首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that regulates diverse biological processes by binding to a family of G protein-coupled receptors or as an intracellular second messenger. Mammalian S1P phosphatase (SPP-1), which degrades S1P to terminate its actions, was recently cloned based on homology to a lipid phosphohydrolase that regulates the levels of phosphorylated sphingoid bases in yeast. Confocal microscopy surprisingly revealed that epitope-tagged SPP-1 is intracellular and colocalized with the ER marker calnexin. Moreover, SPP-1 activity and protein appeared to be mainly enriched in the intracellular membranes with lower expression in the plasma membrane. Treatment of SPP-1 transfectants with S1P markedly increased ceramide levels, predominantly in the intracellular membranes, diminished survival, and enhanced apoptosis. Remarkably, dihydro-S1P, although a good substrate for SPP-1 in situ, did not cause significant ceramide accumulation or increase apoptosis. Ceramide accumulation induced by S1P was completely blocked by fumonisin B1, an inhibitor of ceramide synthase, but only partially reduced by myriocin, an inhibitor of serine palmitoyltransferase, the first committed step in de novo synthesis of ceramide. Furthermore, S1P, but not dihydro-S1P, stimulated incorporation of [3H]palmitate, a substrate for both serine palmitoyltransferase and ceramide synthase, into C16-ceramide. Collectively, our results suggest that SPP-1 functions in an unprecedented manner to regulate sphingolipid biosynthesis and is poised to influence cell fate.  相似文献   

2.
Ceramide produced at the endoplasmic reticulum (ER) is transported to the lumen of the Golgi apparatus for conversion to sphingomyelin (SM). N-(3-Hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide (HPA-12) is a novel analog of ceramide. Metabolic labeling experiments showed that HPA-12 inhibits conversion of ceramide to SM, but not to glucosylceramide, in Chinese hamster ovary cells. Cultivation of cells with HPA-12 significantly reduced the content of SM. HPA-12 did not inhibit the activity of SM synthase. The inhibition of SM formation by HPA-12 was abrogated when the Golgi apparatus was made to merge with the ER by brefeldin A. Moreover, HPA-12 inhibited redistribution of a fluorescent analog of ceramide, N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-d-erythro-sphingosine (C(5)-DMB-Cer), from intracellular membranes to the Golgi region. Among four stereoisomers of the drug, (1R,3R)-HPA-12, which resembles natural ceramide stereochemically, was found to be the most active, although (1R,3R)-HPA-12 did not affect ER-to-Golgi trafficking of protein. Interestingly, (1R,3R)-HPA-12 inhibited conversion of ceramide to SM little in mutant cells defective in an ATP- and cytosol-dependent pathway of ceramide transport. These results indicated that (1R,3R)-HPA-12 inhibits ceramide trafficking from the ER to the site of SM synthesis, possibly due to an antagonistic interaction with a ceramide-recognizing factor(s) involved in the ATP- and cytosol-dependent pathway.  相似文献   

3.
The treatment of C6 glioma cells with the nitric oxide donor, PAPANONOate ((Z)-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate), resulted in a dose-dependent inhibition of cell proliferation. This was associated to a rapid and significant increase of ceramide levels and was mimicked by treatments that augment cellular ceramide. Metabolic experiments with radioactive sphingosine, serine, and choline showed that nitric oxide strongly reduced the utilization of ceramide for the biosynthesis of both sphingomyelin and glucosylceramide. Nevertheless, nitric oxide did not modify the activity of different enzymes of ceramide metabolism. The possibility that nitric oxide impairs the availability of ceramide for sphingolipid biosynthesis was then investigated. The metabolism of N-hexanoyl-[(3)H]sphingosine demonstrated that nitric oxide did not affect the biosynthesis of N-hexanoyl-[(3)H]sphingolipids but inhibited the metabolic utilization of long chain [(3)H]ceramide, synthesized in the endoplasmic reticulum (ER) from the recycled [(3)H]sphingosine. Moreover, results obtained with fluorescent ceramides, brefeldin A, ATP depletion, as well as in a ceramide transport assay indicate that nitric oxide impairs the traffic of ceramide from ER to Golgi apparatus. All this supports that, in glioma cells, the modulation of ceramide traffic can contribute to the regulation of its intracellular levels and participate in the nitric oxide-activated signaling pathway involved in the control of cell proliferation.  相似文献   

