes in ammonium concentrations in the medium was studied. An increase in the content of ammonium in the medium changed the activity of glutamine synthetase (GS) (EC 6.3.1.2) and glutamine dehydrogenase (GD) (EC 1.4.1.4), the enzymes of ammonium assimilation, as well as the activities of enzymes responsible for nitrile utilization: nitrile hydratase (EC 4.2.1.84) and amidase (EC 3.5.1.4). This also caused inhibition of activation of GS induced by phosphodiesterase (EC 3.1.4.1). Increases in the activities of nitrile hydratase and amidase and resistance of these enzymes to ammonium were observed in mutant of R. rhodichrous resistant to phosphotricine, an inhibitor of GS. An important role of GS in the mechanism of adaptation is suggested.  相似文献   

13.
In Chlorella vulgaris UAM 101, the presence of glucose altered the photosynthetic and respiratory metabolism in the light. When glucose was added to the growth medium, an increase in the cellular level of enzymes involved in glucose oxidation, namely glucose-6-P dehydrogenase (EC 1.1.1.49) and NAD+-glyceraldehyde-3-P dehydrogenase (EC 1.2.1.12), was observed. Glucose also enhanced respiratory O2 consumption. In addition, CO2 released by glucose oxidation was refixed in photosynthesis. The presence of glucose also affected photosynthesis. Phosphoribulokinase (EC 2.7.1.19) and NADP+-dependent glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13), two regulatory enzymes of the reductive pentose phosphate cycle, were increased by glucose. However, Rubisco (EC 4.1.1.39) activity of these cells was lower than that of autotrophic cells. Despite these alterations, the photosynthetic O2 evolution was not significantly inhibited by glucose. On the other hand, an increase in the cytosolic NADP+-glyceraldehyde-3-P dehydrogenase (EC 1.2.1.9) that is involved in obtaining reducing power for anabolic processes was observed. The CO2 levels in the growth medium did not significantly affect the cellular level of enzymes measured in this work, except those involved in biosynthetic pathways. These data suggest that the effect of glucose on photosynthesis and respiration can be explained by alteration of the cellular level of photosynthetic enzymes and respiratory substrates, respectively.  相似文献   

14.
Regulation of nitrogen catabolic enzymes in Bacillus spp.   总被引:15,自引:9,他引:6       下载免费PDF全文
The levels of the inducible nitrogen catabolic enzymes arginase (L-arginine amidinohydrolase, EC 3.5.3.1) and alanine dehydrogenase (L-alanine:NAD+ oxidoreductase [deaminating], EC 1.4.1.1) from Bacillus licheniformis and histidase (L-histidine ammonia-lyase, EC 4.3.1.3) from Bacillus subtilis and the ammonia assimilatory enzymes from B. licheniformis were determined in cultures grown in the presence of different nitrogen sources. Although the levels of these enzymes were dependent upon the nitrogen source present, induction of the catabolic enzymes in response to the addition of inducer occurred even in the presence of preferred nitrogen sources. Intracellular pool sizes of ammonia, glutamate, glutamine, and alpha-ketoglutarate were measured in continuous cultures of b. licheniformis growing in the presence of different nitrogen sources. A comparison of the pool sizes of these metabolites with the ammonia assimilatory enzyme levels showed that the pools of the metabolites did not change in a manner consistent with their use as regulators of the synthesis of any of these enzymes.  相似文献   

15.
Higher plants growing in natural environments experience various abiotic stresses. The aim of this study was to determine whether exposure to temperature-stress would lead to oxidative stress and whether this effect varied with different exposure periods. The thermal dependencies of the activities of protective enzymes, photosynthetic efficiency (Fv/Fm), protein, non-protein thiol (NP-SH), cysteine content, lipoxygenase (LOX) activity (EC 1.13.11.12) and malondialdehyde (MDA) content at 25-40 degrees C were determined for 4, 24 and 48 h in leaf and root segments of Phalaenopsis. The increase in MDA level and LOX activity may be due to temperature-associated oxidative damage to leaf and root segments. Temperature-stress induced not only activities of active oxygen species (AOS) scavenging enzymes but also protein, NP-SH and cysteine content in both leaf and root segments at 30 degrees C for 4 and 24 h (except for 48 h in some cases) compared to 25 degrees C-and greenhouse-grown leaf and root segments indicating that antioxidants enzymes played an important role in protecting plant from temperature-stress. However, activities of dehydroascorbate reductase (DHAR, EC 1.8.5.1), glutathione peroxidase (GPX, EC 1.11.1.9) and glutathione-S-transferase (GST, EC 2.5.1.18) in leaf and root, glutathione reductase (GR, EC 1.6.4.2) in leaf and guaiacol peroxidase (G-POD, 1.11.1.7) in root segments were induced significantly at 40 degrees C compared to 25 degrees C and greenhouse-grown plants suggesting that these enzymes play protective roles at high temperature. In contrast, activities of superoxide dismutase (SOD, EC 1.15.1.1) and monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) in leaf and root, catalase (CAT, EC 1.11.1.6) in root, GR in root, and protein, cysteine, NP-SH content in both root and leaf and Fv/Fm ratio were diminished significantly at 40 degrees C compared to 25 degrees C-and greenhouse-grown plants. These indicate that these enzymes were apparently not involved in detoxification process and sensitive at higher temperature. Also, the close relation between activities of enzymes with their metabolites at 30 degrees C than 40 degrees C indicated that the antioxidants enzymes and metabolites both may play an important role in protecting cells against the temperature-stress.  相似文献   

