首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Invasive species often displace native species and can affect ecological processes in invaded habitats. If invasive species become abundant, changes in prey availability may be particularly harmful to specialist predators. The Argentine ant, Linepithema humile Mayr, is an important invasive species on nearly all continents. Spiders of the genus Zodarion are specialised ant-eating predators native to the Mediterranean yet it is unknown if they can exploit invasive ant species. Here we studied spatial and temporal abundance of this invasive ant and the native spider, Zodarion cesari Pekár, during 4?years in four citrus groves. Circadian activity of both spiders and ants, and capture efficiency and prey specificity of the predator were also evaluated. The abundance of Z. cesari was strongly correlated to L. humile abundance. The predatory activity of spiders varied seasonally with differences on the relative frequency of spiders capturing ants depending on the time of the year. In laboratory, Z. cesari displayed most efficient capture upon the native ant Tapinoma nigerrimum (Nylander) and the invasive ant L. humile in comparison with five other native ant species. These results demonstrate that the native spider Z. cesari is successfully exploiting the invasive ant species L. humile and is likely a locally monophagous predator. We suggest that Z. cesari shifted away from native T. nigerrimum post invasion as both ant species are phylogenetically related and of similar size.  相似文献   

2.
The Argentine ant Linepithema humile (Dolichoderinae) is one of the most widespread invasive ant species in the world. Throughout its introduced range, it is associated with the loss or reduced abundance of native ant species. The mechanisms by which these native species are displaced have received limited attention, particularly in Australia. The role of interference competition in the displacement of native ant species by L. humile was examined in coastal vegetation in central Victoria (southeastern Australia). Foragers from laboratory colonies placed in the field consistently and rapidly displaced the tyrant ant Iridomyrmex bicknelli, the big-headed ant Pheidole sp. 2, and the pony ant Rhytidoponera victoriae from baits. Numerical and behavioural dominance enabled Argentine ants to displace these ants in just 20 min; the abundance of native species at baits declined 3.5–24 fold in direct relation to the rapid increase in L. humile. Most precipitous was the decline of I. bicknelli, even though species in this typically dominant genus have been hypothesized to limit invasion of L. humile in Australia. Interspecific aggression contributed strongly to the competitive success of Argentine ants at baits. Fighting occurred in 50–75% of all observed interactions between Argentine and native ants. This study indicates that Argentine ants recruit rapidly, numerically dominate, and aggressively displace from baits a range of Australian native ant species from different subfamilies and functional groups. Such direct displacement is likely to reduce native biodiversity and indirectly alter food web structure and ecosystem processes within invaded areas. Biotic resistance to Argentine ant invasion from native ants in this coastal community in southeastern Australia is not supported in this study.  相似文献   

3.
Predator–prey interactions play a key role in the success and impacts of invasive species. However, the effects of invasive preys on native predators have been poorly studied. Here, we first reviewed hypotheses describing potential relationships between native predators and invasive preys. Second, we examined how an invasive prey, the Argentine ant (Linepithema humile), affected a native terrestrial amphibian community. In the field, we looked at the structure of the amphibian community in invaded versus uninvaded areas and characterized amphibian trophic ecology. The amphibian community sampled seemed to show a species-dependent response in abundance to invasion: adults of the natterjack toad (Bufo calamita), the species demonstrating the highest degree of ant specialization, were less abundant in invaded areas. Although available ant biomass was significantly greater in invaded than in uninvaded areas (only Argentine ants occurred in the former), amphibians consumed relatively fewer ants in invaded areas. In the lab, we quantified amphibian consumption of Argentine ants versus native ants and assessed whether consumption patterns could have been influenced by prior exposure to the invader. The lab experiments corroborated the field results: amphibians preferred native ants over Argentine ants, and prior exposure did not influence consumption. Differences in preference explained why amphibians consumed fewer Argentine ants in spite of their greater relative availability; they might also explain why the most ant-specialized amphibians seemed to avoid invaded areas. Our results suggest the importance to account for predator feeding capacities and dietary ranges to understand the effects of invasive species at higher trophic levels.  相似文献   

