首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Degnan BA  Macfarlane GT 《Anaerobe》1995,1(2):103-112
Studies showed that the plant cell wall polysaccharide arabinogalactan supported growth of Bifidobacterium longum in batch culture. Galactose was also utilized, but not arabinose, the other major constituent sugar of the polymer. Enzymes required for hydrolysis of arabinogalactan ('arabinogalactanase', alpha-arabinopyranosidase, beta-galactosidase) were inducible and cell-associated in B. longum, and their expression was repressed by glucose. Considerable amounts of alpha-arabinopyranosidase and beta-galactosidase were synthesized during growth on arabinogalactan, but only low levels of arabinogalactanase were detected. B. longum only grew on arabinogalactan in continuous culture under putative carbon-excess conditions. In C-limited chemostats, the bifidobacterium could not establish unless Bacteroides thetaiotaomicron was present in co-culture. The relationship between the two organisms was not simply commensal; at low specific growth rates, bacteroides cell population densities were approximately 30% lower than those recorded in axenic culture, indicating the existence of competitive interactions with the bifidobacterium. In contrast, at high specific growth rates, a mutualistic association was observed, in that Bact. thetaiotaomicron was maintained in the chemostats at high dilution rates if bifidobacteria were also present. Measurements of residual carbohydrate in spent culture fluid from C-limited chemostats indicated that a large part of the arabinogalactan molecule could not be broken down by either B. longum or Bact. thetaiotaomicron alone, or in co-culture. Formate and acetate were the major fermentation products of B. longum cultured in the presence of high concentrations of arabinogalactan, confirming that these bacteria were growing under energy-limited conditions.  相似文献   

2.
Chemostats were used to study the effects of carbon and nitrogen limitation and specific growth rate on 16S rRNA synthesis and cellular fatty acid (CFA) profiles in four human intestinal bacteria (Bacteroides thetaiotaomicron, Bifidobacterium adolescentis, Clostridium bifermentans and Cl. difficile). Cellular fatty acid synthesis varied with dilution rate and nutrient availability in different species, but these cellular constituents were relatively stable phenotypic characteristics in Bact. thetaiotaomicron, where branched chain and hydroxy CFA were good taxonomic markers. Conversely, CFA in the Gram-positive bacteria varied markedly with changes in growth environment. For example, in chemostats, cyclopropane CFA were only synthesized in Cl. bifermentans and Cl. difficile under N-limited conditions. Similarly, Dimethyl acetal (DMA) fatty acids in Bif. adolescentis were primarily produced during N-limited growth, and this was inversely related to dilution rate. At low growth rates, 16S rRNA concentrations (microg rRNA per ml culture) correlated with viable bacterial counts, but were more closely related to specific growth rate when expressed as a function of cell mass (microg rRNA per mg dry weight bacteria). However, this did not reveal differences in bacterial population size and rRNA concentration in C-limited cultures. Thus, at low dilution rates, C limitation strongly reduced rRNA synthesis in Cl. bifermentans, despite viable cell counts being similar to those in N-limited cultures. These results indicate that, while 16S rRNA is a useful indicator of microbial activity, cell growth rate does not necessarily relate to rRNA concentration under all nutritional conditions. Consequently, bowel habit and diet will affect both CFA and rRNA content in bacteria isolated from intestinal samples, and this should be taken into consideration when interpreting such data measurements.  相似文献   

