首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Formation of primary and secondary myotubes in rat lumbrical muscles   总被引:7,自引:0,他引:7  
Numbers of myoblasts, primary myotubes and secondary myotubes in developing rat embryo hindlimb IVth lumbrical muscles were counted at daily intervals up until the time of birth, using electron microscopy. Motoneurone death at the spinal cord level supplying the lumbricals was assessed by counting axons in the 4th lumbar ventral root. Death of the motoneurones that supply the intrinsic muscles of the hindfoot was monitored by comparing the timecourse of development of total muscle choline acetyltransferase activity in control embryos with that in embryos where motoneurone death was inhibited by chronic paralysis with TTX, and by counting axons in the mixed nerve trunks at the level of the ankle at daily intervals. Condensations of undifferentiated cells marking the site of formation of the muscle were seen on embryonic day 15 (E15). Primary myotubes began to appear on E16 and reached a stable number (102 +/- 4) by E17. Secondary myotubes first appeared two days later, on E19, and numbered 280 at the time of birth (E22). The adult total of about 1000 muscle fibres, derived from both primary and secondary myotubes, was reached at postnatal day 7 (PN7) so considerable generation of secondary myotubes occurred after birth. There was a linear correlation between the number of undifferentiated mononucleate cells in a muscle and the rate of formation of secondary myotubes. The major period of motoneurone death in lumbar spinal cord was during E16-E17, when axon numbers in the L4 ventral root fell from 12,000 to 4000, but a discontinuity in the curve of muscle ChAT activity versus time indicated that death in the lumbrical motor pool occurred during E17-E19, after all primary myotubes had formed and before generation of secondary myotubes began. We suggest that motoneurone death, by regulating the final size of the motoneurone pool, regulates the ratio of secondary to primary myotube numbers in a muscle.  相似文献   

2.
Myotubes were isolated from enzymically disaggregated embryonic muscles and examined with light microscopy. Primary myotubes were seen as classic myotubes with chains of central nuclei within a tube of myofilaments, whereas secondary myotubes had a smaller diameter and more widely spaced nuclei. Primary myotubes could also be distinguished from secondary myotubes by their specific reaction with two monoclonal antibodies (MAbs) against adult slow myosin heavy chain (MHC). Myonuclei were birth dated with [3H]thymidine autoradiography or with 2-bromo-5'-deoxyuridine (BrdU) detected with a commercial monoclonal antibody. After a single pulse of label during the 1-2 day period when primary myotubes were forming, some primary myotubes had many myonuclei labelled, usually in adjacent groups, while in others no nuclei were labelled. If a pulse of label was administered after this time labelled myonuclei appeared in most secondary myotubes, while primary myotubes received few new nuclei. Labelled and unlabelled myonuclei were not grouped in the secondary myotubes, but were randomly interspersed. We conclude that primary myotubes form by a nearly synchronous fusion of myoblasts with similar birthdates. In contrast, secondary myotubes form in a progressive fashion, myoblasts with asynchronous birthdates fusing laterally with secondary myotubes at random positions along their length. These later-differentiating myoblasts do not fuse with primary myotubes, despite being closely apposed to their surface. Furthermore, they do not generally fuse with each other, as secondary myotube formation is initiated only in the region of the primary myotube endplate.  相似文献   

3.
The distribution of secondary myotubes and undifferentiated mononucleated cells (presumed to be myoblasts) within foetal IVth lumbrical muscles of the rat was analyzed with serial section electron microscopy. In all myotube clusters for which the innervation zone was located, every secondary myotube overlapped the end-plate region of the primary myotube. No secondary myotubes were ever demonstrated to occur at a distance from the primary myotube innervation zone. This indicates that new secondary myotubes begin to form only in the innervation zone of the muscle. Some young secondary myotubes made direct contact with a nerve terminal, but we cannot say if this is true for all developing secondary myotubes. Myoblasts were not clustered near the innervation zone, but were uniformly distributed throughout the muscle. Myoblasts were frequently interposed between a primary and a secondary myotube, in equally close proximity to both cell membranes. We conclude that specificity in myoblast-myotube fusion does not depend on restrictions in the physical distribution of myoblasts within the muscle, and therefore must reflect more subtle mechanisms for intercellular recognition.  相似文献   

