首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electroneutral P(i) uptake via the phosphate carrier (PIC) in rat liver and heart mitochondria is inhibited by fatty acids (FAs), by 12-(4-azido-2-nitrophenylamino)dodecanoic acid (AzDA) and heptylbenzoic acid ( approximately 1 microm doses) and by lauric, palmitic, or 12-azidododecanoic acids ( approximately 0.1 mm doses). In turn, reconstituted E. coli-expressed yeast PIC mediated anionic FA uniport with a similar pattern leading to FA cycling and H(+) uniport. The kinetics of P(i)/P(i) exchange on recombinant PIC in the presence of AzDA better corresponded to a competitive inhibition mechanism. Methanephosphonate was identified as a new PIC substrate. Decanephosphonate, butanephosphonate, 4-nitrophenylphosphate, and other P(i) analogs were not translocated and did not inhibit P(i) transport. However, methylenediphosphonate and iminodi(methylenephosphonate) inhibited both electroneutral P(i) uptake and FA cycling via PIC. AzDA analog 16-(4-azido-2-nitrophenylamino)-[(3)H(4)]-hexadecanoic acid ((3)H-AzHA) bound upon photoactivation to several mitochondrial proteins, including the 30- and 34-kDa bands. The latter was ascribed to PIC due to its specific elution pattern on Blue Sepharose and Affi-Gel. (3)H-AzHA photolabeling of recombinant PIC was prevented by methanephosphonate and diphosphonates and after premodification with 4-azido-2-nitrophenylphosphate. Hence, the demonstrated PIC interaction with monovalent long-chain FA anions, but with divalent phosphonates of short chain only, indicates a pattern distinct from that valid for the mitochondrial uncoupling protein-1.  相似文献   

2.
Petr Je?ek  Martin Jab?rek 《FEBS letters》2010,584(10):2135-37720
Mitochondrial uncoupling proteins (UCPs) are pure anion uniporters, which mediate fatty acid (FA) uniport leading to FA cycling. Protonated FAs then flip-flop back across the lipid bilayer. An existence of pure proton channel in UCPs is excluded by the equivalent flux-voltage dependencies for uniport of FAs and halide anions, which are best described by the Eyring barrier variant with a single energy well in the middle of two peaks. Experiments with FAs unable to flip and alkylsulfonates also support this view. Phylogenetically, UCPs took advantage of the common FA-uncoupling function of SLC25 family carriers and dropped their solute transport function.  相似文献   

3.
The carnitine carrier from rat liver mitochondria was purified by chromatography on hydroxyapatite and celite and reconstituted in egg yolk phospholipid vesicles by adsorbing the detergent on polystyrene beads. In the reconstituted system, in addition to the carnitine/carnitine exchange, the purified protein catalyzed a uni-directional transport (uniport) of carnitine measured as uptake into unloaded proteoliposomes as well as efflux from prelabelled proteoliposomes. In both cases the reaction followed a first-order kinetics with a rate constant of 0.023-0.026 min-1. Besides carnitine, also acylcarnitines were transported in the uniport mode. N-Ethylmaleimide inhibited the uni-directional transport of carnitine completely. The uniport of carnitine is not influenced by the delta pH and the electric gradient across the membrane. The activation energy for uniport was 115 kJ/mol and the half-saturation constant on the external side of the proteoliposomes was 0.53 mM. The maximal rate of the uniport at 25 degrees C was 0.2 mumol/min per mg protein, i.e. about 10 times lower than that of the reconstituted carnitine transport in exchange mode.  相似文献   

4.
Reconstitution of novel mitochondrial uncoupling proteins, human UCP2 and UCP3, expressed in yeast, was performed to characterize fatty acid (FA)-induced H+ efflux in the resulted proteoliposomes. We now demonstrate for the first time that representatives of physiologically abundant long chain FAs, saturated or unsaturated, activate H+ translocation in UCP2- and UCP3-proteoliposomes. Efficiency of lauric, palmitic or linoleic acid was roughly the same, but oleic acid induced faster H+ uniport. We have confirmed that ATP and GTP inhibit such FA-induced H+ uniport mediated by UCP2 and UCP3. Coenzyme Q10 did not further significantly activate the observed H+ efflux. In conclusion, careful instant reconstitution yields intact functional recombinant proteins, UCP2 and UCP3, the activity of which is comparable with UCP1.  相似文献   