4.
Invasive ants threaten native biodiversity and ecosystem function worldwide. Although their principal direct impact is usually the displacement of native ants, they may also affect other invertebrates. The Argentine ant, Linepithema humile (Dolichoderinae), one of the most widespread invasive ant species, has invaded native habitat where it abuts peri‐urban development in coastal Victoria in south‐eastern Australia. Here we infer impacts of the Argentine ant on native ants and other litter and ground‐dwelling invertebrates by comparing their abundance and taxonomic composition in coastal scrub forest either invaded or uninvaded by the Argentine ant. Species composition of native ants at bait stations and extracted from litter differed significantly between Argentine ant‐invaded and uninvaded sites and this was consistent across years. Argentine ants had a strong effect on epigeic ants, which were either displaced or reduced in abundance. The native ant Rhytidoponera victoriae (Ponerinae), numerically dominant at uninvaded sites, was completely absent from sites invaded by the Argentine ant. However, small hypogeic ants, including Solenopsis sp. (Myrmicinae) and Heteroponera imbellis (Heteroponerinae), were little affected. Linepithema humile had no detectable effect upon the abundance and richness of other litter invertebrates. However, invertebrate group composition differed significantly between invaded and uninvaded sites, owing to the varied response of several influential groups (e.g. Collembola and Acarina). Floristics, habitat structure and measured environmental factors did not differ significantly between sites either invaded or uninvaded by Argentine ants, supporting the contention that differences in native ant abundance and species composition are related to invasion. Changes in the native ant community wrought by Argentine ant invasion have important implications for invertebrate communities in southern Australia and may affect key processes, including seed dispersal.  相似文献   

5.
Ants are often considered antagonists when they visit flowers because they typically steal nectar without providing pollination services. Previous research on ant–flower interactions on two species of South African Proteaceae in the Cape Floral Kingdom revealed that the invasive Argentine ant (Linepithema humile), but not native ants, displace other floral arthropod visitors. To determine how common Argentine ant use of inflorescences is, how Argentine and native ant visits differ in the numbers they recruit to inflorescences, and what factors may affect Argentine and native ant foraging in inflorescences, I surveyed 723 inflorescences in 10 species in the genera Protea and Leucospermum across 16 sites and compared ant presence and abundance in inflorescences with abundance at nearby cat food and jam baits. Argentine ants were the most commonly encountered ant of the 22 observed. Argentine ants, as well as six species of native ants were present in all inflorescences for which they were present at nearby baits. Mean Argentine ant abundance per inflorescence was 4.4 ± 0.84 (SE) ants and similar to that of Anoplolepis custodiens and Crematogaster peringueyi, but higher than observed for the other most commonly encountered native ants, Camponotus niveosetosus and Lepisiota capensis. Both Argentine ants and A. custodiens were more likely to be found foraging in spring and under humid conditions, and in inflorescences closer to the ground, with lower sucrose concentrations, and with a greater proportion of open flowers. Argentine ants were more likely to be found in Protea inflorescences, whereas A. custodiens and L. capensis more often visited Leucospermum inflorescences. Considering its displacement of floral arthropods and widespread use of Proteaceae inflorescences, the Argentine ant could be posing a serious threat to plant and pollinator conservation in this biodiversity hotspot.  相似文献   

6.
David A. Holway 《Oecologia》1998,116(1-2):252-258
Although the Argentine ant (Linepithema humile) is a widespread invasive species that displaces native ants throughout its introduced range, the effects of these invasions on arthropods other than ants remain poorly known. This study documents the consequences of Argentine ant invasions on ants and other ground-dwelling arthropods in northern California riparian woodlands. Baits and unbaited pitfall traps were used to sample different components of the arthropod communities at five pairs of uninvaded and invaded sites. Sites occupied by Argentine ants supported almost no native epigeic ants except for the winter-active Prenolepis imparis. Sites with Argentine ants averaged four to ten times more ant workers than did sites with native ants, but ant worker biomass did not differ between uninvaded and invaded sites. Argentine ants recruited to baits in invaded areas, on average, in less than half the time of native ants in uninvaded areas. Despite the loss of epigeic native ants, higher Argentine ant worker abundance, and faster recruitment by Argentine ants at invaded sites, pitfall trap samples from uninvaded and invaded areas contained similar abundances and diversities of non-ant arthropods. These findings suggest that Argentine ants and the native ants they displace interact with the ground-dwelling arthropods of these habitats in a similar manner. Received: 24 February 1997 / Accepted: 9 November 1997  相似文献   

