首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incubation of UV-irradiated DNA with pyrimidine dimer-DNA glycosylase in cell-free lysates prepared from Micrococcus luteus results in the appearance of double-strand breaks. It has previously been assumed that such double-strand breaks result from cleavage at closely opposed dimers. We have used hybrid molecules of bacteriophage T7 DNA comprised of two unirradiated strands, two UV-irradiated strands, or one unirradiated and one UV-irradiated strand to test this hypothesis. Bifilar cleavage was observed only with molecules consisting of two irradiated strands and no bifilar cleavage was observed after the monomerization of pyrimidine dimers by enzymatic photoreactivation. Our results indicate that at least 80% of the double-strand breaks result from cleavage at closely opposed dimers and that the induction of dimers in one strand does not influence the induction of dimers at closely opposed positions in the complementary strand of a DNA double helix.  相似文献   

2.
A sensitive, enzymatic assay has been developed for the detection of closely opposed cyclobutyl pyrimidine dimers induced in UV-irradiated human diploid fibroblasts. In this assay closely opposed dimers are detected as bifilar enzyme-sensitive sites. Single-strand incisions are made at the positions of individual pyrimidine dimers through the action of M. luteus pyrimidine dimer-DNA glycosylase. Incisions at closely opposed dimers, effectively expressed as double-strand breaks, are quantified from the resulting reduction in DNA double-strand molecular weight as determined by velocity sedimentation through neutral sucrose density gradients. The stability of the bacteriophage lambda cos site under our reaction conditions indicates that opposed incisions must be relatively close to be expressed as a double-strand break. The dose response for the induction of bifilar enzyme-sensitive sites in mammalian cells was found to be complex but can be approximated by a function that increases as the 1.2-1.4 power of UV dose. The frequency of bifilar enzyme-sensitive sites observed decreased during postirradiation incubation of excision-repair-proficient human diploid fibroblasts with less than 20% still detectable at 24 h after irradiation with 5 J/m2 (254 nm). By comparison, over 80% of the bifilar enzyme-sensitive sites induced in fibroblasts assigned to xeroderma pigmentosum complementation group A remained detectable 24 h after irradiation. The implications of these results for models addressing the induction and repair of closely opposed pyrimidine dimers are discussed.  相似文献   

3.
An approach to the detection of pyrimidine dimer-DNA glycosylase activity in living cells is presented. Mutants of Escherichia coli defective in uvr functions required for incision of UV-irradiated DNA were infected with phage T4 denV+ or denV- (defective in the T4 pyrimidine dimer-DNA glycosylase activity). In the former case the denV gene product catalyzed the incision of UV-irradiated host DNA, facilitating the subsequent excision of thymine-containing pyrimidine dimers. Isolation of these dimers from the acid-soluble fraction of infected cells was achieved by a multistep thin-layer chromatographic system. Exposure of the dimers to irradiation that monomerizes pyrimidine dimers (direct photoreversal) resulted in the stoichiometric formation of free thymine. Thus, in vivo incision of UV-irradiated DNA dependent on a pyrimidine dimer-DNA glycosylase can be demonstrated.  相似文献   

4.
Pyrimidine dimer-DNA glycosylase activity prepared from Micrococcus luteus has been used to develop an enzyme-sensitive site assay for the detection and quantification of closely opposed pyrimidine dimers in the nuclear DNA of UV-irradiated yeast. With this assay, closely opposed dimers were found to be induced as a linear function of dose from 0 to 200 J/m2 (254 nm). Closely opposed dimer frequencies decreased during the incubation of UV-irradiated, excision repair-proficient cells under liquid-holding conditions in the dark and during post-irradiation exposure of excision-deficient cells to photoreactivating light. Incubation of excision-deficient cells in the dark had no effect on the frequency of closely opposed dimers for up to 16 h. These results indicate that closely opposed dimers in UV-irradiated yeast are subject to repair by enzymatic photoreactivation and/or by dark-repair processes dependent, at least in part, upon functions necessary for normal excision repair. The genetic and biochemical implications of these results are discussed.  相似文献   