5.
6.
The carnitine transporter was solubilized from rat liver microsomes with Triton X-100 and reconstituted into liposomes, after addition of Triton X-114, by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite (Bio-Beads SM 2). The reconstitution was optimized with respect to the detergent/phospholipid ratio, the protein concentration, and the number of passages through a single Amberlite column. The reconstituted carnitine transporter catalyzed a first-order uniport reaction inhibited by HgCl2 and DIDS. The IC50 for HgCl2 was 0.16+/-0.03 mM. The reconstituted transporter also catalyzed carnitine efflux from the proteoliposomes; the efflux was stimulated by externally added long-chain acylcarnitines. Besides carnitine, ornithine, arginine, glutamine and lysine were taken up by the reconstituted liposomes with lower efficiency respect to carnitine. Optimal activity was found at pH 8.0. The Km for carnitine on the external side of the transporter was 10.9+/-0.16 mM. The activation energy of the carnitine transport derived by Arrhenius plot was 16.1 kJ/mol.  相似文献   

7.
《BBA》2019,1860(9):724-733
The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family. In this work, two members of this family, UCP5 (BMCP1, brain mitochondrial carrier protein 1 encoded by SLC25A14) and UCP6 (KMCP1, kidney mitochondrial carrier protein 1 encoded by SLC25A30) have been thoroughly characterized biochemically. They were overexpressed in bacteria, purified and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that UCP5 and UCP6 transport inorganic anions (sulfate, sulfite, thiosulfate and phosphate) and, to a lesser extent, a variety of dicarboxylates (e.g. malonate, malate and citramalate) and, even more so, aspartate and (only UCP5) glutamate and tricarboxylates. Both carriers catalyzed a fast counter-exchange transport and a very low uniport of substrates. Transport was saturable and inhibited by mercurials and other mitochondrial carrier inhibitors at various degrees. The transport affinities of UCP5 and UCP6 were higher for sulfate and thiosulfate than for any other substrate, whereas the specific activity of UCP5 was much higher than that of UCP6. It is proposed that a main physiological role of UCP5 and UCP6 is to catalyze the export of sulfite and thiosulfate (the H2S degradation products) from the mitochondria, thereby modulating the level of the important signal molecule H2S.  相似文献   

8.
The fluorescent anion indicator 6-methoxy-N-(3-sulfopropyl)quinolinium was trapped in proteoliposomes reconstituted with purified 32-kDa uncoupling protein and used to detect GDP-sensitive uniports of Cl-, Br-, and I-. Transport of these halide anions was rapid and potential-dependent. F- and nitrate were found to inhibit Cl- uptake competitively, suggesting that these anions are also substrates for transport. This preparation also exhibited H+(OH-) transport, showing that the reconstituted uncoupling protein possesses both halide and H+ transport functions, as is observed in intact brown adipose tissue mitochondria. Cl- transport was inhibited to the residual level observed in liposomes without protein when GDP was present on both sides of the membrane. Cl- transport was inhibited by about 50% when GDP was present only on one side of the membrane. We infer that uncoupling protein reconstitutes into proteoliposomes with a 1:1 ratio of sidedness orientation. The Km values for Cl- uniport were 100 and 65 mM, respectively, in GDP-loaded and non-GDP-loaded vesicles. Participation of the inner membrane anion channel in the observed transport is rendered unlikely by the fact that this carrier is insensitive to GDP. A variety of additional experiments probing for inner membrane anion channel yielded uniformly negative results, confirming the absence of contamination by this protein. Our results therefore demonstrate that the uncoupling protein mediates anion translocation, a function previously reported as lacking in the reconstituted system.  相似文献   

9.
The effect of N-ethyl-5-phenylisoxazolium 3"-sulfonate (Woodward's reagent K, WRK), a reagent forming covalent bonds with protein carboxyl groups, on the activity of the mitochondrial phosphate carrier was investigated. Treatment with WRK of mitochondria or of extracted carrier incorporated into liposomes, inhibited phosphate transport in a reconstituted liposomal system. Increasing the binding of WRK resulted in increased inhibition: the modified carrier protein showed a reduced affinity for phosphate, but binding of WRK had no effect on the Vmax of phosphate transport. It was concluded that WRK caused a conformational change in the carrier protein not involving the phosphate or H+ carrier sites such that its affinity for phosphate was lowered.  相似文献   