7.
Abstract.  1. Floral nectar of the native Hawaiian 'ōhi'a tree, Metrosideros polymorpha , is an important food source for several native honeycreepers and yellow-faced bees, Hylaeus spp., but is also attractive to invasive ants.
2. I undertook this study to compare floral visitation patterns of two widespread invasive ants, the Argentine ant, Linepithema humile , and the big-headed ant, Pheidole megacephala , and to determine their effects on nectar volume and floral hymenopteran visitors.
3. In the first year of the study, Argentine ants visited inflorescences more frequently than big-headed ants at mid-day and in the afternoon, but did not occur in higher densities than big-headed ants at any time of day. In the following year, Argentine ants visited inflorescences both more frequently and in higher densities than big-headed ants. Argentine ant density had a stronger association with nectar concentration than big-headed ant density.
4. Nectar volume did not differ between ant-excluded and ant-visited inflorescences for either ant species. However, ant density was negatively associated with nectar volume for both species.
5.  Hylaeus spp. never visited inflorescences with big-headed ants, while non-native honeybees visited inflorescences with and without ants of either species in equal frequency.
6. Most studies of the effects of invasive ants on native arthropods have focused on interactions on the ground. Flowers should not be overlooked as microhabitats from which native arthropods may be displaced by invasive ants.  相似文献   

8.
1. Competition by dominant species is thought to be key to structuring ant communities. However, recent findings suggest that the effect of dominant species on communities is less pronounced than previously assumed. 2. The aim of the present study was to identify the role of dominant ants in the organisation of Mediterranean communities, particularly the role of competition in invaded and uninvaded communities. The effects on ant assemblages of two dominant ants, the invasive Argentine ant and the native ant, Tapinoma nigerrimum Nylander, were assessed. 3. The abundances of both dominant ants were significantly correlated with a decrease in native ant richness at traps. However, only the invasive ant was associated with a reduction in diversity and abundance of other ant species at site scale. In the presence of T. nigerrimum, species co‐occurrence patterns were segregated or random. Community structure in both the dominant‐free and the Argentine ant sites showed random patterns of species co‐occurrence. 4. The present findings indicate that dominant ants regulate small‐scale diversity by competition. However, at the broader scale of the assemblage, T. nigerrimum may only affect species distribution, having no apparent effect on community composition. Moreover, we find no evidence that inter‐specific competition shapes species distribution in coastal Mediterranean communities free of dominant ants. 5. These results show that dominant species may affect ant assemblages but that the nature and the intensity of such effects are species and scale dependent. This confirms the hypothesis that competitive dominance may be only one of a range of factors that structure ant communities.  相似文献   

9.
Invasive ants are notorious for directly displacing native ant species. Although such impacts are associated with Argentine ant invasions (Linepithema humile) worldwide, impacts within natural habitat are less widely reported, particularly those affecting arboreal ant communities. Argentine ants were detected in North Carolina mixed pine-hardwood forest for the first time but were localized on and around loblolly pines (Pinus taeda), probably because of association with honeydew-producing Hemiptera. We explored the potential impacts of L. humile on arboreal and ground-foraging native ant species by comparing interspersed loblolly pines invaded and uninvaded by Argentine ants. Impacts on native ants were assessed monthly over 1 yr by counting ants in foraging trails on pine trunks and in surrounding plots using a concentric arrangement of pitfall traps at 1, 2, and 3 m from the base of each tree. Of floristics and habitat variables, higher soil moisture in invaded plots was the only difference between plot types, increasing confidence that any ant community differences were caused by Argentine ants. Overall patterns of impact were weak. Composition differed significantly between Argentine ant invaded and uninvaded trunks and pitfalls but was driven only by the presence of Argentine ants rather than any resulting compositional change in native ant species. Native ant abundance and richness were similarly unaffected by L. humile. However, the abundance of individual ant species was more variable. Although numbers of the arboreal Crematogaster ashmeadi (Myrmicinae) declined on and around invaded pines, epigeic Aphaenogaster rudis (Myrmicinae) remained the most abundant species in all plots. Argentine ant densities peaked in late summer and fall, therefore overlapping with most native ants. Unexpected was their continued presence during even the coldest months. We provide evidence that Argentine ants can invade and persist in native North Carolina forests, probably mediated by pine-associated resources. However, their localized distribution and minimal impact on the native ant fauna relative to previously described invasions requires further resolution.  相似文献   