5.
An enzyme-sensitive site assay has been used to examine the fate of closely opposed pyrimidine dimers (bifilar enzyme-sensitive sites) in fibroblasts from individuals afflicted with various genetic disorders that confer increased cellular sensitivity to UV radiation. The disappearance of bifilar enzyme-sensitive sites was found to be normal in cells from individuals with Fanconi's anemia, Cockayne's syndrome, dyskeratosis congenita and the variant form of xeroderma pigmentosum. The rate of bifilar enzyme-sensitive site removal in XP cells assigned to complementation group C was reduced by an amount similar to that observed for the repair of isolated dimers. Our results indicate that the initiation of repair at closely opposed dimers is slow in XP-C cells but normal in all other cells examined.  相似文献   

6.
Recent studies have shown purified preparations of phage T4 UV DNA-incising activity (T4 UV endonuclease or endonuclease V of phage T4) contain a pyrimidine dimer-DNA glycosylase activity that catalyzes hydrolysis of the 5' glycosyl bond of dimerized pyrimidines in UV-irradiated DNA. Such enzyme preparations have also been shown to catalyze the hydrolysis of phosphodiester bonds in UV-irradiated DNA at a neutral pH, presumably reflecting the action of an apurinic/apyrimidinic endonuclease at the apyrimidinic sites created by the pyrimidine dimer-DNA glycosylase. In this study we found that preparations of T4 UV DNA-incising activity contained apurinic/apyrimidinic endonuclease activity that nicked depurinated form I simian virus 40 DNA. Apurinic/apyrimidinic endonuclease activity was also found in extracts of Escherichia coli infected with T4 denV+ phage. Extracts of cells infected with T4 denV mutants contained significantly lower levels of apurinic/apyrimidinic endonuclease activity; these levels were no greater than the levels present in extracts of uninfected cells. Furthermore, the addition of DNA containing apurinic or apyrimidinic sites to reactions containing UV-irradiated DNA and T4 enzyme resulted in competition for pyrimidine dimer-DNA glycosylase activity against the UV-irradiated DNA. On the basis of these results, we concluded that apurinic/apyrimidinic endonuclease activity is encoded by the denV gene of phage T4, the same gene that codes for pyrimidine dimer-DNA glycosylase activity.  相似文献   

7.
M Liuzzi  M Weinfeld  M C Paterson 《Biochemistry》1987,26(12):3315-3321
The UV endonucleases [endodeoxyribonuclease (pyrimidine dimer), EC 3.1.25.1] from Micrococcus luteus and bacteriophage T4 possess two catalytic activities specific for the site of cyclobutane pyrimidine dimers in UV-irradiated DNA: a DNA glycosylase that cleaves the 5'-glycosyl bond of the dimerized pyrimidines and an apurinic/apyrimidinic (AP) endonuclease that thereupon incises the phosphodiester bond 3' to the resulting apyrimidinic site. We have explored the potential use of methoxyamine, a chemical that reacts at neutral pH with AP sites in DNA, as a selective inhibitor of the AP endonuclease activities residing in the M. luteus and T4 enzymes. The presence of 50 mM methoxyamine during incubation of UV- (4 kJ/m2, 254 nm) treated, [3H]thymine-labeled poly(dA).poly(dT) with either enzyme preparation was found to protect completely the irradiated copolymer from endonucleolytic attack at dimer sites, as assayed by yield of acid-soluble radioactivity. In contrast, the dimer-DNA glycosylase activity of each enzyme remained fully functional, as monitored retrospectively by release of free thymine after either photochemical- (5 kJ/m2, 254 nm) or photoenzymic- (Escherichia coli photolyase plus visible light) induced reversal of pyrimidine dimers in the UV-damaged substrate. Our data demonstrate that the inhibition of the strand-incision reaction arises because of chemical modification of the AP sites and is not due to inactivation of the enzyme by methoxyamine. Our results, combined with earlier findings for 5'-acting AP endonucleases, strongly suggest that methoxyamine is a highly specific inhibitor of virtually all AP endonucleases, irrespective of their modes of action, and may therefore prove useful in a wide variety of DNA repair studies.  相似文献   

8.
Summary The in vivo excision repair functions of Escherichia coli exonuclease III and 3-methyladenine DNA glycosylase I, and bacteriophage T4 pyrimidine dimer-DNA glycosylase were investigated. Following exposure of bacteriophage T4 or lambda to methyl methanesulfonate or ultraviolet irradiation, survival was determined by plating on E. coli have various genetic backgrounds. Although exonuclease III was shown to participate in base excision repair initiated by 3-methyladenine DNA glcosylase I, it had no detectable role in base excision repair initiated by the T4 pyrimidine dimer-DNA glycosylase. Despite its 3 apurinic/apyrimidinic endonuclease activity in vitro, T4 pyrimidine dimer-DNA glycosylase, even in large quantities, did not complement mutants defective in exonuclease III in the repair of apurinic sites generated by 3-methyladenine DNA glycosylase I in vivo.  相似文献   

