首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanism of the formation of concanavalin A-teichoic acid complexes   总被引:1,自引:0,他引:1  
The preparation of water-insoluble carbonates of cellulose, diethylaminoethylcellulose, nigeran, and xylan, containing trans-2,3-carbonate groups, is described. The occurrence of a carbonyl peak in the i.r. spectrum of inulin carbonate at 1820 cm?1, in addition to one corresponding to acyclic carbonate (O-ethoxycarbonyl, 1750 cm?1), was attributable to formation of the strained trans-4,6-carbonate group on the fructofuranose residues of the inulin chain, in addition to the formation of the trans-2,3-carbonate group on the relatively small number of terminal d-glucopyranose residues. The relative contents of acyclic carbonate of the products appeared to be a function of the reaction conditions rather than the availability of a free hydroxyl group at C-6. The presence of carboxyl groups in carboxymethylcellulose and alginic acid prevented the formation of trans- and cis-2,3-carbonate groups, respectively, but derivatisation of alginic acid propylene glycol ester was successful. Specialised procedures were required for the isolation of cyclohexa-amylose and cyclohepta-amylose carbonates.  相似文献   

2.
Abstract

The reaction of glycosyl isothiocyanates (la, b, c, d, e) with 5,6-diamino-1-3-dimethyluracil gave the respective 1-glycosyl-3-(6-amino-1, 3-dimethyl-2, 4-dioxopyrimidine-5-yl) thioureas (2a, b, c, d, e) in excellent yields. Treatment of these thioureas with NBS afforded the respective 5,7-dioxopyrimido-[5,4-e]-as-triazine glycosides (4a, b, c, d, e) in good yields.  相似文献   

3.
Abstract

Fusion of 2-trimethylsilylpyridine and tetra-O-acetyl-aldehydo-D-xylose or 2,3:4,5-di-O-isopropylidene-aldehydo-L-arabinose led, after removing of the protecting groups, to 2-(pentitol-1-yl)pyridines of D-gulo and D-ido or L-manno configurations. Dehydration of the sugar-chain with D-gulo and D-ido configurations gave the corresponding 2′,5′-anhydro derivatives, whereas 2-(5-O-isopropyl-L-manno-pentitol-1-yl)-pyridine was the only compound formed by dehydration of the sugar-chain with L-manno configuration. Structural proofs are based on 1H and 13C NMR spectra.  相似文献   

4.
Abstract

The syntheses of all three of the mono-N-methy1 derivatives of C-ribavirin (3-β-D-ribofuranosyl-1, 2, 4-triazole-5-carboxamide, 2) have been accomplished. Reaction of 1-(β-D-ribofuranosyliminomethyl)-2-methyl-hydrazine ( 7 ) with ethyl oxamate (8) in boiling ethanol gave the N′-methyl-C-ribavirin ( 3 ). A similar treatment of β-D-ribofuranosyl-1-carboximidic acid methyl ester ( 6 ) with N′-methyloxamic hydrazide ( 10 ) furnished the N2-methyl-C-ribavirin ( 4 ). Direct methylation of unprotected 2 with methyl iodide in the presence of potassium carbonate in dimethyl sulfoxide gave N 4-methyl isomer ( 5 ) as the major product. Structural assignments of 3 , 4 , and 5 were based on the unequivocal synthetic sequences, 1H and 13C NMR data and confirmed by single crystal X-ray diffraction analysis.  相似文献   

5.
SUMMARY

A mixture of pyrogallol with sodium hydroxide and sodium carbonate (2:1:1) in a separate container absorbed up to 75% of the oxygen in a bicarbonate-carbonate buffered medium with more or less no change in the pH of the medium. A system in which two test tubes were added to the culture vessel, one containing saturated sodium bicarbonate and the other pyrogallol plus sodium hydroxide gave similar results, but were not investigated further because of difficulties in handling. Optimal conditions for absorption of oxygen from 100 ml of the growth medium was 1 mMole pyrogallol +0,5 mMole sodium hydroxide + 0,5 mMole sodium carbonate. The addition of this pyrogallol to alkali ratio to cultures of two Microcystis and one Synechococcus isolate in rubber stoppered flasks gave stoichiometric increases in yield which was not due to carbonate enrichment but to a lowering of oxygen tension. The data may mean that even under relatively low light intensities (1 - 4 × 103 ergs cm?2 sec?1) photooxidation occurs.  相似文献   