10.
The Argentine ant (Linepithema humile) is an invasive species that disrupts the balance of natural ecosystems by displacing indigenous ant species throughout its introduced range. Previous studies that examined the mechanisms by which Argentine ants attain ecological dominance showed that superior interference and exploitation competition are key to the successful displacement of native ant species. The objective of this research was to test the hypothesis that effective interference competition by Argentine ants may also be detrimental to the survival of Argentine ant colonies where Argentine ants and native ants compete at toxic baits used to slow the spread of Argentine ants. To study this hypothesis, we examined the competitive interactions between Argentine ants and native odorous house ants, Tapinoma sessile, in the presence and absence of toxic baits. Results showed that Argentine ants aggressively outcompete T. sessile from toxic baits through efficient interference competition and monopolize bait resources. This has severe negative consequences for the survival of Argentine ants as colonies succumb to the toxic effects of the bait. In turn, T. sessile avoid areas occupied by Argentine ants, give up baits, and consequently suffer minimal mortality. Our results provide experimental evidence that highly efficient interference competition may have negative consequences for Argentine ants in areas where toxic baits are used and may provide a basis for designing innovative management programs for Argentine ants. Such programs would have the double benefit of selectively eliminating the invasive species while simultaneously protecting native ants from the toxic effects of baits.  相似文献   

11.
The increasing numbers of invasive species have stimulated the study of the underlying causes promoting the establishment and spread of exotic species. We tracked the spread of the highly invasive Argentine ant (Linepithema humile) along an environmental and habitat gradient on the northeastern Iberian Peninsula to determine the role of climatic, habitat and biotic variables on the rate of spread, and examine impact on native ant communities. We found the species well-established within natural environments. The mean annual rate of spread of the invasion (7.94 ± 2.99 m/year) was relatively low compared to other studies, suggesting that resistance posed by native ants in natural environments with no or low human disturbance might delay (although not prevent) the spread of the invasion irrespectively of the land-use type. Factors related to the distance to urban areas and characteristics of native and introduced populations explained the rate of spread of the invasion, while habitat-related variables determined the distribution of native ants and the impact of the Argentine ant on them. Native ant communities became more homogeneous following the invasion due to the decline of species richness and abundance. Only few species (Plagiolepis pygmaea and Temnothorax spp.) were able to cope with the spread of the invasion, and were possibly favored by the local extinction of other ant species. Taken together, our results indicate that land uses per se do not directly affect the spread of L. humile, but influence its invasive success by molding the configuration of native ant communities and the abiotic suitability of the site.  相似文献   

12.
Interactions between the invasive Argentine ant, Linepithema humile, and native ant species were studied in a 450-ha biological reserve in northern California. Along the edges of the invasion, the presence of Argentine ants significantly reduced the foraging success of native ant species, and vice versa. Argentine ants were consistently better than native ants at exploiting food sources: Argentine ants found and recruited to bait more consistently and in higher numbers than native ant species, and they foraged for longer periods throughout the day. Native ants and Argentine ants frequently fought when they recruited to the same bait, and native ant species were displaced from bait during 60% of these encounters. In introduction experiments, Argentine ants interfered with the foraging of native ant species, and prevented the establishment of new colonies of native ant species by preying upon winged native ant queens. The Argentine ants' range within the preserve expanded by 12 ha between May 1993 and May 1994, and 13 between September 1993 and September 1994, with a corresponding reduction of the range of native ant species. Although some native ants persist locally at the edges of the invasion of Argentine ants, most eventually disappear from invaded areas. Both interference and exploitation competition appear to be important in the displacement of native ant species from areas invaded by Argentine ants.  相似文献   

13.
Food availability during the breeding season plays a critical role in reproductive success of insectivorous birds. Given that the invasive Argentine ant (Linepithema humile) is known to alter arthropod communities, we predicted that its invasion may affect the availability of food resources for coexisting foliage-gleaning birds. With this aim we studied, for 3 years, foliage arthropods occurring on cork oaks (Quercus suber) and tree heaths (Erica arborea) in invaded and non-invaded secondary forests of the northeastern Iberian Peninsula. Our results show that Argentine ants interact with arboreal foliage arthropods in a different manner than the native ants they displace do. The invasive ant impacted the arthropod community by reducing order diversity and ant species richness and by causing extirpation of most native ant species. Arthropod availability for foliage gleaners’ nestlings diminished in invaded cork oaks, mainly responding to the abundance and biomass depletion of caterpillars. Results suggest that the reproduction of canopy-foraging foliage-gleaning species that mostly rely on caterpillars to feed their young could be compromised by the Argentine ant invasion. Thus, the Argentine ant could be promoting bottom-up effects in the trophic web through its effects on the availability of arthropod preys for insectivorous birds.  相似文献   