9.
The repair of UV light-induced cyclobutane pyrimidine dimers can proceed via the base excision repair pathway, in which the initial step is catalyzed by DNA glycosylase/abasic (AP) lyases. The prototypical enzyme studied for this pathway is endonuclease V from the bacteriophage T4 (T4 bacteriophage pyrimidine dimer glycosylase (T4-pdg)). The first homologue for T4-pdg has been found in a strain of Chlorella virus (strain Paramecium bursaria Chlorella virus-1), which contains a gene that predicts an amino acid sequence homology of 41% with T4-pdg. Because both the structure and critical catalytic residues are known for T4-pdg, homology modeling of the Chlorella virus pyrimidine dimer glycosylase (cv-pdg) predicted that a conserved glutamic acid residue (Glu-23) would be important for catalysis at pyrimidine dimers and abasic sites. Site-directed mutations were constructed at Glu-23 to assess the necessity of a negatively charged residue at that position (Gln-23) and the importance of the length of the negatively charged side chain (Asp-23). E23Q lost glycosylase activity completely but retained low levels of AP lyase activity. In contrast, E23D retained near wild type glycosylase and AP lyase activities on cis-syn dimers but completely lost its activity on the trans-syn II dimer, which is very efficiently cleaved by the wild type cv-pdg. As has been shown for other glyscosylases, the wild type cv-pdg catalyzes the cleavage at dimers or AP sites via formation of an imino intermediate, as evidenced by the ability of the enzyme to be covalently trapped on substrate DNA when the reactions are carried out in the presence of a strong reducing agent; in contrast, E23D was very poorly trapped on cis-syn dimers but was readily trapped on DNA containing AP sites. It is proposed that Glu-23 protonates the sugar ring, so that the imino intermediate can be formed.  相似文献   

10.
Cleavage of specific DNA sequences by the restriction enzymes EcoRI, HindIII and TaqI was prevented when the DNA was irradiated with ultraviolet light. Most of the effects were attributed to cyclobutane pyrimidine dimers in the recognition sequences; the effectiveness of irradiation was directly proportional to the number of potential dimer sites in the DNA. Combining EcoRI with dimer-specific endonuclease digestion revealed that pyrimidine dimers blocked cleavage within one base-pair on the strand opposite to the dimer but did not block cleavage three to four base-pairs away on the same strand. These are the probable limits for the range of influence of pyrimidine dimers along the DNA, at least for this enzyme. The effect of irradiation on cleavage by TaqI seemed far greater than expected for the cyclobutane dimer yield, possibly because of effects from photoproducts flanking the tetranucleotide recognition sequence and the effect of non-cyclobutane (6-4)pyrimidine photoproducts involving adjacent T and C bases.  相似文献   

11.
N J Duker  G W Merkel 《Biochemistry》1985,24(2):408-412
The effects of DNA adducts of the carcinogen 2-[N-(acetoxyacetyl)amino]fluorene on enzymic incision of thymine dimers was investigated. Escherichia coli DNA labeled with [3H]thymidine was reacted with the carcinogen. Thymine dimers were then introduced into the modified DNA by irradiation with monochromatic 254-nm light in the presence of the photosensitizer silver nitrate. This DNA containing both types of damages, mainly 2-[N-[(deoxyguanosin-8-yl)acetyl]fluorene and thymine dimers, was then used as substrate for pyrimidine dimer-DNA glycosylase, purified from E. coli infected by bacteriophage T4. Activity was assayed by measuring release of free labeled thymine after photoreversal of the enzyme-reacted DNA by 254-nm light. The Vmax of the enzyme was decreased when it was reacted with the extensively arylamidated substrate. This inhibition of incision of pyrimidine dimers was increased with the number of carcinogen-DNA adducts, although no enzymic activity against modified guanines was present. Therefore, carcinogen-modified purine moieties can interfere with initiation of excision repair of ultraviolet-induced pyrimidine dimers. This suggests an indirect pathway by which modified DNA bases can be mutagenic.  相似文献   