3.
Specific growth rates of Bacteroides thetaiotaomicron NCTC 10582 with either glucose, arabinose, mannose, galactose or xylose as sole carbon sources were 0.42/h, 0.10/h, 0.38/h, 0.38/h and 0.16/h respectively, suggesting that hexose metabolism was energetically more efficient than pentose fermentation in this bacterium. Batch culture experiments to determine whether carbohydrate utilization was controlled by substrate-induced regulatory mechanisms demonstrated that mannose inhibited uptake of glucose, galactose and arabinose, but had less effect on xylose. Arabinose and xylose were preferentially utilized at high dilution rates (D > 0.26/h) in carbon-limited continuous cultures grown on mixtures of arabinose, xylose, galactose and glucose. When mannose was also present, xylose was co-assimilated at all dilution rates. Under nitrogen-limited conditions, however, mannose repressed uptake of all sugars, showing that its effect on xylose utilization was strongly concentration dependent. Studies with individual D-ZU-14C]-labelled substrates showed that transport systems for glucose, galactose, xylose and mannose were inducible. Measurements to determine incorporation of these sugars into trichloroacetic acid-precipitable material indicated that glucose and mannose were the principal precursor monosaccharides. Xylose was only incorporated into intracellular macromolecules when it served as growth substrate. Phosphoenolpyruvate:phosphotransferase systems were not detected in preliminary experiments to elucidate the mechanisms of sugar uptake, and studies with inhibitors of carbohydrate transport showed no consistent pattern of inhibition with glucose, galactose, xylose and mannose. These results indicate the existence of a variety of different systems involved in sugar transport in B. thetaiotaomicron.  相似文献   

4.
Extracellular protease production by Clostridium bifermentans NCTC 2914 occurred throughout the growth phase in batch culture. In both glucose-excess and -limited chemostats, protease formation was inversely related to the dilution rate, over the range D = 0.03 to 0.70 h-1. At high dilution rates (D greater than 0.25 h-1), protease activities were greatest under excess glucose conditions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of chemostat culture effluents showed the presence of up to 18 bands of protease activity at low dilution rates, with apparent molecular masses ranging from about 36 to 125 kDa. High-performance liquid chromatography gel filtration of culture supernatants gave four peaks of activity at 34, 42, 60, and 102 kDa. Glucose, peptone, and phosphate stimulated protease formation, but ammonia concentrations up to 10 g liter-1 had little effect on the process. Culture pH in glucose-excess chemostats strongly influenced protease synthesis, which was maximal during growth at pH 6.4. The optimal pH of protease activity was 7.0. Although a wide variety of proteins were hydrolyzed by C. bifermentans proteases, none of the enzymes were collagenolytic. Of 21 different p-nitroanilide, beta-naphthylamide, and N-carbobenzoyl substrates tested, none were hydrolyzed. With the exception of Ca2+, divalent metal ions inhibited proteolysis. Experiments with protease inhibitors demonstrated that 1 mM EDTA inhibited protease activities in culture supernatants by over 90%, indicating that the enzymes were principally of the metalloprotease type.  相似文献   

5.
Extracellular protease production by Clostridium bifermentans NCTC 2914 occurred throughout the growth phase in batch culture. In both glucose-excess and -limited chemostats, protease formation was inversely related to the dilution rate, over the range D = 0.03 to 0.70 h-1. At high dilution rates (D greater than 0.25 h-1), protease activities were greatest under excess glucose conditions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of chemostat culture effluents showed the presence of up to 18 bands of protease activity at low dilution rates, with apparent molecular masses ranging from about 36 to 125 kDa. High-performance liquid chromatography gel filtration of culture supernatants gave four peaks of activity at 34, 42, 60, and 102 kDa. Glucose, peptone, and phosphate stimulated protease formation, but ammonia concentrations up to 10 g liter-1 had little effect on the process. Culture pH in glucose-excess chemostats strongly influenced protease synthesis, which was maximal during growth at pH 6.4. The optimal pH of protease activity was 7.0. Although a wide variety of proteins were hydrolyzed by C. bifermentans proteases, none of the enzymes were collagenolytic. Of 21 different p-nitroanilide, beta-naphthylamide, and N-carbobenzoyl substrates tested, none were hydrolyzed. With the exception of Ca2+, divalent metal ions inhibited proteolysis. Experiments with protease inhibitors demonstrated that 1 mM EDTA inhibited protease activities in culture supernatants by over 90%, indicating that the enzymes were principally of the metalloprotease type.  相似文献   