6.
Abstract

The nucleoside derivative 1-(3-azido-2,3-dideoxy-beta-D-ribo-hexofuranosyl)thymine has been synthesized from 3-0-benzyl-1,2-0-isopropylidene-alpha-D-glucofuranose-5,6-carbonate in an overall yield of 16%. The key step in the synthesis involves the selective deacetylation of a nucleoside derivative having a cyclic carbonate moiety.  相似文献   

7.
Abstract

Several 4-substituted-1-β-D-ribofuranosyl-3-hydroxypyrazoles were prepared as structural analogs of pyrazofurin. Glycosylation of the TMS derivative of ethyl 3(5)-hydroxypyrazole-4-carboxylate (3) with 1-0-acetyl-2,3,5-tri-0-benzoyl-D-ribofuranose in the presence of TMS-triflate gave predominantly ethyl 3-hydroxy-1-(2,3,5-tri-0-benzoyl-β-D-ribofuranosyl)pyrazole-4-carboxylate (4a), which on subsequent ammonolysis furnished 3-hydroxy-1-β-D-ribofuranosylpyrazole-4-carboxamide (5). Benzylation of 4a with benzyl bromide and further ammonolysis gave 3-benzyloxy-1-β-D-ribofuranosylpyrazole-4-carboxamide (8a). Catalytic (Pd/C) hydrogenation of 8a afforded yet another high yield route to 5. Saponification of the ester function of ethyl 3-benzyloxy-1-β-D-ribofuranosylpyrazole-4-carboxylate (7b) gave the corresponding 4-carboxylic acid (6a). Phosphorylation of 8a and subsequent debenzylation of the intermediate 11a gave 3-hydroxy-1-β-D-ribofuranosylpyrazole-4-carboxamide 5′-phosphate (11b). Dehydration of 3-benzyloxy-1-(2,3,5-tri-0-acetyl-β-D-ribofuranosyl)pyrazole-4-carboxamide (8b) with POCl3 provided the corresponding 4-carbonitrile derivative (10a), which on debenzylation with Cl3SiI gave 3-hydroxy-1-(2,3,5-tri-0-acetyl-β-D-ribofuranosyl)pyrazole-4-carbonitrile (13). Reaction of 13 with H2S/pyridine and subsequent deacetylation gave 3-hydroxy-1-β-D-ribofuranosylpyrazole-4-thiocarboxamide (12b). Similarly, treatment of 13 with NH2OH afforded 3-hydroxy-1-β-D-ribofuranosylpyrazole-4-carboxamidoxime (14a), which on catalytic (Pd/C) hydrogenation gave the corresponding 4-carboxamidine derivative (14b). The structural assignment of these pyrazole ribonucleosides was made by single-crystal X-ray analysis of 6a. None of these compounds exhibited any significant antitumor or antiviral activity in cell culture.  相似文献   

8.
Abstract

The C-nucleoside analogs 6,7-dimethyl-3-β-D-erythrofuranosyl-1-phenylpyrazolo[3,4-b]quinoxaline 4 and 3-β- D -erythrofuranosyl-1-p-fluorophenylpyrazolo[3,4-b]quinoxaline 8 were prepared by dehydration of the polyhydroxyalkyl chain of 6,7-dimethyl-1-phenyl-3-( D -arabino-tetritol-1-yl)-pyrazolo[3,4-b]quinoxaline 3 and 1-p-fluorophenyl-3-( D -arabino-tetritol-1-yl)-pyrazolo[3,4-b]quinoxaline 7, respectively. The structure and anomeric configuration of the products were determined by n.m.r. spectroscopy. The mass spectra and biological activities in connection with chemical constitution are discussed.  相似文献   