12.
Endonuclease V is the product of the denV gene of bacteriophage T4 and is responsible for the recognition and repair of pyrimidine dimers due to UV irradiation of DNA. This is accomplished by a two-step mechanism involving incision at the site of the lesion followed by cleavage of the phosphate backbone. In order to better understand this molecule, and to validate our new mutagenesis procedure, we have constructed a series of random mutations within the region Ala116-->Lys121 using a random targeted mutagenesis procedure developed for this study. The results presented here suggest an important role for this region in the stabilization of the thymine dimer-containing substrate. These mutants also confirm a direct correlation between survival and both DNA binding and pyrimidine dimer-DNA glycosylase activity. No such correlation exists between survival and AP lyase activity. The results are consistent with the recently published X-ray crystal structure.  相似文献   

13.
Micrococcus luteus UV endonuclease incises DNA at the sites of ultraviolet (UV) light-induced pyrimidine dimers. The mechanism of incision has been previously shown to be a glycosylic bond cleavage at the 5'-pyrimidine of the dimer followed by an apyrimidine endonuclease activity which cleaves the phosphodiester backbone between the pyrimidines. The process by which M. luteus UV endonuclease locates pyrimidine dimers within a population of UV-irradiated plasmids was shown to occur, in vitro, by a processive or "sliding" mechanism on non-target DNA as opposed to a distributive or "random hit" mechanism. Form I plasmid DNA containing 25 dimers per molecule was incubated with M. luteus UV endonuclease in time course reactions. The three topological forms of plasmid DNA generated were analyzed by agarose gel electrophoresis. When the enzyme encounters a pyrimidine dimer, it is significantly more likely to make only the glycosylase cleavage as opposed to making both the glycosylic and phosphodiester bond cleavages. Thus, plasmids are accumulated with many alkaline-labile sites relative to single-stranded breaks. In addition, reactions were performed at both pH 8.0 and pH 6.0, in the absence of NaCl, as well as 25,100, and 250 mM NaCl. The efficiency of the DNA scanning reaction was shown to be dependent on both the ionic strength and pH of the reaction. At low ionic strengths, the reaction was shown to proceed by a processive mechanism and shifted to a distributive mechanism as the ionic strength of the reaction increased. Processivity at pH 8.0 is shown to be more sensitive to increases in ionic strength than reactions performed at pH 6.0.  相似文献   

14.
A comparison was made of the activity of the UV-specific endonucleases of bacteriophage T4 (T4 endonuclease V) and of Micrococcus luteus on ultravilet light-irradiated DNA substrates of defined sequence. The two enzymes cleave DNA at the site of pyrimidine dimers with the same frequency. The products of the cleavage reaction are the same, suggesting that the scission of DNA by T4 endonuclease V occurs via the combined actin of a pyrimidine dimer specific DNA glycosylase and an apyrimidinic-apurinic (AP) endonuclease as was recently shown for the M. luteus enzyme. The pyrimidine dimer DNA-glycosylase activity of both enzymes is more active on double-stranded DNA than it is on single-stranded DNA.  相似文献   

15.
Cyclobutane pyrimidine dimers were quantified at the sequence level after irradiation with solar ultraviolet (UVB) and nonsolar ultraviolet (UVC) light sources. The yield of photoproducts at specific sites was dependent on the nucleotide composition in and around the potential lesion as well as on the wavelength of ultraviolet light used to induce the damage. Induction was greater in the presence of 5' flanking pyrimidines than purines; 5' guanine inhibited induction more than adenine. UVB irradiation increased the induction of cyclobutane dimers containing cytosine relative to thymine homodimers. At the single UVC and UVB fluences used, the ratio of thymine homodimers (T mean value of T) to dimers containing cytosine (C mean value of T, T mean value of C, C mean value of C) was greater after UVC compared to UVB irradiation.  相似文献   

16.
Summary The centromere is the region within a chromosome that is required for proper segregation during mitosis and meiosis. Lesions in this sequence represent a unique type of damage, as loss of function could result in catastrophic loss of the genetic material of an entire chromosome. We have measured the induction by ultraviolet (UV) light of pyrimidine dimers in a 2550-bp restriction fragment that includes the centromere region of chromosome III in Saccharomyces cerevisiae. Yeast cells were exposed to ultraviolet light, cellular DNA was gently extracted, and subsequently treated with a UV-specific endonuclease to cleave all pyrimidine dimers. The sites of UV-specific nuclease scission within the centromere were determined by separating the DNA according to molecular weight, transferring the fragments to nitrocellulose, and hybridizing to a radiolabeled 624-bp fragment homologous to the centromere DNA from chromosome III. Several hotspots were identified in chromatin DNA from cells, as well as in irradiated deproteinized DNA. Double strand damage due to closely opposed pyrimidine dimers was also observed. At biological doses (35% survival) there are approximately 0.1 to 0.2 pyrimidine dimers per centromere. These dimers are efficiently repaired in the centromere and surrounding region.  相似文献   

