首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested the taxonomic utility of morphology and seven mitochondrial or nuclear genes in a phylogenetic reconstruction of swallowtail butterflies in the subfamily Parnassiinae. Our data included 236 morphological characters and DNA sequences for seven genes that are commonly used to infer lepidopteran relationships (COI+COII, ND5, ND1, 16S, EF-1alpha, and wg; total 5775 bp). Nuclear genes performed best for inferring phylogenies, particularly at higher taxonomic levels, while there was substantial variation in performance among mitochondrial genes. Multiple analyses of molecular data (MP, ML and Bayesian) consistently produced a tree topology different from that obtained by morphology alone. Based on molecular evidence, sister-group relationships were confirmed between the genera Hypermnestra and Parnassius, as well as between Archon and Luehdorfia, while the monophyly of the subfamily was weakly supported. We recognize three tribes within Parnassiinae, with Archon and Luehdorfia forming the tribe Luehdorfiini Tutt, 1896 [stat. rev.]. Three fossil taxa were incorporated into a molecular clock analysis with biogeographic time constraints. Based on dispersal-vicariance (DIVA) analysis, the most recent common ancestor of Parnassiinae occurred in the Iranian Plateau and Central Asia to China. Early diversification of Parnassiinae took place at the same time that India collided into Eurasia, 65-42 million years ago.  相似文献   

2.
中国5种珍稀绢蝶非损伤性取样的mtDNA序列及系统进化   总被引:16,自引:0,他引:16  
应用非损伤性取样DNA测序技术测定了4种来自云南白马雪山和1种来自新疆天山的5种珍稀绢蝶的线粒体DNA细胞色素b基因部分DNA序列。在获得的433bp的序列中,A+T约占754%,其中40个核苷酸位点存在变异(约924%)。DNA一级序列数据显示,该5种绢蝶间DNA序列变异丰富。PAUP3.1.1(简约法)数据分析软件构建该5个种绢蝶的分子系统树显示,爱珂绢蝶(Parnassiusacco)和巴裔绢蝶(Parnassiusbaileyi)的亲缘关系比较接近,阿波罗绢蝶(Parnassiusapollo)、珍珠绢蝶(Parnassiusorlears)和西猴绢蝶(Parnassiussimo)3种绢蝶均为相对独立的一支,其中西猴绢蝶分化较早,与形态学研究结果相吻合。  相似文献   

3.
Nuclear DNA sequence data for diploid organisms are potentially a rich source of phylogenetic information for disentangling the evolutionary relationships of closely related organisms, but present special phylogenetic problems owing to difficulties arising from heterozygosity and recombination. We analyzed allelic relationships for two nuclear gene regions (phosphoenolpyruvate carboxykinase and elongation factor-1a), along with a mitochondrial gene region (NADH dehydrogenase subunit 5), for an assemblage of closely related species of carabid beetles (Carabus subgenus Ohomopterus). We used a network approach to examine whether the nuclear gene sequences provide substantial phylogenetic information on species relationships and evolutionary history. The mitochondrial gene genealogy strongly contradicted the morphological species boundary as a result of introgression of heterospecific mitochondria. Two nuclear gene regions showed high allelic diversity within species, and this diversity was partially attributable to recombination between various alleles and high variability in the intron region. Shared nuclear alleles among species were rare and were considered to represent shared ancestral polymorphism. Despite the presence of recombination, nuclear allelic networks recovered species monophyly more often and presented genetic differentiation patterns (low to high) among species more clearly. Overall, nuclear gene networks provide clear evidence for separate biological species and information on the phylogenetic relationships among closely related carabid beetles.  相似文献   