14.
Abstract The Argentine ant (Linepithema humile Mayr) is a worldwide invasive pest species that has been associated with losses of native ant and non‐ant invertebrates in its introduced range. To date, few studies have investigated the effects of Argentine ants on native invertebrates in Australia. This study assessed the effects of Argentine ants on community composition of invertebrates, with particular focus on resident ant communities and functional groups. In this study, the author compared the composition and abundances of invertebrates between invaded and uninvaded locations at four paired sites in Adelaide, South Australia. The results showed that there were significantly fewer non‐Argentine ants at invaded sites than at uninvaded sites. In particular, ants from the two common and widespread genera Iridomyrmex and Camponotus showed decreased abundances at the invaded sites. Multidimensional scaling analyses revealed differences in the composition of ant communities at the invaded and uninvaded sites, with uninvaded sites characterized by a similar native ant species composition, while communities at the invaded sites displayed much greater variability in species composition. These results suggest that the presence of Argentine ants may have a negative effect on particular ant genera and functional groups, with likely disruptions to ecosystem processes.  相似文献   

15.
Determining the geographical range of invasive species is an important component of formulating effective management strategies. In the absence of detailed distributional data, species distribution models can provide estimates of an invasion range and increase our understanding of the ecological processes acting at various spatial scales. We used two complementary approaches to evaluate the influence of historical and environmental factors in shaping the distribution of the Argentine ant ( Linepithema humile ), a widespread, highly invasive species native to South America. Occurrence data were combined with environmental data at incremental spatial scales (extent and resolution) to predict the suitable range of the ant invasion using ecological niche models. In addition, we also used a spread model that simulated the jump dispersal of the species to identify the most plausible scenarios of arrival of L. humile in the NE Iberian Peninsula at local scales. Based on the results of both modelling practices, we suggest that L. humile might have reached its maximum geographic range at regional scales in the NE Iberian Peninsula. However, the species does not appear in equilibrium with the environment at small spatial scales, and further expansions are expected along coastal and inland localities of the Costa Brava. Long-distance jumps are ultimately responsible for the spread of the Argentine ant in the area. Overall, our study shows the utility of combining niche based models with spread models to understand the dynamics of species' invasions.  相似文献   

16.
Argentine ants (Linepithema humile) usually actively displace native ants through a combination of rapid recruitment, high numerical dominance and intense aggressive fights. However, in some cases, native ants can offer a strong resistance. In Corsica, a French Mediterranean island, local resistance by the dominant Tapinoma nigerrimum has been proposed as a factor limiting Argentine ant invasion. With the aim of evaluating the abilities of T. nigerrimum in interference and exploitative competition, this study tested in the laboratory the aggressive interactions between this native dominant ant and the invasive Argentine ant. We used four different assays between L. humile and T. nigerrimum: (1) worker dyadic interactions, (2) symmetrical group interactions, (3) intruder introductions into an established resident colony, and (4) a competition for space and food. This study confirms the ability of Argentine ants to compete with native species, by initiating more fights, using cooperation and simultaneously deploying physical and chemical defenses. However, despite Argentine ant fighting capabilities, T. nigerrimum was more efficient in both interference and exploitative competition. Its superiority was obvious in the space and food competition assays, where T. nigerrimum dominated food in 100% of the replicates after 1 h and invaded Argentine ant nests while the reverse was never observed. The death feigning behavior exhibited by Argentine ant workers also suggests the native ant’s superiority. Our study thus demonstrates that T. nigerrimum can offer strong competition and so may be able to limit the spread of Argentine ants in Corsica. This confirms that interspecific competition from ecologically dominant native species can affect the invasion success of invaders, notably by decreasing the likelihood of incipient colony establishment and survival.  相似文献   

