首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Philip John  F. R. Whatley 《BBA》1970,216(2):342-352
A procedure is described for preparing particles from cells of Micrococcus denitrificans which were broken osmotically after treatment with lysozyme.

1. 1. The preparations catalysed ATP synthesis coupled to O2 uptake or NO3 reduction. With NADH or succinate as the electron donors the P:O ratios were about 1.5 and 0.5, respectively; and the P:NO3 ratios were about 0.9 and 0.06, respectively.

2. 2. Addition of ADP or Pi to the reaction mixture increased the rates of NADH-dependent O2 uptake and NO3 reduction. Addition of 1 mM 2,4-dinitrophenol, which inhibited phosphorylation by 50–60%, increased the basal rates of electron transport.

3. 3. Evidence derived from spectrophotometry and from the differential inhibition by antimycin A of O2 and NO3 reduction leads to the conclusion that the nitrate reductase interacted with the respiratory chain in the region of the b-type cytochrome, and that the c-type cytochrome present was not involved in the reduction of NO3 to NO2.

Abbreviations: TMPD; tetramethyl-p-phenylenediamine  相似文献   


2.
J.Michael Gould  S. Izawa 《BBA》1974,333(3):509-524
1. By using dibromothymoquinone as the electron acceptor, it is possible to isolate functionally that segment of the chloroplast electron transport chain which includes only Photosystem II and only one of the two energy conservation sites coupled to the complete chain (Coupling Site II, observed P/e2 = 0.3–0.4). A light-dependent, reversible proton translocation reaction is associated with the electron transport pathway: H2O → Photosystem II → dibromothymoquinone. We have studied the characteristics of this proton uptake reaction and its relationship to the electron transport and ATP formation associated with Coupling Site II.

2. The initial phase of H+ uptake, analyzed by a flash-yield technique, exhibits linear kinetics (0–3 s) with no sign of transient phenomena such as the very rapid initial uptake (“pH gush”) encountered in the overall Hill reaction with methylviologen. Thus the initial rate of H+ uptake obtained by the flash-yield method is in good agreement with the initial rate estimated from a pH change tracing obtained under continuous illumination.

3. Dibromothymoquinone reduction, observed as O2 evolution by a similar flash-yield technique, is also linear for at least the first 5 s, the rate of O2 evolution agreeing well with the steady-state rate observed under continuous illumination.

4. Such measurements of the initial rates of O2 evolution and H+ uptake yield an H+/e ratio close to 0.5 for the Photosystem II partial reaction regardless of pH from 6 to 8. (Parallel experiments for the methylviologen Hill reaction yield an H+/e ratio of 1.7 at pH 7.6.)

5. When dibromothymoquinone is being reduced, concurrent phosphorylation (or arsenylation) markedly lowers the extent of H+ uptake (by 40–60%). These data, unlike earlier data obtained using the overall Hill reaction, lend themselves to an unequivocal interpretation since phosphorylation does not alter the rate of electron transport in the Photosystem II partial reaction. ADP, Pi and hexokinase, when added individually, have no effect on proton uptake in this system.

6. The involvement of a proton uptake reaction with an H+/e ratio of 0.5 in the Photosystem II partial reaction H2O → Photosystem II → dibromothymoquinone strongly suggests that at least 50% of the protons produced by the oxidation of water are released to the inside of the thylakoid, thereby leading to an internal acidification. It is pointed out that the observed efficiencies for ATP formation (P/e2) and proton uptake (H+/e) associated with Coupling Site II can be most easily explained by the chemiosmotic hypothesis of energy coupling.  相似文献   


3.
Daunorubicin, an anthracycline antitumor antibiotic, was reduced in the presence of reduced (GSH) or oxidized (GSSG) glutathione to evaluate the possibilities of detoxification or of potentiation of the drug by these compounds. The reductants were .COO free radicals produced by γ radiolysis. In both cases, the final product is 7-deoxydaunomycinone, i.e., the same as without glutathione. The reduction yield is also the same as without GSH or GSSG (0.23 μmol·J−1). No glutathione depletion was observed. Limits for the rate constants of some possible nonenzymatic detoxification reactions are given. To evaluate the possible interactions of daunorubicin with sulfur-containing proteins, the reduction of this drug by .COO free radicals was also studied in the presence of a polypeptide containing two disulfide bridge are, respectively, 0.23 μmol·J−1 7-deoxydaunomycinone. The yields of reduction of the drug and of a protein disulfide bridge are, respectively, 0.23 μmol·J−1 and ≤ 6 nmol·J−1. These values indicate thet disulfide radical anions of the protein can reduce the drug, giving back the disulfide bridge, but that the drug transients niether oxidize nor reduce the protein.  相似文献   

