首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的: 探讨吴茱萸次碱对高糖诱导的阿尔茨海默病(AD)大鼠认知功能障碍的影响及其机制。方法: 健康成年雄性SD大鼠随机分为3组(n=20):对照组、高糖组和吴茱萸次碱组。对照组大鼠行常规饲料和自来水饲养;高糖组大鼠行常规饲料和20%蔗糖水饲养;吴茱萸次碱组行0.01%吴茱萸次碱饲料和20%蔗糖水饲养。三组大鼠饲养24周后行Morris水迷宫实验检测大鼠学习记忆和认知功能,Western blot实验检测各组大鼠tau蛋白在Thr205和Ser214位点以及GSK-3β在丝氨酸9位点糖原合成酶激酶-3β(S9-GSK-3β)和PP2A在络氨酸307位点蛋白磷酸酯酶-2A(Y307-PP2A)的磷酸化水平;免疫组织化学进一步验证各组大鼠大脑海马和皮层tau蛋白在Thr205位点上的表达情况。结果: 与对照组比较,高糖组Morris水迷宫大鼠潜伏期明显升高,穿越平台次数和目标象限停留时间均明显降低(P均<0.05),免疫组织化学染色中tau蛋白在Thr205位点上的磷酸化水平显著增高(P< 0.05),Western blot实验tau蛋白在Thr205和Ser214位点的磷酸化水平显著增高,pS9-GSK-3β的磷酸化水平显著降低(P均<0.05);与高糖组相比,吴茱萸次碱组Morris水迷宫大鼠潜伏期明显降低,穿越平台次数和目标象限停留时间明显升高(P均<0.05),免疫组织化学染色中tau蛋白在Thr205位点的磷酸化水平显著降低(P<0.05);Western blot实验tau蛋白在Thr205和Ser214位点磷酸化水平显著降低,pS9-GSK-3β的磷酸化水平显著增高(P均< 0.05)。结论: 吴茱萸次碱可减轻高糖诱导的AD样大鼠认知功能障碍,其机制可能是通过增强海马pS9-GSK-3β磷酸化水平,下调GSK-3β活性,进而降低tau蛋白相关位点的过度磷酸化实现的。  相似文献   

2.
Prior work has shown that iron interacts with hyperphosphorylated tau, which contributes to the formation of neurofibrillary tangles (NFTs) in Alzheimer’s disease (AD), whereas iron chelator desferrioxamine (DFO) slows down the clinical progression of the cognitive decline associated with this disease. However, the effects of DFO on tau phosphorylation in the presence or absence of iron have yet to be determined. Using amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mouse brain as a model system, we investigated the effects and potential mechanisms of intranasal administration of DFO on iron induced abnormal tau phosphorylation. High-dose iron treatment markedly increased the levels of tau phosphorylation at the sites of Thr205, Thr231 and Ser396, whereas highly induced tau phosphorylation was abolished by intranasal administration of DFO in APP/PS1 transgenic mice. Moreover, DFO intranasal administration also decreases Fe-induced the activities of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3β (GSK3β), which in turn suppressing tau phosphorylation. Cumulatively, our data show that intranasal DFO treatment exerts its suppressive effects on iron induced tau phosphorylation via CDK5 and GSK3β pathways. More importantly, elucidation of DFO mechanism in suppressing tau phosphorylation may provide insights for developing therapeutic strategies to combat AD.  相似文献   

3.
Synapse loss is associated with motor and cognitive decline in multiple neurodegenerative disorders, and the cellular redistribution of tau is related to synaptic impairment in tauopathies, such as Alzheimer''s disease and frontotemporal dementia. Here, we examined the cellular distribution of tau protein species in human tau overexpressing line 66 mice, a transgenic mouse model akin to genetic variants of frontotemporal dementia. Line 66 mice express intracellular tau aggregates in multiple brain regions and exhibit sensorimotor and motor learning deficiencies. Using a series of anti-tau antibodies, we observed, histologically, that nonphosphorylated transgenic human tau is enriched in synapses, whereas phosphorylated tau accumulates predominantly in cell bodies and axons. Subcellular fractionation confirmed that human tau is highly enriched in insoluble cytosolic and synaptosomal fractions, whereas endogenous mouse tau is virtually absent from synapses. Cytosolic tau was resistant to solubilization with urea and Triton X-100, indicating the formation of larger tau aggregates. By contrast, synaptic tau was partially soluble after Triton X-100 treatment and most likely represents aggregates of smaller size. MS corroborated that synaptosomal tau is nonphosphorylated. Tau enriched in the synapse of line 66 mice, therefore, appears to be in an oligomeric and nonphosphorylated state, and one that could have a direct impact on cognitive function.  相似文献   