4.
Acetylcholinesterase (AChE) and AChE mRNA were evaluated in spontaneously fibrillating myotubes derived from 20-day-old rat fetuses and in matched cultures in which fibrillation was prevented by adding tetrodotoxin on the fourth day of culture. On the eighth day of culture, the AChE activity of fibrillating and nonfibrillating cultures was 5332 and 1861 pmol ACh hydrolyzed min-1 dish-1, respectively (P less than 0.005). Total mRNA was essentially the same in fibrillating and nonfibrillating cultures (27.4 and 25.4 micrograms/dish, respectively). AChE mRNA was assessed by assaying the AChE produced by Xenopus oocytes microinjected with purified mRNA. The AChE produced by mRNA from fibrillating and nonfibrillating cultures was 0.46 and 0.10 pmol ACh hydrolyzed min-1 oocyte-1, respectively (P less than 0.005).  相似文献   

5.
The early morphogenesis of rat skeletal muscle is a biphasic process involving two sequentially generated populations of myotubes. A small population of primary myotubes appears early and is followed by a much larger population of secondary myotubes which appear progressively over a number of days. All previously published electrophysiological studies of developing muscle have failed to appreciate the relevance of biphasic myotube production. Here we reevaluate the status of early motor innervation, taking into account the wide range of sizes and levels of maturity within the two myotube populations. Evoked end-plate potentials (EPPs) were recorded from fibers of E17-20 rat sternocostalis muscles. Impaled fibers were then marked by ejection of HRP from the recording pipet, enabling ultrastructural identification of fibers from which recordings had been made. The average number of synaptic inputs per fiber increased to a peak at E19, and the rate of rise of the EPPs increased with age. The majority of impaled fibers (76%) were subsequently found to be primary myotubes, even at ages when secondary myotubes formed the majority of fibers in the muscle. Electrophysiological studies during early stages of secondary myotube development therefore sample largely from the more mature primary fibers and probably give the wrong impression of the extent and degree of polyneuronal innervation and of synaptic rearrangement within the muscle. In addition, the results show that very young secondary myotubes are distinguished by EPPs of longer latency, slower rate of rise, and smaller size than those of other types of myotubes. These results suggest that young secondary myotubes are predominantly activated by EPPs which originate in adjoining primary myotubes and propagate electronically to the secondary myotube. We propose a new model of early synaptic rearrangement which accommodates the biphasic nature of muscle development. We also suggest that secondary myotubes do not require direct neural input for the initiation of their development.  相似文献   

6.
Summary Tissue composition, membrane potentials and cellular activity of potassium, sodium and chloride have been measured in innervated and denervated rat skeletal muscles incubatedin vitro. After denervation for 3 days, tissue water, sodium and chloride were increased but cellular potassium content and measured activity were little affected, despite a decrease of 16 mV in resting membrane potential which would have necessitated a decrease in cellular potassium activity of almost 50% were potassium distributed at electrochemical equilibrium. These findings, therefore, preclude a decreased electrochemical potential gradient for potassium as the cause of the membrane depolarization characteristic of denervated muscle fibers. Analysis of the data excludes an important contribution of rheogenic sodium transport to the resting potential of innervated muscles. These results strongly support the hypothesis that the decreased membrane potential in denervated fibers reflects a relative increase in the membrane permeability to sodium.  相似文献   

7.
We have used the calmodulin antagonists, trifluoperazine (TFP) and calmidazolium, to study the potential role of this protein in the movement of acetylcholine receptors (AChRs) to and from the myotube membrane, as well as in the formation of clusters of AChRs within the plasma membrane. Neither calmidazolium (up to 10(-6) M) nor TFP (10(-5) M) inhibited receptor degradation or the incorporation of new receptors (12 to 24 h). In addition, neither drug blocked the increased synthesis of receptors induced by chick brain extract, nor significantly affected AChR clusters already in the plane of the membrane at the time of drug addition. However, both drugs blocked new receptor clusters (induced by a basement membrane extract from Torpedo electric organ) from forming. These results indicate that receptors can move to and from the cell membrane in a calmodulin-independent fashion, but movement in the plane of the membrane to form a cluster requires the participation of calmodulin.  相似文献   