4.
《FEBS letters》1994,350(2-3):195-198
The H+-ATPase from chloroplasts, CF0F1, was isolated, purified and reconstituted into asolectin liposomes. The enzyme was brought either into the oxidized state or into the reduced state, and the rate of ATP synthesis was measured after energisation of the proteoliposomes with an acid—base transition ΔpH (pHin = 5.0, pHout = 8.5) and a K+/valinomycin diffusion potential, Δφ (K+in = 0.6 mM, K+out = 60 mM). A rate of 250 s−1 was observed with the reduced enzyme (85 s−1 in the absence of Δφ). A rate of 50 s−1 was observed with the oxidized enzyme under the same conditions (15 s−1 in the absence of Δφ). The reconstituted enzyme contained 2 ATPbound per CF0F1 and 1 ADPbound per CF0F1. Upon energisation the enzyme was activated and 0.9 ADP per CF0F1, was released. Binding of ADP to the active reduced enzyme was observed under different conditions. In the absence of phosphate the rate constant for ADP binding was 105 M−1·s−1 under energized and de-energized conditions. In the presence of phosphate the rate of ADP binding drastically increased under energized conditions, and strongly decreased under de-energized conditions.  相似文献   

5.
To examine the effect of compound deficiencies in antioxidant defense, we have generated mice (Sod2+/−/Gpx1−/−) that are deficient in Mn superoxide dismutase (MnSOD) and glutathione peroxidase 1 (Gpx1) by breeding Sod2+/− and Gpx1−/− mice together. Although Sod2+/−/Gpx1−/− mice showed a 50% reduction in MnSOD and no detectable Gpx1 activity in either mitochondria or cytosol in all tissues, they were viable and appeared normal. Fibroblasts isolated from Sod2+/−/Gpx1−/− mice were more sensitive (4- to 6-fold) to oxidative stress (t-butyl hydroperoxide or γ irradiation) than fibroblasts from wild-type mice, and were twice as sensitive as cells from Sod2+/− or Gpx1−/− mice. Whole-animal studies demonstrated that survival of the Sod2+/−/Gpx1−/− mice in response to whole body γ irradiation or paraquat administration was also reduced compared with that of wild-type, Sod2+/−, or Gpx1−/− mice. Similarly, endogenous oxidative stress induced by cardiac ischemia/reperfusion injury led to greater apoptosis in heart tissue from the Sod2+/−/Gpx1−/− mice than in that from mice deficient in either MnSOD or Gpx1 alone. These data show that Sod2+/−/Gpx1−/− mice, deficient in two mitochondrial antioxidant enzymes, have significantly enhanced sensitivity to oxidative stress induced by exogenous insults and to endogenous oxidative stress compared with either wild-type mice or mice deficient in either MnSOD or Gpx1 alone.  相似文献   

6.
The uptake of the neuroactive sulphur amino acids -cysteine sulphinate, -cysteate, -homocysteine sulphinate and -homocysteate was investigated in astrocytes cultured from the prefrontal cortex; in neurons, cultured from cerebral cortex; and, in granule cells, cultured from cerebellum. It was shown that each amino acid acted as a substrate for a plasma membrane transporter in both neurons and astrocytes. Astrocytes and neurons exhibited a high-affinity uptake for -cysteine sulphinate and -cysteate with Km values ranging from 14–100 μM, and a low-affinity uptake for -homocysteine sulphinate and -homocysteate, with Km values ranging from 225–1210 μM. The uptake of all transmitter candidates studied was partially sodium-dependent. This sodium-dependency was most evident at low (< 100 μM) concentrations of each substrate. The apparent uptake measured in the absence of sodium was included as a component in corrections made for non-saturable influx. With the exception of -cysteine sulphinate, uptake of each sulphur amino acid was greatest in astrocytes, with Vmax values ranging between 15–32 nmol min−1 mg−1 cell protein. Moreover, the uptake of each sulphur amino acid in cerebellar granule cells (Vmax values ranging between 10–25 nmol min−1 mg−1 cell protein) was consistently greater than that in cerebral cortex neurons (Vmax values ranging between 1.5–6 nmol min−1 mg−1 cell protein).  相似文献   