10.
Carbon monoxide is continuously produced in small quantities in tissues and is an important signaling mediator in mammalian cells. We previously demonstrated that CO delivered to isolated rat heart mitochondria using a water-soluble CO-releasing molecule (CORM-3) is able to uncouple mitochondrial respiration. The aim of this study was to explore more in depth the mechanism(s) of this uncoupling effect. We found that acceleration of mitochondrial O2 consumption and decrease in membrane potential induced by CORM-3 were associated with an increase in mitochondrial swelling. This effect was independent of the opening of the mitochondrial transition pore as cyclosporine A was unable to prevent it. Interestingly, removal of phosphate from the incubation medium suppressed the effects mediated by CORM-3. Blockade of the dicarboxylate carrier, which exchanges dicarboxylate for phosphate, decreased the effects induced by CORM-3 while direct inhibition of the phosphate carrier with N-ethylmaleimide completely abolished the effects of CORM-3. In addition, CORM-3 was able to enhance the transport of phosphate into mitochondria as evidenced by changes in mitochondrial phosphate concentration and mitochondrial swelling that evaluates the activity of the phosphate carrier in de-energized conditions. These results indicate that CORM-3 activates the phosphate carrier leading to an increase in phosphate and proton transport inside mitochondria, both of which could contribute to the non-classical uncoupling effect mediated by CORM-3. The dicarboxylate carrier amplifies this effect by increasing intra-mitochondrial phosphate concentration.  相似文献   

11.
1. Trialkyltin, triphenyltin and diphenyleneiodonium compounds inhibited ADP-stimulated O(2) evolution by isolated pea chloroplasts in the presence of phosphate or arsenate. Tributyltin and triphenyltin were the most effective inhibitors, which suggests a highly hydrophobic site of action. Phenylmercuric acetate was a poor inhibitor of photophosphorylation, which suggests that thiol groups are not involved. 2. Triethyltin was a potent uncoupler of photophosphorylation by isolated chloroplasts in media containing Cl(-), but had little uncoupling activity when Cl(-) was replaced by NO(3) (-) or SO(4) (2-), which are inactive in the anion-hydroxide exchange. It is suggested that uncoupling by triethyltin is a result of the Cl(-)-OH(-) exchange together with a natural uniport of Cl(-). Tributyltin, triphenyltin and phenylmercuric acetate had low uncoupling activity, probably because in these compounds the uncoupling activity is partially masked by inhibitory effects. 3. At high concentrations the organotin compounds caused inhibition of electron transport uncoupled by carbonyl cyanide m-chlorophenylhydrazone or NH(4)Cl. At these high concentrations the organotin compounds may be producing a detergent-like disorganization of the membrane structure. In contrast, diphenyleneiodonium sulphate inhibited uncoupled electron transport at low concentrations; however, this inhibition is less than the inhibition of photophosphorylation, which suggests that the compound also inhibits the phosphorylation reactions as well as electron transport. 4. The effects of these compounds on basal electron transport were complex and depended on the pH of the reaction media. However, they can be explained on the basis of three actions: inhibition of the phosphorylation reactions, uncoupling and direct inhibition of electron transport. 5. The inhibition of cyclic photophosphorylation in the presence of phenazine methosulphate by diphenyleneiodonium sulphate shows that it inhibits in the region of photosystem 1.  相似文献   

12.
The transport function of the purified and reconstituted carnitine carrier from rat liver mitochondria was correlated to modification of its SH-groups by various reagents. The exchange activity and the unidirectional transport, both catalyzed by the carnitine carrier, were effectively inhibited by N-ethylmaleimide and submicromolar concentrations of mercurial reagents, e.g., mersalyl and p-(chloromercuri)benzenesulfonate. When 1 microM HgCl2 or higher concentrations of the above mentioned mercurials were added, another transport mode of the carrier was induced. After this treatment, the reconstituted carnitine carrier catalyzed unidirectional substrate-efflux and -influx with significantly reduced substrate specificity. Control experiments in liposomes without carrier or with inactivated carrier protein proved the dependence of this transport activity on the presence of active carnitine carrier. The mercurial-induced uniport correlated with inhibition of the 'physiological' functions of the carrier, i.e., exchange and substrate specific unidirectional transport. The effect of consecutive additions of various reagents including N-ethylmaleimide, mercurials, Cu(2+)-phenanthroline and diamide on the transport function revealed the presence of at least two different classes of SH-groups. N-Ethylmaleimide blocked the carrier activity by binding to SH-groups of one of these classes. At least one of these SH-groups could be oxidized by the reagents forming S-S bridges. Besides binding to the class of SH-groups to which N-ethylmaleimide binds, mercurials also reacted with SH-groups of the other class. Modification of the latter led to the induction of the efflux-type of carrier activity characterized by loss of substrate specificity.  相似文献   