4.
This research examines phylogenetic relationships between members of the Atelinae subfamily (Alouatta, Ateles, Brachyteles, and Lagothrix), based on analysis of three genetic regions. Two loci, cytochrome c oxidase subunit II (COII) and the hypervariable I portion of the control region, are part of the mitochondrial genome. The other is a single-copy nuclear gene, Aldolase A Intron V. Analysis of these genetic regions provides support for tribe Alouattini containing the Alouatta species, while tribe Atelini contains the other three genera. However, these three genetic regions produce conflicting results for relationships among tribe Atelini members. Previous genetic studies supported grouping Brachyteles with Lagothrix, leaving Ateles in a separate subclade. The present data sets vary based on the genetic region analyzed and method of analysis suggesting all possible cladistic relationships. These results are more consistent with investigations of morphology and behavior among these primates. The primary cause of discrepancy between this study and previous genetic studies is postulated to reside in increased sampling in the present study of genetic variation among members of the Atelinae, specifically Ateles. The present study utilized samples of Ateles from all postulated species for this genetically variable primate, while previous studies used only one or two species of Ateles. This paper demonstrates that shifting relationships are produced when different species of Ateles are used to reconstruct phylogenies. This research concludes that a trichotomy should still be supported between members of tribe Atelini until further analyses, which include additional Atelinae haplotypes are conducted.  相似文献   

5.
Abstract.  Molecular phylogenetic methods were used to examine morphologically based hypotheses concerning the taxonomic structure and relationships of the grasshopper subfamily Gomphocerinae. Two mitochondrial gene (cytochrome b and cytochrome oxidase subunit I) sequences were determined for twenty-five species representing eleven Palaearctic genera. The studied Gomphocerinae species constituted a monophyletic group; furthermore, the earlier division of Gomphocerinae into tribes was supported, with each tribe monophyletic. There was no support for various systems uniting Stenobothrini and Gomphocerini into one tribe. Two separate clusters were discerned in Gomphocerini and two tribes were distinguished – Gomphocerini (genera Aeropus , Stauroderus , Chorthippus ) and Stenobothrini (genera Omocestus , Stenobothrus ).  相似文献   

6.
Phylogeny of the endemic Baikalian Sergentia (Chironomidae,Diptera)   总被引:1,自引:0,他引:1  
Fragments of two mitochondrial genes, cytochrome b (CytB) and Cytochrome c oxidase subunit I (COI) have been used as phylogenetic markers in Sergentia (Chironomidae, Diptera). The concatenated (1241 bp) sequences from both genes were used to infer the phylogenetic relationships among seven Sergentia species. Five of the species belong to the endemic fauna of Lake Baikal. Alignments of the nucleotide sequences were used for the construction of trees using Neighbor-Joining and maximum parsimony methods. Both methods yielded similar results. Monophyly of both Sergentia and the Baikalian endemic species was well supported. The date of origin of the endemic group of Sergentia was estimated as 25.7 MYA which closely coincides with the start of geological changes in the Baikal area. A cytological tree, based on 12 chromosomal characteristics, for the same set of Sergentia species showed a great similarity to the molecular phylogeny.  相似文献   

7.
The genus Cheilosia is one of the most diverse and speciose genera of Syrphidae (Diptera). The phylogenetic relationships of the hoverfly genus Cheilosia was investigated for the first time using molecular data. The mitochondrial protein-coding gene cytochrome c oxidase subunit I (COI) was chosen for sequencing; 1341 characters were obtained for 24 ingroup taxa and these were analyzed with parsimony. The monophyly of the genus Cheilosia was well supported. Current taxonomic division of Cheilosia into two subgenera (sg. Nigrocheilosia and sg. Neocheilosia) and most nonformalized species groups based on morphology were supported by the monophyletic groups identified in the molecular analysis. The phylogenetic informativeness of COI in resolving the subtribal relationships within the tribe Cheilosiini remains ambiguous.  相似文献   