7.
The growth of the freshwater microalga Scenedesmus obliquus was studied at 30°C in a mineral culture medium with phosphorus concentrations of between 0 and 372 μ . The values for the specific growth rates, between and , fitted a semistructured substrate-limitation model with μm1 = 0·0466 h−1, μm2 = 0·0256 h−1 and . The specific uptake rate of phosphorus reached a maximum value of qSm1 = 658·01 × 10−4 μmol P mg−1 biomass h−1.  相似文献   

8.
We employed genetically modified mice to examine the role of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on skeletal and calcium homeostasis. In mice expressing the null mutation for 25-hydroxyvitamin D 1 hydroxylase (1OHase−/−), or the vitamin D receptor (VDR−/−), 1,25(OH)2D3 and calcium were both required for optimal epiphyseal growth plate development, serum calcium and phosphorus alone were sufficient to mineralize skeletal tissue independent of 1,25(OH)2D3 and the VDR, and endogenous 1,25(OH)2D3 and the VDR were essential for baseline bone formation. In 2-week-old 1OHase−/− mice and in 2-week-old mice homozygous for the PTH null mutation(PTH−/−), PTH and 1,25(OH)2D3 were each found to exert independent and complementary effects on skeletal anabolism, with PTH predominantly affecting appositional trabecular bone growth and 1,25(OH)2D3 influencing both endochondral bone formation and appositional bone growth. Endogenous 1,25(OH)2D3 maintained serum calcium homeostasis predominantly by modifying intestinal and renal calcium transporters but not by producing net bone resorption. Administration of exogenous 1,25(OH)2D3 to double mutant PTH−/−1OHase−/− mice produced skeletal effects consistent with the actions of endogenous 1,25(OH)2D3. These studies reveal an important skeletal anabolic role for both endogenous and exogenous 1,25(OH)2D3 and point to a potential role for 1,25(OH)2D3 analogs in the treatment of disorders of bone loss.  相似文献   

9.
The rates of respiratory O2 uptake have been studied in leaves, stems and whole shoots of several freshwater plants: 6 angiosperms, 2 bryophytes and one alga. For angiosperm leaves, rates varied widely with species (30–142 μmol O2 (gDW)−1 h−1), were correlated with chlorophyll content and were higher than those of the stems (13–71 μmol O2 (gDQ)−1 h−1). The rates for the shoots of bryophytes (53–66 μmol O2 (gDW)−1 h−1) and for the alga Cladophora glomerata (L.) Kütz. (96 μmol O2 (gDW)−1 h−1) were slightly higher than those of most angiosperm stems, but lower than those for most leaves.

These plants had a significant cyanide-resistant respiration, suggesting the existence of an alternative pathway to the “classic” cytochrome system. This pathway was found to be active in all the species studied, as judged by responses to a specific inhibitor, SHAM (salicylhydroxamic acid). Measurement of electron-transport system (ETS) activity showed that there is a large electron-transport capacity which is not normally used by respiration in vivo.  相似文献   