4.
Age is a critical factor in the prevalence of tauopathies, including Alzheimer's disease. To observe how an aging phenotype interacts with and affects the pathological intracellular accumulation of hyperphosphorylated tau, the tauopathy mouse model pR5 (expressing P301L mutant human tau) was back‐crossed more than ten times onto a senescence‐accelerated SAMP8 background to establish the new strain, SApT. Unlike SAMP8 mice, pR5 mice are characterized by a robust tau pathology particularly in the amygdala and hippocampus. Analysis of age‐matched SApT mice revealed that pathological tau phosphorylation was increased in these brain regions compared to those in the parental pR5 strain. Moreover, as revealed by immunohistochemistry, phosphorylation of critical tau phospho‐epitopes (P‐Ser202/P‐Ser205 and P‐Ser235) was significantly increased in the amygdala of SApT mice in an age‐dependent manner, suggesting an age‐associated effect of tau phosphorylation. Anxiety tests revealed that the older cohort of SApT mice (10 months vs. 8 months) exhibited a behavioural pattern similar to that observed for age‐matched tau transgenic pR5 mice and not the SAMP8 parental mice. Learning and memory, however, appeared to be governed by the accelerated aging background of the SAMP8 strain, as at both ages investigated, SAMP8 and SApT mice showed a decreased learning capacity compared to pR5 mice. We therefore conclude that accelerated aging exacerbates pathological tau phosphorylation, leading to changes in normal behaviour. These findings further suggest that SApT mice may be a useful novel model in which to study the role of a complex geriatric phenotype in tauopathy.  相似文献   

5.
Stress response is intimately involved in memory formation. Stress has been shown to cause reversible Alzheimer-like tau phosphorylation in the brain of experimental animals, but it is not known whether tau phoshorylation takes place during memory acquisition. As an initial investigation we chose contextual fear conditioning paradigm involving electric shocks, and studied tau phosphorylation in the hippocampus and a neighboring limbic region of the mouse brain. Quantitative immunoblot analyses of tissue extracts rapidly prepared from animals undergoing the conditioning showed statistically significant increases in the phosphorylation level at Thr231/Ser235 of tau in both tissues. The reaction reached statistical significance after 10 but not 3 shocks of 0.8mA. Ten shocks of 0.2mA were ineffective. Concurrent increases in phosphorylation of protein kinase TPKI/GSK3beta at Ser9 and of CaMKIIalpha at Thr286 were observed. These results suggest involvement of tau and TPKI/GSK3beta phosphorylation in an early phase of memory formation in the hippocampus and amygdala, raising a possibility that a dysregulation of tau phosphorylation may underlie memory impairment in incipient Alzheimer's disease.  相似文献   

6.
Hyperphosphorylated tau is an integral part of the neurofibrillary tangles that form within neuronal cell bodies, and tau protein kinase II is reported to play a role in the pathogenesis of Alzheimer's disease. Recently, we reported that tau protein kinase II (cdk5/p20)-phosphorylated human tau inhibits microtubule assembly, and tau protein kinase II (cdk5/p20) phosphorylation of microtubule-associated tau results in dissociation of phosphorylated tau from the microtubules and tubulin depolymerization. In the studies reported here, a combination of mass spectrometric techniques was used to study the phosphorylation of human recombinant tau by recombinant tau protein kinase II (cdk5/p20) in vitro. The extent of phosphorylation was determined by measuring the molecular mass of phosphorylated tau using mass spectrometry. Reaction of human recombinant tau with tau protein kinase II (cdk5/p20) resulted in the formation of two major species containing either five or six phosphate groups. The specific amino acid residues phosphorylated were determined by analyzing tryptic peptides by tandem mass spectrometry via either MALDI/TOF post-source decay or by electrospray tandem mass spectrometry. Based on these experiments, we conclude that tau protein kinase II (cdk5/p20) can phosphorylate human tau at Thr(181), Thr(205), Thr(212), Thr(217), Ser(396) and Ser(404).  相似文献   