8.
戴仁怀  陈学新  李子忠 《昆虫学报》2008,51(10):1055-1064
首次在国内利用28S rDNA D2区段和16S rDNA基因序列,结合50个形态特征对角顶叶蝉亚科(Deltocephalinae)[半翅目(Hemiptera): 叶蝉科(Cicadellidae)]19个属进行系统发育分析研究。从无水乙醇浸泡保存的标本中提取基因组DNA并扩增了19个内群和1种外群Typhlocybinae[半翅目(Hemiptera): 叶蝉科(Cicadellidae)]种类的28S rDNA D2基因片段并测序,同时扩增了16S rDNA基因片段并测序11条,采用了GenBank中1个种类的16S rDNA同源序列。采用PAUP*4.0和MrBayes3.0两个分析软件和3种建树方法,利用同源28S D2 rDNA和16S rDNA两个基因序列与形态特征结合进行系统发育分析研究。分析结果表明,二叉叶蝉族Macrostelini是一个单系,并在角顶叶蝉亚科的系统发育中处于基部的位置,是内群中最原始的族;角顶叶蝉族Deltocephalini中除了纹翅叶蝉属Nakaharanus,其余各属构成单系;殃叶蝉族Euscelini内属的归属比较混乱,可能是一个并系群,属间差异有待进一步研究。隆额叶蝉族Paralimnini与顶带叶蝉族Athysanini是姐妹群。带叶蝉属Scaphoideus与纹翅叶蝉属Nakaharanus是姐妹群,二者与木叶蝉属Phlogotettix的关系最近,三者构成一个单系,建议将三者归为带叶蝉族Scaphoideini。研究结果还表明,小眼叶蝉族Xestocephalini和Balcluthini的系统发育位置不明,有待进一步研究。  相似文献   

9.
Partial sequences of mitochondrial 12S and 16S rRNA genes from 19 Asian frog species of the tribe Paini (Ranidae, Dicroglossinae) allowed a first molecular study of the phylogenetic relationships of this tribe. This analysis confirmed that this tribe is a monophyletic group, but suggested relationships did not agree with previous generic classification of this clade based on morphology. Two major clades were recognized within the Paini. For one of them, the generic name Quasipaa is available. Phylogenetic relationships within the other group are not yet fully clarified and need further study.  相似文献   

10.
The Drosophila obscura species group has served as an important model system in many evolutionary and population genetic studies. Despite the amount of study this group has received, some phylogenetic relationships remain unclear. While individual analysis of different nuclear, mitochondrial, allozyme, restriction fragment, and morphological data partitions are able to discern relationships among closely related species, they are unable to resolve relationships among the five obscura species subgroups. A combined analysis of several nucleotide data sets is able to provide resolution and support for some nodes not seen or well supported in analyses of individual loci. A phylogeny of the obscura species group based on combined analysis of nucleotide sequences from six mitochondrial and five nuclear loci is presented here. The results of several different combined analyses indicate that the Old World obscura and subobscura subgroups form a monophyletic clade, although they are unable to resolve the relationships among the major lineages within the obscura species group.  相似文献   

11.
The phylogenetic relationships of nine genera in four tribes of the family Brassicaceae were estimated from the sequences of the internal transcribed spacer region (ITS) of the 18S-25S nuclear ribosomal DNA. The entire ITS region of 16 accessions belonging to 10 species of seven genera was sequenced. Eight published sequences of Brassicaceae were also used. A total of 27 sequences were included in this study; four of them were found to be pseudogenes. Both the neighbor-joining and the parsimony trees suggest that the nine genera can be divided into three groups: (1) Arabidopsis, Cardaminopsis, Capsella, and Lepidium; (2) Rorippa and Cardamine; and (3) Brassica, Sinapis, and Raphanus. In contradiction to the proposal that Cardaminopsis and Arabidopsis be put into an expanded tribe Arabideae, our data show that these two genera are more closely related to Capsella and Lepidium (tribe Lepidieae) than to Rorippa and Cardamine (tribe Arabideae). Further, our data show that within the tribe Brassiceae, Raphanus is more closely related to B. nigra than to the B. oleracea/B. rapa clade. This result is in agreement with the nuclear data obtained in several studies, but is in conflict with the RFLP data of mitochondrial and chloroplast DNA. As pointed out by previous authors, it is possible that Raphanus is a hybrid between the B. nigra and B. oleracea/B. rapa lineages with the latter as the maternal parent.  相似文献   