4.
In yeast, the long-chain sphingoid base phosphate phosphohydrolase Lcb3p is required for efficient ceramide synthesis from exogenous sphingoid bases. Similarly, in this study, we found that incorporation of exogenous sphingosine into ceramide in mammalian cells was regulated by the homologue of Lcb3p, sphingosine-1-phosphate phosphohydrolase 1 (SPP-1), an endoplasmic reticulum resident protein. Sphingosine incorporation into endogenous long-chain ceramides was increased by SPP-1 overexpression, whereas recycling of C(6)-ceramide into long-chain ceramides was not altered. The increase in ceramide was inhibited by fumonisin B(1), an inhibitor of ceramide synthase, but not by ISP-1, an inhibitor of serine palmitoyltransferase, the rate-limiting step in the de novo biosynthesis of ceramide. Mass spectrometry analysis revealed that SPP-1 expression increased the incorporation of sphingosine into all ceramide acyl chain species, particularly enhancing C16:0, C18:0, and C20:0 long-chain ceramides. The increased recycling of sphingosine into ceramide was accompanied by increased hexosylceramides and, to a lesser extent, sphingomyelins. Sphingosine kinase 2, but not sphingosine kinase 1, acted in concert with SPP-1 to regulate recycling of sphingosine into ceramide. Collectively, our results suggest that an evolutionarily conserved cycle of phosphorylation-dephosphorylation regulates recycling and salvage of sphingosine to ceramide and more complex sphingolipids.  相似文献   

5.
The recently identified ceramide transfer protein, CERT, is responsible for the bulk of ceramide transport from the endoplasmic reticulum (ER) to the Golgi. CERT has a C-terminal START domain for ceramide binding and an N-terminal pleck-strin homology domain that binds phosphatidylinositol 4-phosphate suggesting that phosphatidylinositol (PI) 4-kinases are involved in the regulation of CERT-mediated ceramide transport. In the present study fluorescent analogues were used to follow the ER to Golgi transport of ceramide to determine which of the four mammalian PI 4-kinases are involved in this process. Overexpression of pleckstrin homology domains that bind phosphatidylinositol 4-phosphate strongly inhibited the transport of C5-BODIPY-ceramide to the Golgi. A newly identified PI 3-kinase inhibitor, PIK93 that selectively inhibits the type III PI 4-kinase beta enzyme, and small interfering RNA-mediated down-regulation of the individual PI 4-kinase enzymes, revealed that PI 4-kinase beta has a dominant role in ceramide transport between the ER and Golgi. Accordingly, inhibition of PI 4-kinase III beta either by wortmannin or PIK93 inhibited the conversion of [3H]serine-labeled endogenous ceramide to sphingomyelin. Therefore, PI 4-kinase beta is a key enzyme in the control of spingomyelin synthesis by controlling the flow of ceramide from the ER to the Golgi compartment.  相似文献   

6.
The transport and sorting of lipids from the sites of their synthesis to their appropriate destinations are fundamental for membrane biogenesis. In the synthesis of sphingolipids in mammalian cells, ceramide is newly produced at the endoplasmic reticulum (ER), and transported from the ER to the trans Golgi regions, where it is converted to sphingomyelin. CERT has been identified as a key factor for the ER-to-Golgi trafficking of ceramide. CERT contains several functional domains including (i) a START domain capable of catalyzing inter-membrane transfer of ceramide, (ii) a pleckstrin homology domain, which serves to target the Golgi apparatus by recognizing phosphatidylinositol 4-monophosphate, and (iii) a short peptide motif named FFAT motif which interacts with the ER-resident membrane protein VAP. CERT is preferentially distributed to the Golgi region in cells, and Golgi-targeted CERT appears to retain the activity to interact with VAP. On the basis of these results, it has been proposed that CERT extracts ceramide from the ER and carries it to the Golgi apparatus in a non-vesicular manner and that a particularly efficient cycle of CERT movement for trafficking of ceramide may proceed at membrane contact sites between the ER and the Golgi apparatus.  相似文献   