9.
Abstract

3′,5′-Di-O-benzoyl-2′-O-(tetrahydropyran-2-yl)uridine and 3′,5′ -di-O-benzoyl-N 2-isobutyryl-2′-O-(tetrahydropyran-2-yl)guanosine are converted into-N 3-anisoyl-2′-O-(tetrahydropyran-2-yl)uridine (less and more polar diastereoisomers in 37% and 42% yields, respectively) and O 6-diphenyl carbamoylN 2-isobutyryl-2′-O-(tetrahydropyran-2-yl)- guanosine (less and more polar diastereoisomers in 15% and 59% yields, respectively), respectively, by N 3-anisoylation and O 6-diphenylcarbamoylation, followed by 3′,5′-di-O-debenzoylation.  相似文献   

10.
The purification of rabbit immunoglobulin molecules expressing kappa (κ) light chains, utilizing the allotypic specificity b4, has been achieved in stages involving isolation of specific antibody, preparation of a solid phase immunoadsorbent of coupled antibody, and subsequent isolation of b4 (κ) IgG. Cellulose trans-2.3-carbonate is shown to be an effective matrix enabling chemical coupling of antibodies and antigens to the support at neutral pH thus preservng immunological activity. The trans-2,3-carbonate derived from microcrystalline cellulose is more effective as a matrix than the trans-2,3-carbonate derived from macroporous cellulose for the chemical coupling of rabbit a1a3/b4 IgG antigen and binding of specific anti-b4 antibody. The microcrystalline celulose carbonate is also more efficient for the coupling of rabbit anti-b4 antibody and the subsequent binding and elution of rabbit b4 (κ) IgG, thus separating immunoglobulin, expressing kappa light chain, from that expressing lambda light chain. The purification technique has potential application in other allotypic systems and antibody- antigen populations.  相似文献   

11.
Abstract

Acid catalyzed isomerization of 1-aryl-(1,2-dideoxy-D-glycero-β-L-gluco-heptofuranose) [1,2-d]-2-imidazolines (4) yields 1-aryl-4-(D-galacto-pentitol-1-yl)imidazoles (8) which can be also obtained by reductive desulphuration of 1-aryl-2-benzylthio-4-(D-galacto-pentitol-1-yl)imidazoles (6). Compounds (4) were obtained by desulphuration with Raney nickel from 1-aryl-(1,2-dideoxy-D-glycero-β-L-gluco-heptofuranose) [1,2-d]-imidazolidine-2-thiones (1) or 1-aryl-2-benzylthio-(1,2-dideoxy-D-glycero-β-L-gluco-heptofuranose) [1,2-d]-2-imidazolines (2).  相似文献   

12.
Abstract

A synthesis of 1-(2,3-dideoxy-β-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (2′,3′-dideoxyribavirin, ddR) is described. Glycosylation of the sodium salt of 1,2,4-triazole-3-carbonitrile (5) with 1-chloro-2-deoxy-3,5-di-0-p-toluoyl-α-D-erythro-pentofuranose (1) gave exclusively the corresponding N-1 glycosyl derivative with β-anomeric configuration (6), which on ammonolysis provided a convenient synthesis of 2′-deoxyribavirin (7). Similar glycosylation of the sodium salt of methyl 1,2,4-triazole-3-carboxylate (2) with 1 gave a mixture of corresponding N-1 and N-2 glycosyl derivatives (3) and (4), respectively. Ammonolysis of 3 furnished yet another route to 7. A four-step deoxygenation procedure using imidazolylthiocarbonylation of the 3′-hydroxy group of 5′-0-toluoyl derivative (9a) gave ddR (11). The structure of 11 was proven by single crystal X-ray studies. In a preliminary in vitro study ddR was found to be inactive against HIV retrovirus.  相似文献   