8.
The generation and development of muscle cells in the IVth hindlimb lumbrical muscle of the rat was studied following total or partial denervation. Denervation was carried out by injection of beta-bungarotoxin (beta-BTX), a neurotoxin which binds to and destroys peripheral nerves. Primary myotubes were generated in denervated muscles and reached their normal stable number on embryonic day 17 (E17). This number was not maintained and denervated muscles examined on E19 or E21 contained many degenerating primary myotubes. Embryos injected with beta-bungarotoxin (beta-BTX) on E12 or E13 suffered a partial loss of motoneurones, resulting in a reduced number of axons in the L4 ventral root (the IVth lumbrical muscle is supplied by axons in L4, L5 and L6 ventral roots) and reduced numbers of nerve terminals in the intrinsic muscles of the hindfoot. Twitch tension measurements showed that all myotubes in partly innervated muscles examined on E21 contracted in response to nerve stimulation. Primary myotubes were formed and maintained at normal numbers in muscles with innervation reduced throughout development, but a diminished number of secondary myotubes formed by E21. The latter was correlated with a reduction in number of mononucleate cells within the muscles. If beta-BTX was injected on E18 to denervate muscles after primary myotube formation was complete, E21 embryo muscles contained degenerating primary myotubes. After injection to denervate muscles on E19, the day secondary myotubes begin to form, E21 muscles possessed normal numbers of primary myotubes. In both cases, secondary myotube formation had stopped about 1 day after the injection and the number of mononucleate cells was greatly reduced, indicating that cessation of secondary myotube generation was most probably due to exhaustion of the supply of competent myoblasts. We conclude that nerve terminals regulate the number of secondary myotubes by stimulating mitosis in a nerve-dependent population of myoblasts and that activation of these myoblasts requires the physical presence of nerve terminals as well as activation of contraction in primary myotubes.  相似文献   

9.
Indirect immunofluorescence was used to localize embryonic myosin heavy chains in soleus, adductor longus, tibialis anterior, plantaris, and extensor digitorum longus muscles of 6-month-old rats. A monoclonal antibody (2B6), specifically recognizing rat embryonic myosin, was applied to unfixed, transverse, frozen sections. The number of embryonic myosin-positive (EMP) extrafusal fibers was expressed as a percentage of the total number of fibers. EMP extrafusal fibers were only seen in the soleus and adductor longus muscles, both postural muscles. Approximately 1% of the soleus muscle fibers appeared positively stained for embryonic myosin. The majority of such fibers had a small diameter (<500 ), appeared intensely fluorescent, and typically contained central nuclei. Re-expression of embryonic myosin due to spontaneous fiber denervation is not a likely factor in this study, since alpha-bungarotoxin and N-CAM localization were restricted to the motor end-plate region of EMP fibers. Since embryonic myosin was shown to disappear in all normal-sized myofibers by 2 to 3 months of age, the results suggest that the EMP extrafusal fibers seen in postural muscles of 6 to 12-month-old animals are regenerating myofibers. We speculate that a small number of muscle fibers may be regenerating in normal, adult postural muscles, in response to fiber damage possibly caused by excessive recruitment or overloading.  相似文献   

10.
Acetylcholine receptors (AChRs) accumulate at the junctional region during early development. In an attempt to characterize this process of AChR accumulation, we combined embryonic Xenopus neurons with myotubes formed from a rat skeletal muscle cell line. Xenopus neurons in culture are known to induce AChR accumulation in Xenopus muscles [Anderson, M. J., Cohen, M. W., and Zorychta, E. (1977). J. (London), 268, 731–756]. Rat myotubes, however, do not exhibit AChR accumulation in culture even when they are functionally innervated by the fetal rat spinal cord explant [Kidokoro, Y. (1980) Develop. Biol., 78, 231–241]. Establishment of synaptic transmission was examined electrophysiologically by recording synaptic potentials, while the distribution of AChR clusters was visualized using fluorescent α-bungarotoxin. Our results indicate that embryonic Xenopus neurons formed functional synaptic contacts but did not cause AChR accumulation in L6-myotubes. It seems that the ability of a nerve to cause AChR accumulation is separate from that to form the functional synapse. We also found that the mean amplitude of synaptic potentials in L6-myotubes interacted with Xenopus neurons was about half of that in L6-myotubes innervated by fetal rat spinal cord explants. Possible explanations for this finding are discussed.  相似文献   