12.
The Labeonini (sensu Rainboth, 1991) is a tribe of the subfamily Cyprininae, the largest subfamily of Cypriniformes. With around 400 species in 34 genera, this tribe is widely distributed in the freshwaters of tropical Africa and Asia. Most species are adapted to fast-flowing streams and rivers, and exhibit unique morphological modifications associated with their lips and other structures around the mouth. The monophyly of this tribe has been tested and generally accepted in previous morphological and molecular studies. The major objectives of this study were to reconstruct the phylogenetic relationships within the tribe Labeonini, test its monophyly and explore the taxonomic subdivisions, intrarelationships and biogeography of the group. The value of the morphological characters associated with the lips and other associated structures in the taxonomic classification of labeonins was also discussed. Nucleotide sequences (3867 bp) of four unlinked nuclear loci were obtained from 51 species in 18 Labeonini genera from throughout the range of the tribe. Maximum parsimony, partitioned maximum likelihood and partitioned Bayesian analyses were used for phylogenetic inference from combined and separate gene data sets. Based on our results, the monophyly of Labeonini was well supported. Two major clades could be recovered within the tribe. Three subclades could further be recognized from the first clade. These clades/subclades are not consistent with groupings of any of previous workers using either morphological or molecular characters for phylogenetic inference. Only five currently recognized genera in this analysis are monophyletic. The similarity between some lips and associated structures (e.g. suctorial discs) of labeonins may due to convergence or parallelism instead of common ancestry. Labeonins of Southeast Asia, India and China are closely related to each other; the multiple clades of African taxa do not form a single monophyletic group, indicating multiple, independent dispersal events of labeonins into Africa from Asia.  相似文献   

13.
The Carangidae represent a diverse family of marine fishes that include both ecologically and economically important species. Currently, there are four recognized tribes within the family, but phylogenetic relationships among them based on morphology are not resolved. In addition, the tribe Carangini contains species with a variety of body forms and no study has tried to interpret the evolution of this diversity. We used DNA sequences from the mitochondrial cytochrome b gene to reconstruct the phylogenetic history of 50 species from each of the four tribes of Carangidae and four carangoid outgroup taxa. We found support for the monophyly of three tribes within the Carangidae (Carangini, Naucratini, and Trachinotini); however, monophyly of the fourth tribe (Scomberoidini) remains questionable. A sister group relationship between the Carangini and the Naucratini is well supported. This clade is apparently sister to the Trachinotini plus Scomberoidini but there is uncertain support for this relationship. Additionally, we examined the evolution of body form within the tribe Carangini and determined that each of the predominant clades has a distinct evolutionary trend in body form. We tested three methods of phylogenetic inference, parsimony, maximum-likelihood, and Bayesian inference. Whereas the three analyses produced largely congruent hypotheses, they differed in several important relationships. Maximum-likelihood and Bayesian methods produced hypotheses with higher support values for deep branches. The Bayesian analysis was computationally much faster and yet produced phylogenetic hypotheses that were very similar to those of the maximum-likelihood analysis.  相似文献   

14.
A gene for the Alternaria major allergen, Alt a 1, was amplified from 52 species of Alternaria and related genera, and sequence information was used for phylogenetic study. Alt a 1 gene sequences evolved 3.8 times faster and contained 3.5 times more parsimony-informative sites than glyceraldehyde-3-phosphate dehydrogenase (gpd) sequences. Analyses of Alt a 1 gene and gpd exon sequences strongly supported grouping of Alternaria spp. and related taxa into several species-groups described in previous studies, especially the infectoria, alternata, porri, brassicicola, and radicina species-groups and the Embellisia group. The sonchi species-group was newly suggested in this study. Monophyly of the Nimbya group was moderately supported, and monophyly of the Ulocladium group was weakly supported. Relationships among species-groups and among closely related species of the same species-group were not fully resolved. However, higher resolution could be obtained using Alt a 1 sequences or a combined dataset than using gpd sequences alone. Despite high levels of variation in amino acid sequences, results of in silico prediction of protein secondary structure for Alt a 1 demonstrated a high degree of structural similarity for most of the species suggesting a conservation of function.  相似文献   