16.
Methylglyoxal is a toxic by-product of glycolysis and other metabolic pathways. In mammalian cells, the principal route for detoxification of this reactive metabolite is via the glutathione-dependent glyoxalase pathway forming d-lactate, involving lactoylglutathione lyase (GLO1; EC 4.4.1.5) and hydroxyacylglutathione hydrolase (GLO2; EC 3.2.1.6). In contrast, the equivalent enzymes in the trypanosomatid parasites Trypanosoma cruzi and Leishmania spp. show >200-fold selectivity for glutathionylspermidine and trypanothione over glutathione and are therefore sensu stricto lactoylglutathionylspermidine lyases (EC 4.4.1.-) and hydroxyacylglutathionylspermidine hydrolases (EC 3.2.1.-). The unique substrate specificity of the parasite glyoxalase enzymes can be directly attributed to their unusual active site architecture. The African trypanosome differs from these parasites in that it lacks GLO1 and converts methylglyoxal to l-lactate rather than d-lactate. Since Trypanosoma brucei is the most sensitive of the trypanosomatids to methylglyoxal toxicity, the absence of a complete and functional glyoxalase pathway in these parasites is perplexing. Alternative routes of methylglyoxal detoxification in T. brucei are discussed along with the potential of exploiting trypanosomatid glyoxalase enzymes as targets for anti-parasitic chemotherapy.  相似文献   

17.
Objective: In mice, endocannabinoids (ECs) modulate insulin release from pancreatic β‐cells and adipokine expression in adipocytes through cannabinoid receptors. Their pancreatic and adipose tissue levels are elevated during hyperglycemia and obesity, but the mechanisms underlying these alterations are not understood. Methods and Procedures: We assessed in mice fed for up to 14 weeks with a standard or high‐fat diet (HFD): (i) the expression of cannabinoid receptors and EC biosynthesizing enzymes (N‐acyl‐phosphatidyl‐ethanolamine‐selective phospholipase D (NAPE‐PLD) and DAGLα) and degrading enzymes (fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL)) in pancreatic and adipose tissue sections by immunohistochemical staining; (ii) the amounts, measured by liquid chromatography–mass spectrometry, of the ECs, 2‐AG, and anandamide (AEA). Results: Although CB1 receptors and biosynthetic enzymes were found mostly in α‐cells, degrading enzymes were identified in β‐cells. Following HFD, staining for biosynthetic enzymes in β‐cells and lower staining for FAAH were observed together with an increase of EC pancreatic levels. While we observed no diet‐induced change in the intensity of the staining of EC metabolic enzymes in the mesenteric visceral fat, a decrease in EC concentrations was accompanied by lower and higher staining of biosynthesizing enzymes and FAAH, respectively, in the subcutaneous fat. No change in cannabinoid receptor staining was observed following HFD in any of the analyzed tissues. Discussion: We provide unprecedented information on the distribution of EC metabolic enzymes in the pancreas and adipose organ, where their aberrant expression during hyperglycemia and obesity contribute to dysregulated EC levels.  相似文献   

18.
As glutamate and ammonia play a pivotal role in nitrogen homeostasis, their production is mediated by various enzymes that are widespread in living organisms. Here, we report on an effective electrophoretic method to monitor these enzymes. The in gel activity visualization is based on the interaction of the products, glutamate and ammonia, with glutamate dehydrogenase (GDH, EC: 1.4.1.2) in the presence of either phenazine methosulfate (PMS) or 2,6-dichloroindophenol (DCIP) and iodonitrotetrazolium (INT). The intensity of the activity bands was dependent on the amount of proteins loaded, the incubation time and the concentration of the respective substrates. The following enzymes were readily identified: glutaminase (EC: 3.5.1.2), alanine transaminase (EC: 2.6.1.2), aspartate transaminase (EC: 2.6.1.1), glycine transaminase (EC: 2.6.1.4), ornithine oxoacid aminotransferase (EC: 2.6.1.13), and carbamoyl phosphate synthase I (EC: 6.3.4.16). The specificity of the activity band was confirmed by high pressure liquid chromatography (HPLC) following incubation of the excised band with the corresponding substrates. These bands are amenable to further molecular characterization by a variety of analytical methods. This electrophoretic technology provides a powerful tool to screen these enzymes that contribute to nitrogen homeostasis in Pseudomonas fluorescens and possibly in other microbial systems.  相似文献   

19.
The mechanism of adaptation of the acrylamide producing strainRhodococcus rhodochrous M8 to changes in ammonium concentrations in the medium was studied. An increase in the content of ammonium in the medium changed the activity of glutamine synthetase (GS) (EC 6.3.1.2) and glutamine dehydrogenase (GD) (EC 1.4.1.4), the enzymes of ammonium assimilation, as well as the activities of enzymes responsible for nitrile utilization: nitrile hydratase (EC 4.2.1.84) and amidase (EC 3.5.1.4). This also inhibited the activation of GS induced by phosphodiesterase (EC 3.1.4.1 ). Increases in the activities of nitrile hydratase and amidase and resistance of these enzymes to ammonium were observed in mutant ofR. rhodichrous resistant to phosphotricine, an inhibitor of GS. An important role of GS in the mechanism of adaptation is suggested.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号