7.
The transport and sorting of lipids from the sites of their synthesis to their appropriate destinations are fundamental for membrane biogenesis. In the synthesis of sphingolipids in mammalian cells, ceramide is newly produced at the endoplasmic reticulum (ER), and transported from the ER to the trans Golgi regions, where it is converted to sphingomyelin. CERT mediates the ER-to-Golgi trafficking of ceramide. CERT contains several functional domains and motifs including i) a START domain capable of catalyzing inter-membrane transfer of ceramide, ii) a pleckstrin homology domain, which serves to target the Golgi apparatus, iii) a FFAT motif which interacts with the ER-resident membrane protein VAP, and iv) a serine-repeat motif, of which hyperphosphorylation down-regulates CERT activity. It has been suggested that CERT extracts ceramide from the ER and carries it to the Golgi apparatus in a non-vesicular manner and that efficient CERT-mediated trafficking of ceramide occurs at membrane contact sites between the ER and the Golgi apparatus.  相似文献   

8.
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative lysosomal storage disorders. CLN8 deficiency causes a subtype of NCL, referred to as CLN8 disease. CLN8 is an ER resident protein with unknown function; however, a role in ceramide metabolism has been suggested. In this report, we identified PP2A and its biological inhibitor I2PP2A as interacting proteins of CLN8. PP2A is one of the major serine/threonine phosphatases in cells and governs a wide range of signaling pathways by dephosphorylating critical signaling molecules. We showed that the phosphorylation levels of several substrates of PP2A, namely Akt, S6 kinase, and GSK3β, were decreased in CLN8 disease patient fibroblasts. This reduction can be reversed by inhibiting PP2A phosphatase activity with cantharidin , suggesting a higher PP2A activity in CLN8-deficient cells. Since ceramides are known to bind and influence the activity of PP2A and I2PP2A, we further examined whether ceramide levels in the CLN8-deficient cells were changed. Interestingly, the ceramide levels were reduced by 60% in CLN8 disease patient cells compared to controls. Furthermore, we observed that the conversion of ER-localized NBD-C6-ceramide to glucosylceramide and sphingomyelin in the Golgi apparatus was not affected in CLN8-deficient cells, indicating transport of ceramides from ER to the Golgi apparatus was normal. A model of how CLN8 along with ceramides affects I2PP2A and PP2A binding and activities is proposed.  相似文献   

9.
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large gene family that differentially localize to organellar membranes, reflecting a functional role in sterol signaling and/or transport. OSBP partitions between the endoplasmic reticulum (ER) and Golgi apparatus where it imparts sterol-dependent regulation of ceramide transport and sphingomyelin synthesis. ORP9L also is localized to the ER–Golgi, but its role in secretion and lipid transport is unknown. Here we demonstrate that ORP9L partitioning between the trans-Golgi/trans-Golgi network (TGN), and the ER is mediated by a phosphatidylinositol 4-phosphate (PI-4P)-specific PH domain and VAMP-associated protein (VAP), respectively. In vitro, both OSBP and ORP9L mediated PI-4P–dependent cholesterol transport between liposomes, suggesting their primary in vivo function is sterol transfer between the Golgi and ER. Depletion of ORP9L by RNAi caused Golgi fragmentation, inhibition of vesicular somatitus virus glycoprotein transport from the ER and accumulation of cholesterol in endosomes/lysosomes. Complete cessation of protein transport and cell growth inhibition was achieved by inducible overexpression of ORP9S, a dominant negative variant lacking the PH domain. We conclude that ORP9 maintains the integrity of the early secretory pathway by mediating transport of sterols between the ER and trans-Golgi/TGN.  相似文献   