7.
Microtubule associated protein tau, which is expressed in six alternatively spliced molecular isoforms in human brain, is abnormally hyperphosphorylated in Alzheimer disease and related tauopathies. Here, we show (i) that GSK-3alpha and neither GSK-3beta nor cdk5 can phosphorylate tau at Ser262 and phosphorylation at Ser235 by cdk5 primes phosphorylation at Thr231 by GSK-3alpha/beta; (ii) that tau isoforms with two N-terminal inserts (tau4L, tau3L) are phosphorylated by cdk5 plus GSK-3 at Thr231 markedly more than isoforms lacking these inserts (tau4, tau3); and (iii) that Thr231 is phosphorylated approximately 50% more in free tau than in microtubule-bound tau, and the phosphorylation at this site results in the dissociation of tau from microtubules. These findings suggest that the phosphorylation of tau at Thr231 and Ser262 by cdk5 plus GSK-3, which inhibits its normal biological activity, is regulated both by its amino terminal inserts and its physical state.  相似文献   

8.
Liu F  Liang Z  Shi J  Yin D  El-Akkad E  Grundke-Iqbal I  Iqbal K  Gong CX 《FEBS letters》2006,580(26):6269-6274
Phosphorylation of tau protein is regulated by several kinases, especially glycogen synthase kinase 3beta (GSK-3beta), cyclin-dependent protein kinase 5 (cdk5) and cAMP-dependent protein kinase (PKA). Phosphorylation of tau by PKA primes it for phosphorylation by GSK-3beta, but the site-specific modulation of GSK-3beta-catalyzed tau phosphorylation by the prephosphorylation has not been well investigated. Here, we found that prephosphorylation by PKA promotes GSK-3beta-catalyzed tau phosphorylation at Thr181, Ser199, Ser202, Thr205, Thr217, Thr231, Ser396 and Ser422, but inhibits its phosphorylation at Thr212 and Ser404. In contrast, the prephosphorylation had no significant effect on its subsequent phosphorylation by cdk5 at Thr181, Ser199, Thr205, Thr231 and Ser422; inhibited it at Ser202, Thr212, Thr217 and Ser404; and slightly promoted it at Ser396. These studies reveal the nature of the inter-regulation of tau phosphorylation by the three major tau kinases.  相似文献   

9.
Site-specific phosphorylation of tau negatively regulates its ability to bind and stabilize microtubule structure. Although tau is a substrate of glycogen synthase kinase 3beta (GSK3beta), the exact sites on tau that are phosphorylated by this kinase in situ have not yet been established, and the effect of these phosphorylation events on tau-microtubule interactions have not been fully elucidated. GSK3beta phosphorylates both primed and unprimed sites on tau, but only primed phosphorylation events significantly decrease the ability of tau to bind microtubules. The focus of the present study is on determining the importance of the GSK3beta-mediated phosphorylation of a specific primed site, Thr231, in regulating tau's function. Pre-phosphorylation of Ser235 primes tau for phosphorylation by GSK3beta at Thr231. Phosphorylation by GSK3beta of wild-type tau or tau with Ser235 mutated to Ala decreases tau-microtubule interactions. However, when Thr231 alone or Thr231 and Ser235 in tau were mutated to Ala, phosphorylation by GSK3beta did not decrease the association of tau with the cytoskeleton. Further, T231A tau was still able to efficiently bind microtubules after phosphorylation by GSK3beta. Expression of each tau construct alone increased tubulin acetylation, a marker of microtubule stability. However, when cells were cotransfected with wild-type tau and GSK3beta, the level of tubulin acetylation was decreased to vector-transfected levels. In contrast, coexpression of GSK3beta with mutated tau (T231A/S235A) did not significantly decrease the levels of acetylated tubulin. These results strongly indicate that phosphorylation of Thr231 in tau by GSK3beta plays a critical role in regulating tau's ability to bind and stabilize microtubules.  相似文献   

10.
In laboratory animals, calorie restriction (CR) protects against aging, oxidative stress, and neurodegenerative pathologies. Reduced levels of growth hormone and IGF‐1, which mediate some of the protective effects of CR, can also extend longevity and/or protect against age‐related diseases in rodents and humans. However, severely restricted diets are difficult to maintain and are associated with chronically low weight and other major side effects. Here we show that 4 months of periodic protein restriction cycles (PRCs) with supplementation of nonessential amino acids in mice already displaying significant cognitive impairment and Alzheimer's disease (AD)‐like pathology reduced circulating IGF‐1 levels by 30–70% and caused an 8‐fold increase in IGFBP‐1. Whereas PRCs did not affect the levels of β amyloid (Aβ), they decreased tau phosphorylation in the hippocampus and alleviated the age‐dependent impairment in cognitive performance. These results indicate that periodic protein restriction cycles without CR can promote changes in circulating growth factors and tau phosphorylation associated with protection against age‐related neuropathologies.  相似文献   