10.
Photosynthetic carbon uptake of Callitriche cophocarpa Sendt. was examined in plants collected from six Danish streams and in plants grown under variable inorganic carbon conditions in the laboratory. Both field and laboratory plants showed a low affinity for inorganic carbon (CO2 compensation points ranging from 0.7 to 22 μM, and K0.5(CO2) from 51 to 121 μM), consistent with C-3 photosynthesis and use of CO2 alone. Variation in inorganic carbon uptake characteristics was low in both groups of plants. Only in laboratory-grown plants was a coupling found between carbon uptake and the inorganic carbon regime of the medium. The carbon extraction capacity, expressed as a percentage of the initial amount of dissolved inorganic carbon (DIC) assimilated in PH-drift experiments, increased from −1.4 to 11.8% with declining external carbon availability, and the initial slope of the CO2 response curve increased from 6.4 to 15.3 g−1 h−1 dm3. The plasticity of the inorganic carbon uptake system of C. cophocarpa was very low compared to the plasticity observed for submerged macrophytes with accessory carbon uptake systems (i.e. HCO3 use or C-4 photosynthesis), suggesting that the plasticity of the C-3 photosynthetic apparatus as such is restricted. The low carbon affinity of C. cophocarpa indicates that this species depends on CO2 oversaturation for a sufficient supply of CO2 for photosynthesis and growth.  相似文献   

11.
O2 generation in mitochondrial electron transport systems, especially the NADPH-coenzyme Q10 oxidoreductase system, was examined using a model system, NADPH-coenzyme Q1-NADPH-dependent cytochrome P-450 reductase. One electron reduction of coenzyme Q1 produces coenzyme Q1 and O2 during enzyme-catalyzed reduction and O2 + coenzyme Q1 are in equilibrium with O2 + coenzyme Q1 in the presence of enough O2. The coenzyme Q1 produced can be completely eliminated by superoxide dismutase, identical to bound coenzyme Q10 radical produced in a succinate/fumarate couple-KCN-submitochondrial system in the presence of O2. Superoxide dismutase promotes electron transfer from reduced enzyme to coenzyme Q1 by the rapid dismutation of O2 generated, thereby preventing the reduction of coenzyme Q1 by O2. The enzymatic reduction of coenzyme Q1 to coenzyme Q1H2 via coenzyme Q1 is smoothly achieved under anaerobic conditions. The rate of coenzyme Q1H2 autoxidation is extremely slow, i.e., second-order constant for [O2][coenzyme Q1H2] = 1.5 M−1 · s−1 at 258 μM O2, pH 7.5 and 25°C.  相似文献   

12.
The effects of N-ethylmaleimide (NEM) on mouse platelet serotonin (5-HT) and 86Rb+ uptake were studied. The 5-HT transport system showed a biphasic response to increasing concentrations of NEM, with low concentrations (25–50 μM) stimulating and high concentrations (200–400 μM) inhibiting 5-HT transport. Fluoxetine, an inhibitor of the platelet 5-HT transporter, blocked NEM-induced stimulation of 5-HT transport. The kinetics of 5-HT uptake indicated that NEM (50 μM) markedly increased the maximal rate of 5-HT transport (Vmax control = 28.4±1.4 pmol/108 platelets/4 min vs Vmax NEM = 64.5±9.5 pmol/108 platelets/4 min but had no significant effect on the Km value. Platelet Na+ K+ ATPase activity was determined by measuring 86Rb+ uptake. Platelet 86Rb+ uptake showed a biphasic response to NEM, with low concentrations (25–100 μM) significantly stimulating and high concentrations (400 μM) inhibiting uptake. These changes in platelet 86Rb+ uptake paralleled the biphasic changes in 5-HT transport. In the presence of fluoxetine, 5-HT transport was markedly inhibited but no change in the ability of NEM to stimulate 86Rb+ uptake was observed. These data suggest that low concentrations of NEM activate plasma membrane Na+ K+ ATPase which results in a marked stimulation of platelet 5-HT transport.  相似文献   

13.
The photosynthetic capacity of Myriophyllum salsugineum A.E. Orchard was measured, using plants collected from Lake Wendouree, Ballarat, Victoria and grown subsequently in a glasshouse pond at Griffith, New South Wales. At pH 7.00, under conditions of constant total alkalinity of 1.0 meq dm−3 and saturating photon irradiance, the temperature optimum was found to be 30–35°C with rates of 140 μmol mg−1 chlorophyll a h−1 for oxygen production and 149 μmol mg−1 chlorophyll a h−1 for consumption of CO2. These rates are generally higher than those measured by other workers for the noxious Eurasian water milfoil, Myriophyllum spicatum L., of which Myriophyllum salsugineum is a close relative. The light-compensation point and the photon irradiance required to saturate photosynthetic oxygen production were exponentially dependent on water temperature. Over the temperature range 15–35°C the light-compensation point increased from 2.4 to 16.9 μmol (PAR) m−2 s−1 for oxygen production while saturation photon irradiance increased from 41.5 to 138 μmol (PAR) m−2 s−1 for oxygen production and from 42.0 to 174 μmol (PAR) m−2 s−1 for CO2 consumption. Respiration rates increased from 27.1 to 112.3 μmol (oxygen consumed) g−1 dry weight h−1 as temperature was increased from 15 to 35°C. The optimum temperature for productivity is 30°C.  相似文献   