15.
测定了分布于中国的锯眼蝶亚科4族10属共20个种的线粒体ND1和COI基因的部分序列,结合从GenBank中获得的4个国外种类的同源序列,以凤蝶科的迪洛尔娟凤蝶(Allancatria deyrolle)、丝带凤蝶(Sericinus montela),以及娟蝶科的西猛娟蝶(Parnassius simonius)为外类群,通过邻接法、最大简约法、最大似然法和贝叶斯法重建了分子系统树,分析了该亚科内主要类群的系统发生关系。分析结果表明:帻眼蝶族和锯眼蝶族具有较近的亲缘关系;黛眼蝶族不是单系群,该族中的黛眼蝶属、荫眼蝶属与眉眼蝶族具有较近的亲缘关系,带眼蝶属、藏眼蝶属、毛眼蝶属和帕眼蝶属聚合为一个独立的支系,其中带眼蝶属和藏眼蝶属在所有的分析方法中均以100%的置信度(BP=100%,PP=1.00)相聚合,建议将它们合并为一属。  相似文献   

16.
Mitochondrial DNA sequences can be used to estimate phylogenetic relationships among animal taxa and for molecular phylogenetic evolution analysis. With the development of sequencing technology, more and more mitochondrial sequences have been made available in public databases, including whole mitochondrial DNA sequences. These data have been used for phylogenetic analysis of animal species, and for studies of evolutionary processes. We made phylogenetic analyses of 19 species of Cervidae, with Bos taurus as the outgroup. We used neighbor joining, maximum likelihood, maximum parsimony, and Bayesian inference methods on whole mitochondrial genome sequences. The consensus phylogenetic trees supported monophyly of the family Cervidae; it was divided into two subfamilies, Plesiometacarpalia and Telemetacarpalia, and four tribes, Cervinae, Muntiacinae, Hydropotinae, and Odocoileinae. The divergence times in these families were estimated by phylogenetic analysis using the Bayesian method with a relaxed molecular clock method; the results were consistent with those of previous studies. We concluded that the evolutionary structure of the family Cervidae can be reconstructed by phylogenetic analysis based on whole mitochondrial genomes; this method could be used broadly in phylogenetic evolutionary analysis of animal taxa.  相似文献   

17.
The phylogenetic relationships within the fungus gnat tribe Exechiini have been left unattended for many years. Recent studies have not shed much light on the intergeneric relationship within the tribe. Here the first attempt to resolve the phylogeny of the tribe Exechiini using molecular markers is presented. The nuclear 18S and the mitochondrial 16S, and cytochrome oxidase subunit I (COI) genes were successfully sequenced for 20 species representing 15 Exechiini genera and five outgroup genera. Bayesian, maximum parsimony and maximum likelihood analyses revealed basically congruent tree topologies and the monophyly of Exechiini, including the genus Cordyla , is confirmed. The molecular data corroborate previous morphological studies in several aspects. Cordyla is found in a basal clade together with Brachypeza , Pseudorymosia and Stigmatomeria . The splitting of the genera Allodiopsis s.l. and Brevicornu s.l. as well as the sistergroup relationship of Exechia and Exechiopsis is also supported. The limited phylogenetic information provided by morphological characters is mirrored in the limited resolution of the molecular markers used in this study. Short internal and long-terminal branches obtained may indicate a rapid radiation of the Exechiini genera during a short evolutionary period.  相似文献   