11.
Abnormal phosphorylation of microtubule-associated protein tau plays a critical role in Alzheimer's disease (AD), together with a distinct decrease of energy metabolism in the affected brain regions. To explore the effect of acute energy crisis on tau phosphorylation and the underlying mechanisms, we incubated rat brain slices in artificial cerebrospinal fluid (aCSF) at 37 degrees C with or without an oxygen supply, or in aCSF with low glucose concentrations. Then, the levels of total, phosphorylated and unphosphorylated tau, as well as the activities and levels of protein phosphatase (PP)-1, PP-2A, glycogen synthase kinase 3 (GSK-3), extracellular signal-regulated protein kinase (ERK) and C-jun amino terminal kinase (JNK), were measured. It was found, unexpectedly, that tau was significantly dephosphorylated at Ser396/Ser404 (PHF-1), Ser422 (R145), Ser199/Ser202 (Tau-1), Thr181 (AT270), Ser202/Thr205 (AT8) and Thr231 (AT180) by acute anoxia for 30 min or 120 min. The activity of PP-2A and the level of dephosphorylated PP-2A catalytic subunit at tyrosine 307 (Tyr307) were simultaneously increased. The active forms of ERK1/2 and JNK1/2 were decreased under anoxic incubation. The PP-2A inhibitor, okadaic acid (OA, 0.75 microm), completely prevented tau from acute anoxia-induced dephosphorylation and restored the active forms of ERK1/2 and JNK1/2 to the control level. The activities and protein levels of GSK-3 and PP-1 showed no change during acute anoxia. These data suggest that acute anoxia induces tau dephosphorylation, and that PP-2A may play a key role in tau dephosphorylation induced by acute anoxia.  相似文献   

12.

Purpose

Neurofibrillary tangles, one of pathological features of Alzheimer’s disease, are produced by the hyperphosphorylation and aggregation of tau protein. This study aimed to investigate the effects of treadmill exercise on PI3K/AKT/mTOR signal transmission, autophagy, and cognitive ability that are involved in the hyperphosphorylation and aggregation of tau protein.

Methods

Experimental animals (NSE/htau23 mice) were divided into non-transgenic control group (Non-Tg-Control; CON; n = 7), transgenic control group (Tg-CON; n = 7), and transgenic exercise group (Tg-Treadmill Exercise; TE; n = 7). The Tg-TE group was subjected to treadmill exercise for 12 weeks. After the treadmill exercise was completed, the cognitive ability was determined by conducting underwater maze tests. Western blot was conducted to determine the phosphorylation status of PI3K/AKT/mTOR proteins and autophagy-related proteins (Beclin-1, p62, LC3-B); hyperphosphorylation and aggregation of tau protein (Ser199/202, Ser404, Thr231, PHF-1); and phosphorylation of GSK-3β, which is involved in the phosphorylation of tau protein in the cerebral cortex of experimental animals.

Results

In the Tg-TE group that was subjected to treadmill exercise for 12 weeks, abnormal mTOR phosphorylation of PI3K/AKT proteins was improved via increased phosphorylation and its activity was inhibited by increased GSK-3β phosphorylation compared with those in the Tg-CON group, which was used as the control group. In addition, the expression of Beclin-1 protein involved in autophagosome formation was increased in the Tg-TE group compared with that in the Tg-CON group, whereas that of p62 protein was reduced in the Tg-TE group compared with that in the Tg-CON group. Autophagy was activated owing to the increased expression of LC3-B that controls the completion of autophagosome formation. The hyperphosphorylation and aggregation (Ser199/202, Ser404, Thr231, PHF-1) of tau protein was found to be reduced in the Tg-TE group compared with that in the Tg-CON group. Furthermore, in the underwater maze test, the Tg-TE group showed a reduced escape time and distance compared with those of the Tg-CON group, suggesting that learning and cognitive ability were improved.