10.
Sphingosine-1-phosphate (S1P) is the ligand for a family of specific G protein-coupled receptors that regulate a wide variety of cellular functions, including cytoskeletal rearrangements and cell motility. Because of the pivotal role of S1P, its levels are low and tightly regulated in a spatial-temporal manner through its synthesis catalyzed by sphingosine kinases and degradation by an S1P lyase and specific S1P phosphatases (SPP). Surprisingly, down-regulation of SPP-1 enhanced migration toward epidermal growth factor (EGF); conversely, overexpression of SPP-1, which is localized in the endoplasmic reticulum, attenuated migration toward EGF. To determine whether the inhibitory effect on EGF-induced migration was because of decreased S1P or increased ceramide as a consequence of acylation of increased sphingosine by ceramide synthase, we used fumonisin B1, a specific inhibitor of ceramide synthase. Although fumonisin B1 blocked ceramide production and increased sphingosine, it did not reverse the negative effect of SPP-1 expression on EGF- or S1P-induced chemotaxis. EGF activated the epidermal growth factor receptor to the same extent in SPP-1-expressing cells, yet ERK1/2 activation was impaired. In agreement, PD98059, an inhibitor of the ERK-activating enzyme MEK, decreased EGF-stimulated migration. We next examined the possibility that intracellularly generated S1P might be involved in activating a G protein-coupled S1P receptor important for EGF-directed migration. Treatment with pertussis toxin to inactivate Galpha(i) suppressed EGF-induced migration. Moreover, expression of regulator of G protein signaling 3, which inhibits S1P receptor signaling and completely prevented ERK1/2 activation mediated by S1P receptors, not only reduced migration toward S1P but also markedly reduced migration toward EGF. Collectively, these results suggest that metabolism of S1P by SPP-1 is important for EGF-directed cell migration.  相似文献   

11.
De novo biosynthesis of sphingolipids begins in the endoplasmic reticulum (ER) and continues in the Golgi apparatus and plasma membrane. A crucial step in sphingolipid biosynthesis is the transport of ceramide by vesicular and non-vesicular mechanisms from its site of synthesis in the ER to the Golgi apparatus. The recent discovery of the ceramide transport protein CERT has revealed a novel pathway for the delivery of ceramide to the Golgi apparatus for sphingomyelin (SM) synthesis. In addition to a ceramide-binding START domain, CERT has FFAT (referring to two phenylalanines [FF] in an acidic tract) and pleckstrin homology (PH) domains that recognize the ER integral membrane protein VAMP-associated protein (VAP) and Golgi-associated PtdIns 4-phosphate, respectively. Mechanisms for vectorial transport involving dual-organellar targeting and sites of deposition of ceramide in the Golgi apparatus are proposed. Similar Golgi-ER targeting motifs are also present in the oxysterol-binding protein (OSBP), which regulates ceramide transport and SM synthesis in an oxysterol-dependent manner. Consequently, this emerges as a potential mechanism for integration of sphingolipid and cholesterol metabolism. The identification of organellar targeting motifs in other related lipid-binding/transport proteins indicate that concepts learned from the study of ceramide transport can be applied to other lipid transport processes.  相似文献   

12.
Ceramides are central intermediates of sphingolipid metabolism with critical functions in cell organization and survival. They are synthesized on the cytosolic surface of the endoplasmic reticulum (ER) and transported by ceramide transfer protein to the Golgi for conversion to sphingomyelin (SM) by SM synthase SMS1. In this study, we report the identification of an SMS1-related (SMSr) enzyme, which catalyses the synthesis of the SM analogue ceramide phosphoethanolamine (CPE) in the ER lumen. Strikingly, SMSr produces only trace amounts of CPE, i.e., 300-fold less than SMS1-derived SM. Nevertheless, blocking its catalytic activity causes a substantial rise in ER ceramide levels and a structural collapse of the early secretory pathway. We find that the latter phenotype is not caused by depletion of CPE but rather a consequence of ceramide accumulation in the ER. Our results establish SMSr as a key regulator of ceramide homeostasis that seems to operate as a sensor rather than a converter of ceramides in the ER.  相似文献   