11.
Both microtubules and microfilaments have been implicated in the exocytotic and endocytotic transport of coated and smooth surfaced membrane vesicles. We have reexamined this question by using specific pharmacological agents to disrupt these filaments and assess the effect on the movement of acetylcholine receptor (AChR) containing membrane vesicles in embryonic chick myotubes. Myotube cultures treated with nocodazole (0.6 microgram/ml) or colcemid (0.5 microgram/ml) (to disrupt microtubules) show only a 20-25% decrease in the number of cell surface AChRs after 48 h. Addition of chick brain extract (CBE) to cultured myotubes causes a significant increase in the total number of cell surface AChRs (measured by [125I]alpha-bungarotoxin (alpha-BGT) binding), thus providing us with a way to manipulate receptor and transport vesicle populations. Cultures treated with CBE plus nocodazole or colcemid show a 1.7-fold increase in AChR number over drug treatment alone, the same increase seen in cultures treated with CBE alone, although the total number remains about 20-25% less than that seen in control cultures. In cultures treated with cytochalasin D (0.2 microgram/ml) or dihydrocytochalasin B (5.0 micrograms/ml) (to disrupt microfilaments), 35 and 65% decreases in cell surface AChR number were seen after 48 h. However, in cultures treated with CBE and cytochalasin D, the same total number of AChRs was found as in cultures treated with CBE alone. No significant effects were seen with any of these drugs on the receptor incorporation rate (the appearance of new alpha-BGT-binding sites) after 6 h. The half-life for AChRs in control cultures was 23.0 h. In cytochalasin D and dihydrocytochalasin B it was 21.9 and 19.0 h, respectively; with colcemid and nocodazole, it increased to 37.1 and 28.1 h. These results suggest that non-myofibrillar microfilament bundles are not involved in the movement of AChR-containing membrane vesicles; further, the small effects seen with microtubule inhibitors tend to rule out a major role for microtubules in this transport.  相似文献   

12.
Some characteristics of myotubes cultured from slow and fast chick muscles   总被引:1,自引:0,他引:1  
Explant cultures were prepared from the slow anterior latissimus dorsi muscle and the fast posterior latissimus dorsi muscle of 15 day chick embryos. The morphology and growth pattern of myotubes from the two types of muscle were very similar. Intracellular microelectrode studies did not reveal consistent differences between the myotube types in regard to resting potential, input resistance, input time constant, or ability to produce active electrogenic responses. It is suggested that specific differentiation of the two muscles is determined by their innervation.  相似文献   

13.
Acetylcholine receptor (AChR) and sodium (Na(+)) channel distributions within the membrane of mature vertebrate skeletal muscle fibers maximize the probability of successful neuromuscular transmission and subsequent action potential propagation. AChRs have been studied intensively as a model for understanding the development and regulation of ion channel distribution within the postsynaptic membrane. Na(+) channel distributions have received less attention, although there is evidence that the temporal accumulation of Na(+) channels at developing neuromuscular junctions (NMJs) may differ between species. Even less is known about the development of extrajunctional Na(+) channel distributions. To further our understanding of Na(+) channel distributions within junctional and extrajunctional membranes, we used a novel voltage-clamp method and fluorescent probes to map Na(+) channels on embryonic chick muscle fibers as they developed in vitro and in vivo. Na(+) current densities on uninnervated myotubes were approximately one-tenth the density found within extrajunctional regions of mature fibers, and showed several-fold variations that could not be explained by a random scattering of single channels. Regions of high current density were not correlated with cellular landmarks such as AChR clusters or myonuclei. Under coculture conditions, AChRs rapidly concentrated at developing synapses, while Na(+) channels did not show a significant increase over the 7 day coculture period. In vivo investigations supported a significant temporal separation between Na(+) channel and AChR aggregation at the developing NMJ. These data suggest that extrajunctional Na(+) channels cluster together in a neuronally independent manner and concentrate at the developing avian NMJ much later than AChRs.  相似文献   

14.
15.
The formation of fast and slow myotubes was investigated in embryonic chick muscle during primary and secondary myogenesis by immunocytochemistry for myosin heavy chain and Ca2(+)-ATPase. When antibodies to fast or slow isoforms of these two molecules were used to visualize myotubes in the posterior iliotibialis and iliofibularis muscles, one of the isoforms was observed in all primary and secondary myotubes until very late in development. In the case of myosin, the fast antibody stained virtually all myotubes until after stage 40, when fast myosin expression was lost in the slow myotubes of the iliofibularis. In the case of Ca2(+)-ATPase, the slow antibody also stained all myotubes until after stage 40, when staining was lost in secondary myotubes and in the fast primary myotubes of the posterior iliotibialis and the fast region of the iliofibularis. In contrast, the antibodies against slow muscle myosin heavy chain and fast muscle Ca2(+)-ATPase stained mutually exclusive populations of myotubes at all developmental stages investigated. During primary myogenesis, fast Ca2(+)-ATPase staining was restricted to the primary myotubes of the posterior iliotibialis and the fast region of the iliofibularis, whereas slow myosin heavy chain staining was confined to all of the primary myotubes of the slow region of the iliofibularis. During secondary myogenesis, the fast Ca2(+)-ATPase antibody stained nearly all secondary myotubes, while primaries in the slow region of the iliofibularis remained negative. Thus, in the slow region of the iliofibularis muscle, these two antibodies could be used in combination to distinguish primary and secondary myotubes. EM analysis of staining with the fast Ca2(+)-ATPase antibody confirmed that it recognizes only secondary myotubes in this region. This study establishes that antibodies to slow myosin heavy chain and fast Ca2(+)-ATPase are suitable markers for selective labeling of primary and secondary myotubes in the iliofibularis; these markers are used in the following article to describe and quantify the effects that chronic blockade of neuromuscular activity or denervation has on these populations of myotubes.  相似文献   