Conclusion

These findings suggest that aerobic exercise such as treadmill exercise might be an effective approach to ameliorate the pathological features (or neurofibrillary tangles) of Alzheimer’s disease.  相似文献   

13.
Pathological hyperphosphorylation of the microtubule-associated protein tau is characteristic of Alzheimer's disease (AD) and the associated tauopathies. The reciprocal relationship between phosphorylation and O-GlcNAc modification of tau and reductions in O-GlcNAc levels on tau in AD brain offers motivation for the generation of potent and selective inhibitors that can effectively enhance O-GlcNAc in vertebrate brain. We describe the rational design and synthesis of such an inhibitor (thiamet-G, K(i) = 21 nM; 1) of human O-GlcNAcase. Thiamet-G decreased phosphorylation of tau in PC-12 cells at pathologically relevant sites including Thr231 and Ser396. Thiamet-G also efficiently reduced phosphorylation of tau at Thr231, Ser396 and Ser422 in both rat cortex and hippocampus, which reveals the rapid and dynamic relationship between O-GlcNAc and phosphorylation of tau in vivo. We anticipate that thiamet-G will find wide use in probing the functional role of O-GlcNAc in vertebrate brain, and it may also offer a route to blocking pathological hyperphosphorylation of tau in AD.  相似文献   

14.
Neuronal inclusions of aggregated RNA‐binding protein fused in sarcoma (FUS) are hallmarks of ALS and frontotemporal dementia subtypes. Intriguingly, FUS's nearly uncharged, aggregation‐prone, yeast prion‐like, low sequence‐complexity domain (LC) is known to be targeted for phosphorylation. Here we map in vitro and in‐cell phosphorylation sites across FUS LC. We show that both phosphorylation and phosphomimetic variants reduce its aggregation‐prone/prion‐like character, disrupting FUS phase separation in the presence of RNA or salt and reducing FUS propensity to aggregate. Nuclear magnetic resonance spectroscopy demonstrates the intrinsically disordered structure of FUS LC is preserved after phosphorylation; however, transient domain collapse and self‐interaction are reduced by phosphomimetics. Moreover, we show that phosphomimetic FUS reduces aggregation in human and yeast cell models, and can ameliorate FUS‐associated cytotoxicity. Hence, post‐translational modification may be a mechanism by which cells control physiological assembly and prevent pathological protein aggregation, suggesting a potential treatment pathway amenable to pharmacologic modulation.  相似文献   

15.
ABSTRACT: BACKGROUND: Fibrillar amyloid-like deposits and co-deposits of tau and alpha-synuclein are found in several common neurodegenerative diseases. Recent evidence indicates that small oligomers are the most relevant toxic aggregate species. While tau fibril formation is well-characterized, factors influencing tau oligomerization and molecular interactions of tau and alpha-synuclein are not well understood. RESULTS: We used a novel approach applying confocal single-particle fluorescence to investigate the influence of tau phosphorylation and metal ions on tau oligomer formation and its coaggregation with alpha-synuclein at the level of individual oligomers. We show that Al3+ at physiologically relevant concentrations and tau phosphorylation by GSK-3beta exert synergistic effects on the formation of a distinct SDS-resistant tau oligomer species even at nanomolar protein concentration. Moreover, tau phosphorylation and Al3+ as well as Fe3+ enhanced both formation of mixed oligomers and recruitment of alpha-synuclein in pre-formed tau oligomers. CONCLUSIONS: Our findings provide a new perspective on interactions of tau phosphorylation, metal ions, and the formation of potentially toxic oligomer species, and elucidate molecular crosstalks between different aggregation pathways involved in neurodegeneration.  相似文献   

16.
Tangles containing hyperphosphorylated aggregates of insoluble tau are a pathological hallmark of progressive supranuclear palsy (PSP). Several phosphorylation sites on tau in PSP have been identified using phospho-specific antibodies, but no sites have been determined by direct sequencing due to the difficulty in enriching insoluble tau from PSP brain. We describe a new method to enrich insoluble PSP-tau and report eight phosphorylation sites [Ser46, Thr181, Ser202, Thr217, Thr231, Ser235, Ser396/Ser400 (one site) and Thr403/Ser404 (one site)] identified by mass spectrometry. We also describe a 35 kDa C-terminal tau fragment (tau35), lacking the N-terminus of tau but containing four microtubule-binding repeats (4R), that is present only in neurodegenerative disorders in which 4R tau is over-represented. Tau35 was readily detectable in PSP, corticobasal degeneration and 4R forms of fronto-temporal dementia with parkinsonism linked to chromosome 17, but was absent from control, Alzheimer's disease and Pick's disease brain. Our findings suggest the aggregatory characteristics of PSP-tau differ from those of insoluble tau in Alzheimer's disease brain and this might be related to the presence of a C-terminal cleavage product of tau.  相似文献   