13.
GDP-sensitive Cl- uniport is a widely studied property of the uncoupling protein of brown adipose tissue mitochondria; nevertheless, little is known about its mechanism and there is even controversy over whether this protein transports Cl-. Using a fluorescent probe assay, we have demonstrated non-ohmic, electrophoretic, GDP-sensitive Cl- uniport into proteoliposomes reconstituted with purified uncoupler protein. We have also identified a large number of new anionic substrates for this porter that also inhibit Cl- uniport competitively. Anion transport, its inhibition by GDP and anion inhibition of Cl- uniport are all strongly dependent on anion hydrophobicity. These surprising results are consequential for hypotheses of common transport mechanisms in the gene family of mitochondrial anion porters.  相似文献   

14.
The isolated and liposome-reconstituted mitochondrial phosphate carrier exhibits a sigmoidal inhibition curve by mersalyl, similar to that found with intact mitochondria. In contrast a hyperbolic inhibition curve is found (a) by titration of the soluble carrier with mersalyl before reconstitution in liposomes and (b) by titration of the reconstituted carrier with mersalyl after successively pretreatment of the mitochondria with low, non-inhibitory concentrations of mersalyl, excess N-ethylmaleimide and dithiothreitol. The inhibition of the reconstituted, but not of the soluble, phosphate carrier by mersalyl can be reversed by dithiothreitol. Cupric di(1,10-phenanthroline) inhibits the soluble but not the reconstituted phosphate carrier. The inhibited phosphate carrier can be reactivated by dithiothreitol in the soluble state but not after reconstitution in liposomes. The data support the previously suggested model of the phosphate carrier, assuming a dimer of two identical subunits for the active unit.  相似文献   

15.
Mutants were constructed for mitochondrial uncoupling protein UCP1, with single or multiple substitutions within or nearby the UCP-signatures located in the first alpha-helix and second matrix-segment, using the QuickChange site directed mutagenesis protocol (Stratagene), and were assayed fluorometrically for kinetics of fatty acid (FA)-induced H+ uniport and for Cl- uniport. Their ability to bind 3H-GTP was also evaluated. The wild type UCP1 was associated with the FA-induced H+ uniport proportional to the added protein with a Km for lauric acid of 43 micro M and Vmax of 18 micro molmin(-1)(mg protein)(-1). Neutralization of Arg152 (in the second matrix-segment UCP-signature) led to approximately 50% reduction of FA affinity (reciprocal Km) and of Vmax for FA-induced H+ uniport. Halved FA affinity and 70% reduction of Vmax was found for the double His substitution outside the signature (H145L and H147L mutant). Neutralization of Asp27 in the first alpha-helix UCP-signature (D27V mutant) resulted in 75% reduction of FA affinity and approximately 50% reduction of Vmax, whereas the triple C24A and D27V and T30A mutant was fully non-functional (Vmax reduced by 90%). Interestingly, the T30A mutant exhibited only the approximately 50% reduced FA affinity but not Vmax. Cl- uniport and 3H-GTP binding were preserved in all studied mutants. We conclude that amino acid residues of the first alpha-helix UCP signature may be required to hold the intact UCP1 transport conformation. This could be valid also for the positive charge of Arg152 (second matrix-segment UCP signature), which may alternatively mediate FA interaction with the native protein.  相似文献   

16.
Upon the addition of inorganic phosphate, isolated rat-heart mitochondria released endogenous adenine nucleotides. To elucidate the mechanism of this phosphate-induced efflux, we evaluated the relative roles of three inner mitochondrial membrane carriers: the adenine nucleotide translocase, the phosphate/hydroxyl exchanger, and the dicarboxylate carrier. Atractyloside (a specific inhibitor of the adenine nucleotide translocase) prevented this efflux, but did not inhibit mitochondrial swelling. Inhibitors of the phosphate/hydroxyl exchanger (200 microM n-ethylmaleimide and 10 microM mersalyl) did not inhibit phosphate-induced efflux. 200 microM mersalyl (which inhibited both the phosphate/hydroxyl exchanger and the dicarboxylate carrier) inhibited the rate of efflux approx. 65% Phenylsuccinate and 2-n-butylmalonate (inhibitors of the dicarboxylate carrier) partially inhibited phosphate-induced efflux and adenine nucleotide translocase activity. Mersalyl (200 microM) had no effect on adenine nucleotide translocase activity. Partial inhibition of the adenine nucleotide translocase by phenylsuccinate and butylmalonate could not explain the extent of inhibition of phosphate-efflux by these agents. Moreover, the rates of adenine nucleotide efflux in the presence of phenylsuccinate, butylmalonate, or mersalyl correlated well with the ability of these agents to inhibit succinate-supported respiration. We conclude that phosphate-induced efflux of adenine nucleotides from rat heart mitochondria occurs over the adenine nucleotide translocase, and that the site of action of the phosphate is not the phosphate/hydroxyl exchanger, but is likely the dicarboxylate carrier.  相似文献   