6.
Two distinct extracellular alpha-L-arabinofuranosidases (AFases; EC 3.2.1.55) were purified from the culture filtrate of Penicillium chrysogenum 31B. The molecular masses of the enzymes were estimated to be 79 kDa (AFQ1) and 52 kDa (AFS1) by SDS-PAGE. Both enzymes had their highest activities at 50 degrees C and were stable up to 50 degrees C. Enzyme activities of AFQ1 and AFS1 were highest at pH 4.0 to 6.5 and pH 3.3 to 5.0, respectively. Addition of 10 mg/ml arabinose to the reaction mixture decreased the AFS1 activity but hardly affected AFQ1. Both enzymes displayed broad substrate specificities; they released arabinose from branched arabinan, debranched arabinan, arabinoxylan, arabinogalactan, and arabino-oligosaccharides. AFS1 also showed low activity towards p-nitrophenyl-beta-D-xylopyranoside. An exo-arabinanase, which catalyzes the release of arabinobiose from linear arabinan at the nonreducing terminus, acted synergistically with both enzymes to produce L-arabinose from branched arabinan.  相似文献   

7.
Nine strains of bacteroides fragilis were cultivated in stirred fermentors and tested for their ability to produce glycosidases. B. fragilis subsp. vulgatus B70 was used for optimizing the production of glycosidases. The highest bacterial yield was obtained in proteose peptone-yeast extract medium. The optimum pH for maximal bacterial yield was 7.0, and the optimum temperature for growth was 37 degrees C. The formation of glycosidases was optimal between pH 6.5 and 7.5, and the optimum temperature for synthesis of glycosidases was between 33 and 37 degrees C. Culture under controlled conditions in fermentors gave more reproducible production of glycosidases than static cultures in bottles. The strain was also grown in continuous culture at a dilution rate of 0.1 liter/h at pH 7.0 and 37 degrees C with a yield of 2.0 mg of dry weight per ml in the complex medium. The formation of glycosidases remained constant during the entire continuous process.  相似文献   

8.
Bacteroides ruminicola B(1)4, a predominant ruminal and cecal bacterium, was grown in batch and continuous cultures, and beta-glucosidase activity was measured by following the hydrolysis of p-nitrophenyl-beta-glucopyranoside. Specific activity was high when the bacterium was grown in batch cultures containing cellobiose, mannose, or lactose (greater than 286 U/g of protein). Activity was reduced approximately 90% when the organism was grown on glucose, sucrose, fructose, maltose, or arabinose. The specific activity of cells fermenting glucose was initially low but increased as glucose was depleted. When glucose was added to cultures growing on cellobiose, beta-glucosidase synthesis ceased immediately. Catabolite repression by glucose was not accompanied by diauxic growth and was not relieved by cyclic AMP. Since glucose-grown cultures eventually exhibited high beta-glucosidase activity, cellobiose was not needed as an inducer. Catabolite repression explained beta-glucosidase activity of batch cultures and high-dilution-rate chemostats where glucose accumulated, but it could not account for activity at slow dilution rates. Maximal beta-glucosidase activity was observed at a dilution rate of approximately 0.35 h-1, and cellobiose-limited chemostats showed a 15-fold decrease in activity as the dilution rate declined. An eightfold decline was observed in glucose-limited chemostats. Since inducer availability was not a confounding factor in glucose-limited chemostats, the growth rate-dependent derepression could not be explained by other mechanisms.  相似文献   