17.
Mammalian rpS3, a ribosomal protein S3 with a DNA repair endonuclease activity, nicks heavily UV-irradiated DNA and DNA containing AP sites. RpS3 calls for a novel endonucleolytic activity on AP sites generated from pyrimidine dimers by T4 pyrimidine dimer glycosylase activity. This study revealed that rpS3 cleaves the lesions including AP sites, thymine glycols, and other UV damaged lesions such as pyrimidine dimers. This enzyme does not have a glycosylase activity as predicted from its amino acid sequence. However, it has an endonuclease activity on DNA containing thymine glycol, which is exactly overlapped with UV-irradiated or AP DNAs, indicating that rpS3 cleaves phosphodiester bonds of DNAs containing altered bases with broad specificity acting as a base-damage-endonuclease. RpS3 cleaves supercoiled UV damaged DNA more efficiently than the relaxed counterpart, and the endonuclease activity of rpS3 was inhibited by MgCl2 on AP DNA but not on UV-irradiated DNA.  相似文献   

18.
Restriction enzyme cleavage of ultraviolet-damaged DNA   总被引:1,自引:0,他引:1  
SV40 and pBR322 DNAs damaged by ultraviolet light were cleaved abnormally by several restriction enzymes because of damage to pyrimidines in the recognition sequences. The use of a tandemly duplicated plasmid provided a particularly sensitive target molecule for detecting pyrimidine dimers and other possible photoproducts. The relative efficiency with which cleavage was blocked (HindIII greater than TaqI greater than EcoRI greater than BamI greater than SalI much greater than Hha I, Hae III) corresponds approximately to the relative frequency of pyrimidine dimer formation in the recognition sequences, but at a slightly higher frequency in potential sites for the non-cyclobutane T-C product. The pyrimidine dimers appear to have a range of influence that extends 1 to 3 basepairs along the DNA molecule. These effects provide clues to the way DNA damage from mutagens and carcinogens can interfere with specific enzyme-DNA interactions.  相似文献   

19.
In order to study the sequence specificity of double-strand DNA cleavage by Drosophila topoisomerase II, we have mapped and sequenced 16 strong and 47 weak cleavage sites in the recombinant plasmid p pi 25.1. Analysis of the nucleotide and dinucleotide frequencies in the region near the site of phosphodiester bond breakage revealed a nonrandom distribution. The nucleotide frequencies observed would occur by chance with a probability less than 0.05. The consensus sequence we derived is 5'GT.A/TAY decrease ATT.AT..G 3', where a dot means no preferred nucleotide, Y is for pyrimidine, and the arrow shows the point of bond cleavage. On average, strong sites match the consensus better than weak sites.  相似文献   

20.
Multiply damaged sites (MDSs) consist of two or more damages within 20 base pairs (bps) and are introduced into DNA by ionizing radiation. Using a plasmid assay, we previously demonstrated that repair in Escherichia coli generated a double strand break (DSB) from two closely opposed uracils when uracil DNA glycosylase initiated repair. To identify the enzymes that converted the resulting apurinic/apyrimidinic (AP) sites to DSBs, repair was examined in bacteria deficient in AP site cleavage. Since exonuclease III (xth) and endonuclease IV (nfo) mutant bacteria were able to introduce DSBs at the MDSs, we generated unique bacterial mutants deficient in UvrA, Xth and Nfo. However, the additional disruption of nucleotide excision repair (NER) did not prevent DSB formation. xth- nfo- nfi- bacteria also converted the MDSs to DSBs, ruling out endonuclease V as the candidate AP endonuclease. By using MDSs containing tetrahydrofuran (an AP site analog), it was determined that even in the absence of Xth, Nfo, NER and AP lyase cleavage, DSBs were formed from closely opposed AP sites. This finding implies that there is an unknown enzyme/repair pathway for MDSs, and multiple underlying repair systems in cells that can process closely opposed DNA damage into lethal lesions following exposure to ionizing radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号