18.
Because of the difficulties of constructing a robust phylogeny for Charadriiform birds using morphological characters, recent studies have turned to DNA sequences to resolve the systematic uncertainties of family-level relationships in this group. However, trees constructed using nuclear genes or the mitochondrial Cytochrome b gene suggest deep-level relationships of shorebirds that differ from previous studies based on morphology or DNA-DNA hybridization distances. To test phylogenetic hypotheses based on nuclear genes (RAG-1, myoglobin intron-2) and single mitochondrial genes (Cytochrome b), approximately 13,000 bp of mitochondrial sequence was collected for one exemplar species of 17 families of Charadriiformes plus potential outgroups. Maximum likelihood and Bayesian analyses show that trees constructed from long mitochondrial sequences are congruent with the nuclear gene topologies [Chardrii (Lari, Scolopaci)]. Unlike short mitochondrial sequences (such as Cytochrome b alone), longer sequences yield a well-supported phylogeny for shorebirds across various taxonomic levels. Examination of substitution patterns among mitochondrial genes reveals specific genes (especially ND5, ND4, ND2, and COI) that are better suited for phylogenetic analyses among shorebird families because of their relatively homogeneous nucleotide composition among lineages, slower accumulation of substitutions at third codon positions, and phylogenetic utility in both closely and distantly related lineages. For systematic studies of birds in which family and generic levels are examined simultaneously, we recommend the use of both nuclear and mitochondrial sequences as the best strategy to recover relationships that most likely reflect the phylogenetic history of these lineages.  相似文献   

19.
A recent phylogenetic study based on morphological, biochemical and early life history characters resurrected the genus Scartomyzon (jumprock suckers, c . eight−10 species) from Moxostoma (redhorse suckers, c . 10–11 species) and advanced the understanding of relationships among species in these two genera, and the genealogical affinities of these genera with other evolutionary lineages within the tribe Moxostomatini in the subfamily Catostominae. To further examine phylogenetic relationships among moxostomatin suckers, the complete mitochondrial (mt) cytochrome b gene was sequenced from all species within this tribe and representative outgroup taxa from the Catostomini and other catostomid subfamilies. Phylogenetic analysis of gene sequences yielded two monophyletic clades within Catostominae: Catostomus + Deltistes + Xyrauchen + Erimyzon + Minytrema and Moxostoma + Scartomyzon + Hypentelium + Thoburnia . Within the Moxostomatini, Thoburnia was either unresolved or polyphyletic; Thoburnia atripinnis was sister to a monophyletic Hypentelium . In turn, this clade was sister to a monophyletic clade containing Scartomyzon and Moxostoma . Scartomyzon was never resolved as monophyletic, but was always recovered as a polyphyletic group embedded within Moxostoma , rendering the latter genus paraphyletic if ' Scartomyzon ' continues to be recognized. Relationships among lineages within the Moxostoma and' Scartomyzon 'clade were resolved as a polytomy. To better reflect phylogenetic relationships resolved in this analysis, the following changes to the classification of the tribe Moxostomatini are proposed: subsumption of' Scartomyzon 'into Moxostoma ; restriction of the tribe Moxostomatini to Moxostoma ; resurrect the tribe Erimyzonini, containing Erimyzon and Minytrema , classified as incertae sedis within Catostominae; retain the tribe Thoburniini.  相似文献   

20.
Details of the phylogenetic relationships among tetrahymenine ciliates remain unresolved despite a rich history of investigation with nuclear gene sequences and other characters. We examined all available species of Tetrahymena and three other tetrahymenine ciliates, and inferred their phylogenetic relationships using nearly complete mitochondrial cytochrome c oxidase subunit 1 (cox1) and small subunit (SSU) rRNA gene sequences. The inferred phylogenies showed the genus Tetrahymena to be monophyletic. The three “classical” morphology-and-ecology-based groupings are paraphyletic. The SSUrRNA phylogeny confirmed the previously established australis and borealis groupings, and nine ribosets. However, these nine ribosets were not well supported. Using cox1 gene, the deduced phylogenies based on this gene revealed 12 well supported groupings, called coxisets, which mostly corresponded to the nine ribosets. This study demonstrated the utility of cox1 for resolving the recent phylogeny of Tetrahymena, whereas the SSU rRNA gene provided resolution of deeper phylogenetic relationships within the genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号