14.
The reaction of meso-tetrakis (4-dimethoxyphenyl) porphinatomanganese(II), MnTPOMeP, with TCNE (TCNE = tetracyanoethylene) leads to the formation of [MnTPOMeP]+ [TCNE] and [MnTPOMeP]+[OC(CN)C(CN)2]. The single-crystal X-ray structures of the latter as well as [Cu(bipy)2Cl]+ [OC(CN)C(CN)2] were determined. The former has a disordered [OC(CN)C(CN)2] bridging via C and O between a pair of MnIII sites, whereas the latter has an isolated [OC(CN)C(CN)2] unbound to CuII. The IR characterization for μ2-C,O bound [OC(CN)C(CN)2] is at 2219m and 2196s (νCN) cm−1 and at 1558s (νCO) cm−1 while for unbound [OC(CN)C(CN)2] it is at 2210m, 2203m, 2181m (νCN) cm−1 and at 1583s (νCO) cm−1.  相似文献   

15.
The diverse function of human placental aromatase including estradiol 6-hydroxylase and cocaine N-demethylase activity are described, and the mechanism for the simultaneous metabolism of estradiol to 2-hydroxy- and 6-hydroxyestradiol at the same active site of aromatase is postulated. Comparison of aromatase activity is also made among the wild type and N-terminal sequence deleted forms of human aromatase which are recombinantly expressed in Escherichia coli. Aromatase cytochrome P450 was reconstituted and incubated with [6,7-3H2,4-14C]estradiol, 7-ethoxycoumarin, and [N-methyl-3H3]cocaine. 6-Hydroxy[7-3H,4-14C]estradiol was isolated as the metabolite of estradiol and the 3H-water release method based on the 6-3H label was established. The initial rate kinetics of the 6-hydroxylation gave Km of 4.3 μM, Vmax of 4.02 nmol min−1mg−1, and turnover rate of 0.27 min−1. Testosterone competed dose-dependently with the 6-hydroxylation and showed the Ki of 0.15 μM, suggesting that they occupy the same binding site of aromatase. The deethylation of 7-ethoxycoumarin showed Km of 200 μM, Vmax of 12.5 nmol min−1mg−1 and turnover rate of 1.06 min−1. The N-demethylation of cocaine was analysed by the 3H-release method, giving Km of 670 μM, Vmax of 4.76 nmol min−1mg−1, and turnover rate of 0.49 min−1. All activity was dose-responsively suppressed by anti-aromatase P450 monoclonal antibody MAb3-2C2. The N-terminal 38 amino acid residue deleted form of aromatase P450 was expressed in particularly high yield giving a specific activity of 397 ± 83 pmol min−1mg−1 (n = 12) of crude membrane-bound particulates with a turnover rate of 2.6 min−1.  相似文献   