17.
The tricarboxylate transport system located in the inner mitochondrial membrane was studied as an isolated protein reconstituted in proteoliposomes. The effects on the transport of citrate by various reagents, specific for different aminoacid residues, were analyzed. In the group of SH reagents, it was found that N-ethylmaleimide is an irreversible inhibitor of the citrate–citrate exchange, while HgCl2 and the mercurial mersalyl cause a rapid unidirectional efflux of citrate from liposomes. It was demonstrated that NEM and mercurials act on different SH groups. Dithioerythritol is not able to reverse the effect of mersalyl unless another reagent, pyridoxalphosphate, is present. Pyridoxalphosphate itself, a reagent specific for NH2 residues, is an effective inhibitor of citrate exchange transport, as measured in both influx and efflux, but it has no effect on the mercurial-induced efflux. The same behavior was observed with diethylpyrocarbonate, a reagent specific for histidine and tyrosine residues. Interestingly, a slow basic efflux of internal citrate, in the absence of countersubstrate, was observed in proteoliposomes. Because it is inhibited by the same reagents acting on the exchange process, it is deduced that it is catalyzed by the tricarboxylate carrier. The ability of the carrier to perform a uniport of the substrate suggests the presence of a single substrate binding site on the carrier protein. A preliminary kinetic approach indicates that such a transport model is compatible with this theory.  相似文献   

18.
1. N-Ethylmaleimide inhibited the influx and efflux of P(i) in rat liver mitochondria. 2. The efflux was stimulated by either succinate or malate in the presence of N-ethylmaleimide, and this stimulation was reversed by 2-n-butylmalonate. 2-Oxoglutarate and citrate, even in the presence of low concentrations of malate, were relatively ineffective in stimulating efflux of P(i) under these conditions, as was glutamate. 3. By using radioactively labelled P(i) and dicarboxylate ions an exchange was demonstrated, the stoicheiometry of which was 1.3+/-0.5 dicarboxylate ions:1 P(i) (n=10). 4. An exchange between unlabelled and labelled P(i) in the presence of N-ethylmaleimide was found which was sensitive to 2-n-butylmalonate. 5. It is concluded that the mitochondrial dicarboxylate carrier can transport phosphate by an exchange diffusion with certain penetrant dicarboxylic acids or with phosphate itself. The exchange mechanism is sensitive to 2-n-butylmalonate but is unaffected by N-ethylmaleimide; the action of mersalyl in this context is commented on.  相似文献   

19.
The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation.  相似文献   

20.
《BBA》2019,1860(9):708-716
The mitochondrial carnitine/acylcarnitine carrier (CACT) catalyzes an antiport of carnitine and acylcarnitines and also a uniport reaction with a rate of about one tenth with respect to the antiport rate. The antiport process results from the coupling of the two uniport reactions in opposite directions. In this mechanism, the transition of the carrier from the outward open conformation to the inward open one (or vice versa) is much faster for the carrier-substrate complex than for the unbound carrier. To investigate the molecular determinants that couple the binding of the substrate with the conformational transitions, site directed mutagenesis has been employed. The antiport or the uniport reaction was followed as [3H]carnitine uptake in or efflux from proteoliposomes reconstituted with the WT or Trp mutants of the rat CACT. Substitution of each the three Trp residues led to different results. Nearly no variations were observed upon substitution of W192 and/or W296 with Ala. While, substantial alteration of the transport function was observed in the mutants W224A, W224Y and W224F. Mutation of W224 led to the loss of the antiport function while the uniport function was unaltered. In these mutants impairment of the substrate affinity on the external side was also observed. The data highlights that W224 is involved in the coupling of the substrate binding with the matrix gate opening. The experimental data are in line with predictions by homology modeling of the CACT in its cytosolic (c-state) or matrix (m-state) opened conformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号