9.
Bacteroides ruminicola B(1)4, a predominant ruminal and cecal bacterium, was grown in batch and continuous cultures, and beta-glucosidase activity was measured by following the hydrolysis of p-nitrophenyl-beta-glucopyranoside. Specific activity was high when the bacterium was grown in batch cultures containing cellobiose, mannose, or lactose (greater than 286 U/g of protein). Activity was reduced approximately 90% when the organism was grown on glucose, sucrose, fructose, maltose, or arabinose. The specific activity of cells fermenting glucose was initially low but increased as glucose was depleted. When glucose was added to cultures growing on cellobiose, beta-glucosidase synthesis ceased immediately. Catabolite repression by glucose was not accompanied by diauxic growth and was not relieved by cyclic AMP. Since glucose-grown cultures eventually exhibited high beta-glucosidase activity, cellobiose was not needed as an inducer. Catabolite repression explained beta-glucosidase activity of batch cultures and high-dilution-rate chemostats where glucose accumulated, but it could not account for activity at slow dilution rates. Maximal beta-glucosidase activity was observed at a dilution rate of approximately 0.35 h-1, and cellobiose-limited chemostats showed a 15-fold decrease in activity as the dilution rate declined. An eightfold decline was observed in glucose-limited chemostats. Since inducer availability was not a confounding factor in glucose-limited chemostats, the growth rate-dependent derepression could not be explained by other mechanisms.  相似文献   

10.
Nine strains of bacteroides fragilis were cultivated in stirred fermentors and tested for their ability to produce glycosidases. B. fragilis subsp. vulgatus B70 was used for optimizing the production of glycosidases. The highest bacterial yield was obtained in proteose peptone-yeast extract medium. The optimum pH for maximal bacterial yield was 7.0, and the optimum temperature for growth was 37 degrees C. The formation of glycosidases was optimal between pH 6.5 and 7.5, and the optimum temperature for synthesis of glycosidases was between 33 and 37 degrees C. Culture under controlled conditions in fermentors gave more reproducible production of glycosidases than static cultures in bottles. The strain was also grown in continuous culture at a dilution rate of 0.1 liter/h at pH 7.0 and 37 degrees C with a yield of 2.0 mg of dry weight per ml in the complex medium. The formation of glycosidases remained constant during the entire continuous process.  相似文献   

11.
Streptococcus bovis H13/1 was grown anaerobically at pHs between 5.0 and 6.5 in a glucose-limited chemostat at a dilution rate of 0.05/h. The growth yield and the production of acetate, ethanol and formate decreased at pHs less than 6.5 whereas the production of lactate increased at the lower pH values. When a culture was subjected to sequential pH changes, growth yield and fermentation products were influenced not only by the pH existing in the culture medium but also by the metabolic activity of the cells at the preceding pHs in the sequence. The results are discussed in relation to the mechanisms available for the maintenance of pH homeostasis and for the metabolic control of fermentation pathways in Strep. bovis.  相似文献   

12.
Streptococcus bovis H13/1 was grown anaerobically at pHs between 5.0 and 6.5 in a glucose-limited chemostat at a dilution rate of 0.05/h. The growth yield and the production of acetate, ethanol and formate decreased at pHs less than 6.5 whereas the production of lactate increased at the lower pH values. When a culture was subjected to sequential pH changes, growth yield and fermentation products were influenced not only by the pH existing in the culture medium but also by the metabolic activity of the cells at the preceding pHs in the sequence. The results are discussed in relation to the mechanisms available for the maintenance of pH homeo-stasis and for the metabolic control of fermentation pathways in Strep. bovis.  相似文献   

13.
A tyrosine-requiring strain of Escherichia coli was grown in tyrosine-limited chemostats at a range of dilution rates between 0.08 h-1 and 0.42 h-1, conditions which always resulted in the selection of a prototrophic revertant population able to synthesise tyrosine. Analysis of the two-membered mixed cultures which arose showed that the prototrophic population outgrew the auxotroph since its growth rate was not restricted by the growth-limiting concentrations of exogenous tyrosine. During the take-over of the culture, the prototroph population grew exponentially but the specific growth rate increased with decreasing dilution rate of the competition experiments. In glucose-limited chemostats (in the presence of non-growth-limiting concentrations of tyrosine) of the tyrosine-requiring strain, prototrophs were never detected. Constructed two-membered mixed cultures with both populations competing for limiting amounts of glucose, showed that the prototroph was less competitive than the auxotroph.This work was supported by a grant from the Science Research Council.  相似文献   