16.
The aim of our study was to determine whether a meal modifies the antisecretory response induced by PYY and the structural requirements to elicit antisecretory effects of analogue PYY(22–36) for potential antidiarrhea therapy. The variations in short-circuit current (Isc) due to the modification of ionic transport across the rat intestine were assessed in vitro, using Ussing chambers. In fasted rats, PYY induced a dose- and time-dependent reduction in Isc, with a sensitivity threshold at 5 × 10−11 M (ΔIsc −2 ± 0.5 μA/cm2). The reduction was maximal at 10−7 M (Isc −23 ± 2 μA/cm2), and the concentration producing half-maximal inhibition was 10−9 M. At 10−7 M, reduction of Isc by PYY reached 90% of response to 5 × 10−5 M bumetanide. The PYY effect was partly reversed by 10−5 M forskolin (Isc +13.43 ± 2.91 μA/h·cm2, p < 0.05) or 10−3 M dibutyryl adenosine 3′,5′ cyclic monophosphate (Isc +12 ± 1.69 μA/cm2, p < 0.05). Naloxone and tetrodotoxin did not alter the effect of PYY. In addition, PYY and its analogue P915 reduced net chloride ion secretion to 2.85 and 2.29 μEq/cm2 (p < 0.05), respectively. The antisecretory effect of PYY was accompanied by dose- and time-dependent desensitization when jejunum was prestimulated by a lower dose of peptide. The antisecretory potencies exhibited by PYY analogues required both a C-terminal fragment (22–36) and an aromatic amino acid residue (Trp or Phe) at position 27. At 10−7 M the biological activity of PYY was lower in fed than fasted rats (p < 0.001). Our results confirm the antisecretory effect of PYY, but show that the fed period is accompanied by desensitization, similar to the transient desensitization observed in the fasted period with cumulative doses. This suggests that PYY may act as a physiological mediator that reduces intestinal secretion.  相似文献   

17.
L. Sas  Z. Rengel  C. Tang 《Plant science》2001,160(6):61-1198
In symbiotically-grown legumes, rhizosphere acidification may be caused by a high cation/anion uptake ratio and the excretion of organic acids, the relative importance of the two processes depending on the phosphorus nutritional status of the plants. The present study examined the effect of P deficiency on extrusions of H+ and organic acid anions (OA) in relation to uptake of excess cations in N2-fixing white lupin (cv. Kiev Mutant). Plants were grown for 49 days in nutrient solutions treated with 1, 5 or 25 mmol P m−3 Na2HPO4 in a phytotron room. The increased formation of cluster roots occurred prior to a decrease in plant growth in response to P deficiency. The number of cluster roots was negatively correlated with tissue P concentrations below 2.0 g kg−1 in shoots and 3 g kg−1 in roots. Cluster roots generally had higher concentrations of Mg, Ca, N, Cu, Fe, and Mn but lower concentrations of K than non-cluster roots. Extrusion of protons and OA (90% citrate and 10% malate) from roots was highly dependent on P supply. The amounts of H+ extruded per unit root biomass decreased with time during the experiment. On the equimolar basis, H+ extrusion by P-deficient plants (grown at 1 and 5 mmol P m−3) were, on average, 2–3-fold greater than OA exudation. The excess cation content in plants was generally the highest at 1 mmol P m−3 and decreased with increasing P supply. The ratio of H+ release to excess cation uptake increased with decreasing P supply. The results suggest that increased exudation of OA due to P deficiency is associated with H+ extrusion but contributes only a part of total acidification.  相似文献   

18.
The phosphinoalkenes Ph2P(CH2)nCH=CH2 (n= 1, 2, 3) and phosphinoalkynes Ph2P(CH2)n C≡CR (R = H, N = 2, 3; R = CH3, N = 1) have been prepared and reacted with the dirhodium complex (η−C5H5)2Rh2(μ−CO) (μ−η2−CF3C2CF3). Six new complexes of the type (ν−C5H5)2(Rh2(CO) (μ−η11−CF3C2CF3)L, where L is a P-coordinated phosphinoalkene, or phosphinoalkyne have been isolated and fully characterized; the carbonyl and phosphine ligands are predominantly trans on the Rh---Rh bond, but there is spectroscopic evidence that a small amount of the cis-isomer is formed also. Treatment of the dirhodium-phosphinoalkene complexes with (η−CH3C5H4)Mn(CO)2thf resulted in coordination of the manganese to the alkene function. The Rh2---Mn complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2P(CH2)3CH=CH2} (η−CH3C5H4)Mn(CO)2] was fully characterized. Simi treatment of the dirhodium-phosphinoalkyne complexes with Co2(CO)8 resulted in the coordination of Co2(CO)6 to the alkyne function. The Rh2---Co2 complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2PCH2C≡CCH3}Co2(CO)2], C37H25Co2F6O7PRh2, was fully characteriz spectroscopically, and the molecular structure of this complex was determined by a single crystal X-ray diffraction study. It is triclinic, space group (Ci1, No. 2) with a = 18.454(6), B = 11.418(3), C = 10.124(3) Å, = 112.16(2), β = 102.34(3), γ = 91.62(3)°, Z = 2. Conventional R on |F| was 0.052 fo observed (I > 3σ(I)) reflections. The Rh2 and Co2 parts of the molecule are distinct, the carbonyl and phosphine are mutually trans on the Rh---Rh bond, and the orientations of the alkynes are parallel for Rh2 and perpendicular for Co2. Attempts to induce Rh2Co2 cluster formation were unsuccessful.  相似文献   