17.
Transgenic mice (JNPL3), which develop neurofibrillary degeneration and express four-repeat human tau with P301L missense mutation, were characterized biochemically to determine whether the development of aggregated tau from soluble tau involves an intermediate stage. Homogenates from mice of different ages were separated into buffer-soluble (S1), sarkosyl- and salt-extractable (S2) and sarkosyl-insoluble pellet (P3) fractions, and analyzed for human tau distribution, phosphorylation and filament formation. S1 and S2 fractions contained 50-60-kDa tau whereas the S2 fraction also had 64-kDa tau. The level of tau in the P3 fraction increased in an age-dependent manner and correlated positively with the soluble tau concentration. The P3 fraction from 2.5-6.5-month-old mice contained 64- and 50-60-kDa tau, whereas that from 8.5-month and older transgenic animals contained mostly 64-kDa and higher molecular weight tau. The S2 and P3 fractions contained comparable amounts of 64-kDa tau. The 64-kDa tau was predominantly human, and phosphorylated at multiple sites: Thr181, Ser202/Thr205, Thr212, Thr231, Ser262, Ser396/Ser404, Ser409 and Ser422. Most of these sites were phosphorylated to a lesser extent in S2 than in P3 fractions. Tau polymers were detected in P3 fractions from 3-month and older female JNPL3 mice, but not in non-transgenic controls. The results suggest that tau in S2 represents an intermediate from which insoluble tau is derived, and that phosphorylation may play a role in filament formation and/or stabilization.  相似文献   

18.
Avila J 《FEBS letters》2006,580(12):2922-2927
In this article I shall review how tau phosphorylation and aggregation participates in Alzheimer's disease (AD) and other tauopathies. Tau, a microtubule associated protein, is the main component, in phosphorylated form, of the aberrant paired helical filaments found in AD. Tau is present in phosphorylated and aggregated form not only in AD, but in other pathologies (tauopathies). In this review, the phosphorylation of tau, its aggregation, and the possible relation between tau phosphorylation and aggregation is, briefly, described. Also, it is discussed the toxicity of modified tau. In addition, I propose a working model detailing the progression of tau pathologies.  相似文献   

19.
Hyperphosphorylation of the microtubule-associated protein tau is believed to play a crucial role in the neurofibrillary tangles formation in Alzheimer’s disease brain. In this study, fibril formation of peptides containing the critical sequences for tau aggregation VQIINK and a plausible serine phosphorylation site of tau at its C-terminal was investigated. All the peptides formed fibrils with the typical cross-β structural core. However, stability of the fibrils was highly sensitive to the pH conditions for the phosphorylated VQIINK peptide, suggesting a regulatory role of phosphorylation for the amyloid-formation of tau.  相似文献   

20.
Mouse models of neurodegenerative diseases such as Alzheimer’s disease (AD) are important for understanding how pathological signaling cascades change neural circuitry and with time interrupt cognitive function. Here, we introduce a non-genetic preclinical model for aging and show that it exhibits cleaved tau protein, active caspases and neurofibrillary tangles, hallmarks of AD, causing behavioral deficits measuring cognitive impairment. To our knowledge this is the first report of a non-transgenic, non-interventional mouse model displaying structural, functional and molecular aging deficits associated with AD and other tauopathies in humans with potentially high impact on both new basic research into pathogenic mechanisms and new translational research efforts. Tau aggregation is a hallmark of tauopathies, including AD. Recent studies have indicated that cleavage of tau plays an important role in both tau aggregation and disease. In this study we use wild type mice as a model for normal aging and resulting age-related cognitive impairment. We provide evidence that aged mice have increased levels of activated caspases, which significantly correlates with increased levels of truncated tau and formation of neurofibrillary tangles. In addition, cognitive decline was significantly correlated with increased levels of caspase activity and tau truncated by caspase-3. Experimentally induced inhibition of caspases prevented this proteolytic cleavage of tau and the associated formation of neurofibrillary tangles. Our study shows the strength of using a non-transgenic model to study structure, function and molecular mechanisms in aging and age related diseases of the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号