13.
Abstract

A synthesis of 2,4-dideazaribavirin ( 2 ), brunfelsamidine ribonucleoside ( 8c ) and certain related derivatives are described for the first time using the stereospecific sodium salt glycosylation procedure. Glycosylation of the sodium salt of pyrrole-3-carbonitrile ( 4 ) with 1-chloro-2, 3-O-t-isopropylidene-5-O-t-butyldimethylsilyl-α-D-ribofuranose ( 5 ) gave exclusively the corresponding blocked nucleoside ( 6 ) with β-anomeric configuration, which on deprotection provided 1-β-D-ribofuranosylpyrrole-3-carbonitrile ( 7 ). Functional group tranformation of 7 gave 2 , 8c and related 3-substituted pyrrole ribonucleosides. These compounds are devoid of any significant antiviral/antitumor activity invitro.  相似文献   

14.
3-Chlorobenzofuran-2-carbaldehyde was condensed with substituted acetophenone by using the Claisen-Schmidt condensation to obtain 3-(3-chlorobenzofuran-2-yl)-1-(substituted phenyl)-2-propen-1-one (2a-m) which upon further treatment with hydrazine hydrate gave 2-[3-(substituted phenyl)-4,5-dihydro-1H-5- pyrazolyl)benzofuran-3-yl chloride derivatives (3a-m). All the newly synthesized derivatives were evaluated in vitro for cytotoxicity and antiviral activity in Crandell-Rees Feline Kidney cell, human embryonic lung (HEL) cell, HeLa cell and Vero cell cultures against different viruses. Several compounds, i.e. 2f, 2g, 2i, 2m, 3b, 3d, 3g, 3h and 3m proved quite cytotoxic to the host cells (minimum cytotoxic concentration: 1-10 μg/mL). No specific antiviral activity [50% antivirally effective concentration (EC50) ≥ 5-fold lower than the minimum cytototoxic concentration] was observed for any of the compounds.  相似文献   

15.
Abstract

The synthesis of pyrazolo[3,4-d]pyrimidine ribonucleoside 3′, 5′-cyclic phosphates related to cAMP, cIMP and cGMP has been achieved for the first time. Phosphorylation of 4-amino-6-methylthio-1-β-D-ribo-furanosylpyrazolo[3,4-d]pyrimidine (1) with POCl3 in trimethyl phosphate gave the corresponding 5′-phosphate (2a). DCC mediated intramolecular cyclization of 2a gave the corresponding 3′, 5′-cyclic phosphate (3a), which on subsequent dethiation provided the cAMP analog 4-amino-1-β-D-ribofuranosylpyrazolo[3, 4-d]pyrimidine 3′, 5′-cyclic phosphate (3b). A similar phosphorylation of 6-methylthio-1-β-D-ribofuranosylpyrazolo[3, 4-d]pyrimidin-4(5H)-one (5), followed by cyclization with DCC gave the 3′, 5′-cyclic phosphate of 5 (9a). Dethiation of 9a with Raney nickel gave the cIMP analog 1-β-D-ribofuranosylpyrazolo[3, 4-d]pyrimidin-4(5H)-one 3′, 5′-cyclic phosphate (9b). Oxidation of 9a with m-chloroperoxy benzoic acid, followed by ammonolysis provided the cGMP analog 6-amino-1-β-D-ribofuranosylpyrazolo [3, 4-d] pyrimidin-4(5H)-one 3′, 5′-cyclic phosphate (7). The structural assignment of these cyclic nucleotides was made by UV and H NMR spectroscopic studies.  相似文献   

16.
The radical scavenging mechanisms for the 2-pyrone compound, 4-hydroxy-3,6-dimethyl-2H-pyrane-2-one (1), and the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical (4) in several solvent systems were evaluated by the quantitative change in compounds detected at 270 nm and subsequent HPLC analyses. The HPLC profile for each condition suggested that the reaction proceeded by a different mechanism in each solvent system. In organic solvents (CHCl3, iso-propanol, and EtOH), 1- [4-(3,4-dihydro-3,6-dimethyl-2,4-dioxo-2H-pyran-3-yl) phenyl]-1-phenyl-2-picrylhydrazine (2) was produced as an adduct of the DPPH radical and 1. On the other hand, the reaction in a buffer solution (an acetate buffer at pH 5.5) gave several degradation products with 1-[4-(2,3-dihydro-2,5-dimethyl-3-oxo-fur-2-yl) phenyl]-1-phenyl-2-picrylhydrazine (5), this being structurally elucidated by spectroscopic analyses. The decrease of the DPPH radical in each reaction system suggests that compound 1 could scavenge about 1.5-1.8 equivalents of the radical in organic solvents and about 3.5-3.9 in the buffer solution.  相似文献   