17.
Limiting dispersal is a fundamental strategy in the control of invasive species, and in certain situations containment of incipient populations may be an important management technique. To test the feasibility of slowing the rapid spread of two Argentine ant (Linepithema humile) supercolonies in Haleakala National Park, Hawaii, we applied ant bait and toxicant within an experimental plot situated along a supercolony boundary. The 120×260 m plot simulated a small section of what could potentially be a 120 m wide treatment encompassing the entire expanding boundaries of both supercolonies. Foraging ant numbers at baited monitoring stations decreased sharply within two weeks after treatment, and ant spread was completely halted within the plot for at least one year. In contrast, an adjacent untreated colony boundary advanced an average of 65.2 m over the course of 1 year. Most of this spread took place in the summer and fall, at the time of highest ant abundance at bait monitoring stations, while no outward dispersal occurred during the spring and early summer. These patterns are consistent with the hypothesis that local budding dispersal in this unicolonial species stems from density dependent pressure rather than inherent founding behavior associated with mating. Based on results from this experiment, we are investigating the effectiveness of annual boundary treatments in slowing the Argentine ant invasion at Haleakala National Park. The goals of this program are to protect populations of native arthropods and to keep options open for eventual attempts at eradication. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Effects of the invasive Argentine ant, Linepithema humile (Mayr), on a myrmecophilous butterfly, Narathura bazalus (Hewiston), were investigated in the field in western Japan. Larvae of N. bazalus were attended by workers of Argentine ants in invaded parks and of ten native and one cosmopolitan ant species in uninvaded parks. The abundance of eggs and larvae were not significantly different between invaded and uninvaded parks. Pupal weight and parasitized ratio by tachinid flies were also not different between the two types of parks. These results indicate that the role of Argentine ants for the butterfly might be almost equivalent to the native ants.  相似文献   

19.
The abundance and distribution of an invasive species is influenced by its relative ability to find resources under a variety of conditions. We examined the exploitative ability of the Argentine ant (Linepithema humile (Mayr)), in comparison with two common New Zealand ant species Monomorium antarcticum (Fr. Smith) and Prolasius advenus (Hymenoptera: Formicidae) (Fr. Smith), using maze trials under different temperature and starvation regimes. Our results showed temperature significantly affected the mean time to discover food resources, but different species responded differently to changes in temperature. A change in temperature from 23°C to 13°C resulted in an approximately 8‐fold increase in the time to discover food for native P. advenus, but discovery times remained relatively similar for invasive Argentine ants. Starvation did not significantly influence the ability of species to find food. Argentine ants consistently located and recruited to food faster than the native species. We examined for variation in walking speed under the experimental conditions as a mechanism for our results. The results revealed Argentine ants and P. advenus to have similar walking speeds at each temperature‐starvation treatment and both were faster than M. antarcticum. However, Argentine ants had rates of turning or returning to the nest that were lower than the native species. This result suggests that Argentine ants show greater ‘exploratory willingness’ or ‘novelty seeking’ behaviour. Our results suggest that Argentine ants are able to discovery and exploit resources more efficiently than these native species under a wide spectrum of environmental and physiological conditions. Such relative efficiencies have likely contributed to the success of this invader.  相似文献   

20.
Heller NE  Sanders NJ  Shors JW  Gordon DM 《Oecologia》2008,155(2):385-395
Climate change may exacerbate invasions by making conditions more favorable to introduced species relative to native species. Here we used data obtained during a long-term biannual survey of the distribution of ant species in a 481-ha preserve in northern California to assess the influence of interannual variation in rainfall on the spread of invasive Argentine ants, Linepithema humile, and the displacement of native ant species. Since the survey began in 1993, Argentine ants have expanded their range into 74 new hectares. Many invaded hectares were later abandoned, so the range of Argentine ants increased in some years and decreased in others. Rainfall predicted both range expansion and interannual changes in the distribution of Argentine ants: high rainfall, particularly in summer months, promoted their spread in the summer. This suggests that an increase in rainfall will promote a wider distribution of Argentine ants and increase their spread into new areas in California. Surprisingly, the distribution of two native ant species also increased following high rainfall, but only in areas of the preserve that were invaded by L. humile. Rainfall did not have a negative impact on total native ant species richness in invaded areas. Instead, native ant species richness in invaded areas increased significantly over the 13 years of observation. This suggests that the impact of Argentine ants on naïve ant communities may be most severe early in the invasion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号