19.
Oxygenation of [CuII(fla)(idpa)]ClO4 (fla=flavonolate; IDPA=3,3′-iminobis(N,N-dimethylpropylamine)) in dimethylformamide gives [CuII(idpa)(O-bs)]ClO4 (O-bs=O-benzoylsalicylate) and CO. The oxygenolysis of [CuII(fla)(idpa)]ClO4 in DMF was followed by electronic spectroscopy and the rate law −d[{CuII(fla)(idpa)}ClO4]/dt=kobs[{CuII(fla)(idpa)}ClO4][O2] was obtained. The rate constant, activation enthalpy and entropy at 373 K are kobs=6.13±0.16×10−3 M−1 s−1, ΔH=64±5 kJ mol−1, ΔS=−120±13 J mol−1 K−1, respectively. The reaction fits a Hammett linear free energy relationship and a higher electron density on copper gives faster oxygenation rates. The complex [CuII(fla)(idpa)]ClO4 has also been found to be a selective catalyst for the oxygenation of flavonol to the corresponding O-benzoylsalicylic acid and CO. The kinetics of the oxygenolysis in DMF was followed by electronic spectroscopy and the following rate law was obtained: −d[flaH]/dt=kobs[{CuII(fla)(idpa)}ClO4][O2]. The rate constant, activation enthalpy and entropy at 403 K are kobs=4.22±0.15×10−2 M−1 s−1, ΔH=71±6 kJ mol−1, ΔS=−97±15 J mol−1 K−1, respectively.  相似文献   

20.
Carbonylation of the anionic iridium(III) methyl complex, [MeIr(CO)2I3] (1) is an important step in the new iridium-based process for acetic acid manufacture. A model study of the migratory insertion reactions of 1 with P-donor ligands is reported. Complex 1 reacts with phosphites to give neutral acetyl complexes, [Ir(COMe)(CO)I2L2] (L = P(OPh)3 (2), P(OMe)3 (3)). Complex 2 has been isolated and fully characterised from the reaction of Ph4As[MeIr(CO)2I3] with AgBF4 and P(OPh)3; comparison of spectroscopic properties suggests an analogous formulation for 3. IR and 31P NMR spectroscopy indicate initial formation of unstable isomers of 2 which isomerise to the thermodynamic product with trans phosphite ligands. Kinetic measurements for the reactions of 1 with phosphites in CH2Cl2 show first order dependence on [1], only when the reactions are carried out in the presence of excess iodide. The rates exhibit a saturation dependence on [L] and are inhibited by iodide. The reactions are accelerated by addition of alcohols (e.g. 18× enhancement for L = P (OMe)3 in 1:3 MeOH-CH2Cl2). A reaction mechanism is proposed which involves substitution of an iodide ligand by phosphite, prior to migratory CO insertion. The observed rate constants fit well to a rate law derived from this mechanism. Analysis of the kinetic data shows that k1, the rate constant for iodide dissociation, is independent of L, but is increased by a factor of 18 on adding 25% MeOH to CH2Cl2. Activation parameters for the k1 step are ΔH = 71 (±3) kJ mol, ΔS = −81 (±9) J mol−1 K−1 in CH2Cl2 and ΔH = 60(±4) kJ mol−1, ΔS = −93(± 12) J mol−1 K−1 in 1:3 MeOH-CH2Cl2. Solvent assistance of the iodide dissociation step gives the observed rate enhancement in protic solvents. The mechanism is similar to that proposed for the carbonylation of 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号