17.
Abstract

New analogues of antiviral agents 9-(2, 3-dihy-droxyproply) adenine (DHPA, 1a.) and 9-(2-hydroxyethoxymethyl) guanine (acyclovir, Ib) - compounds Ic and Id were prepared and their biological activity was investigated. Racemic 1, 2, 4-butanetriol (2) was converted to the corresponding benzylidene derivative (3a) by acetalation with benzalde-hyde and triethyl orthoformate. Acetal 3a and p-toluene- sul-fonyl chloride in pyridine gave the corresponding p-toluenes fonate 3b. Alkylation of adenine 5a via sodium salt of 5a with 3b in dimethylformamide or in the presence of tetra-n-butylammonium fluoride in tetrahydrofuran gave intermediate 6a. Reaction of 2-amino-6-chloropurine (5b) with 3b effected by K2CO3 in dimethylsulfoxide gave compound 6b and a smaller amount of 7-alkylated proauct 7. A similar transformation catalyzed by tetra-n-butylammonium fluoride afforded only intermediate 5b. Acid-catalyzed de-protection (hydrolysis) of 6b and 6a gave the title compounds Ic and Id. The S-enantiomer of Ic was deaminated with adenosine deaminase. Our results argue against the presence of a methyl group-binding site of adenosine deaminase. Compounds Ic and Id exhibited little or no activity in antiviral assays with several DNA and RNA viruses.  相似文献   

18.
Abstract

Monophosphonylation of 2′-protected ribonucleosides (i.e. 2′-O-THP-uridine and 2′-O-THP-N 6-levulinoyl-adenosine) with the bifunctional reagents bis[(6-trifluoromethyl)benzotriazol-1-yl] methyl(phenyl)phosphonates or the analogous phosphonothioates, and subsequent addition of N-methylimidazole, gave the chirally pure 3′,5′-cyclic methyl(phenyl)phosphonate or phosphonothioate derivatives, respectively. Deblocking of the fully protected compounds yielded, as evidenced by X-ray analysis, the corresponding pure Sp-diastereoisomers.  相似文献   

19.
Abstract

1-Methyl- and 1-aryl-(1,2-dideoxy-D-glyofurano)[2,1-d]-imidazolidine-2-thiones having the configurations β-D-glycero-L-gluco (4), β-D-glycero-D-ido (5—8), α-D glycerol-D-galacto (9—10) and β-D-glycero-D-talo (11, 12) are prepared by reaction of 2-amino-2-deoxy-aldoses with methyl and aryl isothiocyanates. 1-Aryl-(1,2-dideoxy–β-D-glycero-L-gluco-heptofurano)[2,1-d]imidazolidine-2-thiones (1—3) have been converted into 1-aryl-4-(D-galacto-pentitol-1-yl)-4-imidazo-line-2-thiones (24—26) by acid catalysed isomerization.  相似文献   

20.
Abstract

The synthesis of the title compound was performed using a 3′-O-(tetrahydropyran-2-yl) adenosine derivative as the starting material, i.e., a coupling reaction of triethylammonium N 6-benzoyl-5′-O-dimethoxytrityl-3′-O-(tetrahydropyran-2-yl) adenosine 2′-(4-chlorophenyl)phosphate with N 6-benzoyl-2′,3′-di-O-benzoyladenosine, followed by a sequence of reactions, O-dedimethoxytritylation, a coupling reaction with the former triethylammonium salt, and complete deblocking of the resultant 2′, 5′-triadenylic acid derivative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号