14.
灭活的双歧杆菌对EPEC的黏附抑制作用   总被引:9,自引:1,他引:8  
目的:研究灭活的青春双歧杆菌DMS8504对肠致病灶大肠埃希菌(EPEC)黏附抑制作用。方法:通过与活菌比较,观察灭活的双歧杆菌粘附于人大肠癌CCL-229细胞后对EPEC的黏附抑制作用。结果:用SCS或pH5.0新鲜BS肉汤悬浮的双歧杆菌能够安全抑制EPEC的黏附,而仅用SCS或pH5.0新鲜BS肉汤均不能抑制其黏附。  相似文献   

15.
The ability of five human colonic bacteroides (B. fragilis, B. splanchnicus, B. thetaiotaomicron, B. vulgatus, andB. ovatus) to grow on pancreatic trypsin and chymotrypsin, as well as other organic nitrogen sources, was studied in batch culture. All isolates grew on trypsin and, with the exception ofB. thetaiotaomicron, on chymotrypsin. The proteolytic activities of these bacteria varied considerably. However, the ability to utilize either trypsin or chymotrypsin was not related to the proteolytic potential of the bacteria and probably depended upon their ability to assimilate low-molecular-weight peptides generated during autolysis of the enzymes.  相似文献   

16.
Summary The cell-associated and exocellular hemicellulolytic polysaccharide depolymerase and glycoside hydrolase activity ofBacillus macerans NCDO 1764 was monitored over a range of anaerobic growth conditions in batch and continuous culture. The enzymes were detectable throughout the complete growth cycle in batch culture reaching and maintaining maximum levels in the stationary phase. In continuous culture enzyme activity was largely independent of growth rate (D=0.025–0.1 h-1) although the activity was reduced at higher dilution rates (0.125–0.15 h-1). Although activity was detectable over a wide pH range (pH 5.5–7.5) it was pH dependent, and maximum activities of both the cell-associated and exocellular enzymes were measured in cultures maintained at pH 6.5–7.0±0.1.The principal metabolites formed anaerobically from xylose byB. macerans in batch and continuous culture were acetic acid, formic acid and ethanol which represented 95–99% of the products formed. Smaller amounts of acetone,d,l-lactic acid and succinic acid were formed together with traces of butyric acid (<5 nmol/ml) and isovaleric acid (<25 nmol/ml). The proportions of the metabolites produced varied with growth conditions and were influenced by the pH of the culture and the rate and stage of growth of the microorganism.  相似文献   

17.
It was demonstrated that bifidobacteria and lactic acid bacteria B. adolescentis and Lactobacillus sp. synthesized extracellular enzymes cleaving glycoside bonds in the molecules of dextran, pectic acid, and soluble starch. The maximal production of extracellular beta-galactosidase by B. adolescentis 91-BIM and 94-BIM at a rate of 0.08 and 0.03 U/mg h was observed during the exponential growth phase at 5 and 12 h of cultivation, respectively. The cultures of bifidobacteria retained 60-70% of beta-galactosidase and alpha-amylase activities after six months of storage. The bifidobacterium strains studied were resistant to amphotericin and aminoglycosides (gentamicin, kanamycin, and netromycin). The lactam antibiotics (ampicillin, benzylpenicillin, bicillin 3, bicillin 5, and carbenicillin), the preparations inhibiting protein synthesis at the level of ribosomes (lincomycin), RNA polymerase inhibitors (rifampin), cephalosporin, and Maxipime inhibited the growth of bifidobacteria. Rifampin, erythromycin, amphotericin, Maxipime, Fortum, doxycycline, levomycetin, streptomycin, and the aminoglycosides netromycin, gentamicin, and kanamycin did not have an effect on the growth of Lactobacillus sp., whereas semisynthetic derivatives of penicillin, carbenicillin and ampicillin, inhibited its growth as well as Oxamp and lincomycin. The lactam antibiotics benzylpenicillin, bicillin 3, and bicillin 5 inhibited the growth of lactic acid bacilli by 30-90%.  相似文献   