16.
17.
The structure and motility of isolated rat primary (I) Schwann cells (SC) have been compared to that of subcultured (II) SC during and after mitotic stimulation. I SC contain myelin components which persist for 2 weeks in serum-free medium while they rapidly disappear in medium containing serum and high glucose concentration. These components were never detected in II SC. Both I SC and II SC after their mitotic phase are spindle-shaped, contain many intermediate and actin filaments, have no basement membrane but show intense migratory and undulatory activities. Rare fibroblasts in I cultures are recognized by their extremely variable shape, the presence of Thy 1.1 antigen in their membrane and their intense edge ruffling alternating with abrupt translocation. In contrast, I SC movements consist of intracellular translocation of nuclei along SC processes, which retract and extend constantly, and in slow rhythmic undulation episodes (2.3 ± 0.2/min) alternating with migration at 135 ± 50 μ/h. The total number of these episodes per day in serum-free medium is rigorously identical for different cells (166.3 ± 0.2) and this uniformity of frequency suggests a genotypic basis. Cycles, consisting of an undulation episode followed by a resting interval, have mean durations of 8.6 ± 4.1 min and a sharp peak of occurrence at 6 min, with exponential distribution of the longer periods. Motility of II SC is considerably inhibited during mitotic stimulation by cholera toxin and a pituitary extract while SC phenotype has changed to a flat multipolar cell with prominent Golgi and ribosomes. Migration is reduced to 24 ± 2 μ/h and only 2% of the SC show pulsations of the same periodicity as the I SC undulations. A dramatic increase in pulsation frequency occurs 6–12 h after removal of mitogenic factors when 80% of II SC start pulsating twice as fast for 2–3 days. When mitoses cease, SC quickly recover their SC phenotype with rhythmic undulations while migration speed increased to 92 ± 20 μ/h. Thus, in spite of dramatic modification of shape, structure and behavior during mitotic stimulation, SC subsequently recover their unique motility pattern which might be essential for their myelinating function.  相似文献   

18.
Centrioles are lost as embryonic myoblasts fuse into myotubes in vitro   总被引:1,自引:0,他引:1  
Embryonic chick myoblasts possess an extensive network of cytoplasmic microtubules which emanate from a single, perinuclear centrosome containing a microtubule-organizing center (MTOC) and the centrioles. However, after myoblasts fuse into myotubes the centrosome is no longer apparent, and instead long parallel arrays of microtubules are seen. From ultrastructural studies on developing muscle tissue, it has been proposed that centrioles are present in myoblasts but are absent from fused muscle fibers. We have examined this hypothesis in vitro in cultures of chick embryonic muscle cells using sera which specifically label centrioles. Almost all (90-97%) mononucleated cells in these cultures, including myoblasts aligned just prior to fusion, contain a pair of centrioles in close proximity to the nucleus. However, in newly fused multinucleated myotubes as well as in older myotubes that had developed myofibrils, centrioles were rarely found (1-10% positive cells). This study thus provides direct evidence for a loss of centrioles from muscle cells soon after they fuse to form myotubes.  相似文献   

19.
Cells obtained from the media and intima of ten days rat aorta, after enzymatic dissociation, were grown in subculture for up to three months. Electron microscopic observations demonstrate that these cells maintained the morphology of smooth muscle cells at all phases of their growth in subculture and kept their ability to synthesize and secrete intracellular proteins with better enzymatic features than the cells obtained by proliferation at the periphery of an explant.  相似文献   

20.
Actin isoform expression may change during development, and in certain physiological, experimental and pathological situations. It is accepted that during sarcomeric (skeletal and cardiac) muscle development, the alpha-skeletal and alpha-cardiac isoforms of actin accumulate rapidly at the onset of muscle fibre formation, while there is a rapid fall in the expression of nonmuscle (beta and gamma) actin isoforms. Here we show that, before birth, both skeletal and myocardial cells express significant amounts of alpha-smooth muscle actin mRNA and protein. This expression is transient and disappears over the 1-7 days following birth. Our findings show that the program regulating actin isoform expression in sarcomeric muscle development is complex and that alpha-smooth muscle actin participates in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号