18.
Propionibacterium acnes P13 was isolated from human feces. The bacterium produced a particulate nitrate reductase and a soluble nitrite reductase when grown with nitrate or nitrite. Reduced viologen dyes were the preferred electron donors for both enzymes. Nitrous oxide reductase was never detected. Specific growth rates were increased by nitrate during growth in batch culture. Culture pH strongly influenced the products of dissimilatory nitrate reduction. Nitrate was principally converted to nitrite at alkaline pH, whereas nitrous oxide was the major product of nitrate reduction when the bacteria were grown at pH 6.0. Growth yields were increased by nitrate in electron acceptor-limited chemostats, where nitrate was reduced to nitrite, showing that dissimilatory nitrate reduction was an energetically favorable process in P. acnes. Nitrate had little effect on the amounts of fermentation products formed, but molar ratios of acetate to propionate were higher in the nitrate chemostats. Low concentrations of nitrite (ca. 0.2 mM) inhibited growth of P. acnes in batch culture. The nitrite was slowly reduced to nitrous oxide, enabling growth to occur, suggesting that denitrification functions as a detoxification mechanism.  相似文献   

19.
AIMS: To compare the in vitro fermentation properties of pectins and oligosaccharides derived from them in pure and mixed faecal cultures. METHODS AND RESULTS: Specific growth rates of selected bacterial genera were calculated in pure culture. Bifidobacterium angulatum, B. infantis and B. adolescentis had higher growth rates on pectic oligosaccharides (POS I) derived from high methylated pectin (HMP) than on HMP and B. pseudolongum and B. adolescentis on pectic oligosaccharides (POS II) derived from low methylated pectin than on HMP. Controlled pH batch mixed faecal cultures were then carried out and a prebiotic index was calculated as a mean to compare the fermentation properties of the different substrates. In general, greater fermentation selectivity was obtained with lower degrees of methylation (PI24(-HMP) = -0.11, PI24(-LMP) = 0.033; PI24(-POS I) = 0.071 and PI24(-POS II) = 0.092). An effect of size on prebiotic potential was observed, with the oligosaccharides having more selective fermentation properties than the pectins they derived from. CONCLUSIONS: The degree of methylation plays an important role in the fermentation properties of pectins. Pectic-oligosaccharides are a better prebiotic candidate than the pectins, although their bifidogenic effect is low compared to oligofructose. SIGNIFICANCE AND IMPACT OF THE STUDY: The effect of size on prebiotic potential was demonstrated. Non-selectively fermented polysaccharides like pectin can have their bifidogenic properties improved by partial hydrolysis.  相似文献   

20.
Dissimilatory nitrate reduction by Propionibacterium acnes.   总被引:1,自引:1,他引:0       下载免费PDF全文
Propionibacterium acnes P13 was isolated from human feces. The bacterium produced a particulate nitrate reductase and a soluble nitrite reductase when grown with nitrate or nitrite. Reduced viologen dyes were the preferred electron donors for both enzymes. Nitrous oxide reductase was never detected. Specific growth rates were increased by nitrate during growth in batch culture. Culture pH strongly influenced the products of dissimilatory nitrate reduction. Nitrate was principally converted to nitrite at alkaline pH, whereas nitrous oxide was the major product of nitrate reduction when the bacteria were grown at pH 6.0. Growth yields were increased by nitrate in electron acceptor-limited chemostats, where nitrate was reduced to nitrite, showing that dissimilatory nitrate reduction was an energetically favorable process in P. acnes. Nitrate had little effect on the amounts of fermentation products formed, but molar ratios of acetate to propionate were higher in the nitrate chemostats. Low concentrations of nitrite (ca. 0.2 mM) inhibited growth of P. acnes in batch culture. The nitrite was slowly reduced to nitrous oxide, enabling growth to occur, suggesting that denitrification functions as a detoxification mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号