13.
Treatment of A549 cells with C(6)-ceramide resulted in a significant increase in the endogenous long chain ceramide levels, which was inhibited by fumonisin B1 (FB1), and not by myriocin (MYR). The biochemical mechanisms of generation of endogenous ceramide were investigated using A549 cells treated with selectively labeled C(6)-ceramides, [sphingosine-3-(3)H]d-erythro-, and N-[N-hexanoyl-1-(14)C]d-erythro-C(6)-ceramide. The results demonstrated that (3)H label was incorporated into newly synthesized long chain ceramides, which was inhibited by FB1 and not by MYR. Interestingly, the (14)C label was not incorporated into long chain ceramides. Taken together, these results show that generation of endogenous ceramide in response to C(6)-ceramide is due to recycling of the sphingosine backbone of C(6)-ceramide via deacylation/reacylation and not due to the elongation of its fatty acid moiety. Moreover, the generation of endogenous long chain ceramide in response to C(6)-ceramide was completely blocked by brefeldin A, which causes Golgi disassembly, suggesting a role for the Golgi in the metabolism of ceramide. In addition, the generation of endogenous ceramide in response to short chain exogenous ceramide was induced by d-erythro- but not l-erythro-C(6)-ceramide, demonstrating the stereospecificity of this process. Interestingly, several key downstream biological activities of ceramide, such as growth inhibition, cell cycle arrest, and modulation of telomerase activity were induced by d-erythro-C(6)-ceramide, and not l-erythro-C(6)-ceramide (and inhibited by FB1) in A549 cells, suggesting a role for endogenous long chain ceramide in the regulation of these responses.  相似文献   

14.
Ceramide 1-phosphate (C1P) has been characterized as a sphingolipid that participates in cell signaling. Although C1P synthesis is thought to occur via phosphorylation of ceramide by ceramide kinase (CerK), the processes that regulate C1P formation and fate remain largely unknown. In this study we analyzed bone marrow-derived macrophages (BMDM) from CerK-null mice (Cerk(-/-)) and found significant levels of C1P, suggesting that previously unrecognized pathways may also lead to C1P formation. After these experiments we used an overexpression system, BMDM from Cerk(-/-) mice, and short-chain fluorescent ceramides to trace CerK-dependent formation of C1P. Because the ceramide analogs can also be converted to glucosylceramide (GlcCer) and sphingomyelin (SM), they allowed us to directly compare all three metabolites. We found that C1P produced by CerK is turned over rapidly when serum is removed or upon calcium chelation, whereas GlcCer and SM are stable under these conditions. We further demonstrated that ceramide must be transported to the Golgi complex to be phosphorylated by CerK. Inhibition of the ceramide transfer protein slowed down SM formation without decreasing C1P, suggesting an alternate route of ceramide transport. Other experiments indicated that, like GlcCer and SM, C1P traffics along the secretory pathway to reach the plasma membrane. Furthermore, in BMDM C1P was secreted more readily than was GlcCer or SM. Altogether, our results indicate that CerK is essential to C1P formation via phosphorylation of Cer, providing the first insights into mechanisms underlying ceramide access to CerK and C1P trafficking as well as clarifying C1P as a signaling entity.  相似文献   

15.
The Golgi complex and ER are dynamically connected by anterograde and retrograde trafficking pathways. To what extent and by what mechanism outward‐bound cargo proteins escape retrograde trafficking has been poorly investigated. Here, we analysed the behaviour of several membrane proteins at the ER/Golgi interface in live cells. When Golgi‐to‐plasma membrane transport was blocked, vesicular stomatitis virus glycoprotein (VSVG), which bears an ER export signal, accumulated in the Golgi, whereas an export signal‐deleted version of VSVG attained a steady state determined by the balance of retrograde and anterograde traffic. A similar behaviour was displayed by EGF receptor and by a model tail‐anchored protein, whose retrograde traffic was slowed by addition of VSVG's export signal. Retrograde trafficking was energy‐ and Rab6‐dependent, and Rab6 inhibition accelerated signal‐deleted VSVG's transport to the cell surface. Our results extend the dynamic bi‐directional relationship between the Golgi and ER to include surface‐directed proteins, uncover an unanticipated role for export signals at the Golgi complex, and identify recycling as a novel factor that regulates cargo transport out of the early secretory pathway.  相似文献   

16.
17.
We visualized a fluorescent-protein (FP) fusion to Rab6, a Golgi-associated GTPase, in conjunction with fluorescent secretory pathway markers. FP-Rab6 defined highly dynamic transport carriers (TCs) translocating from the Golgi to the cell periphery. FP-Rab6 TCs specifically accumulated a retrograde cargo, the wild-type Shiga toxin B-fragment (STB), during STB transport from the Golgi to the endoplasmic reticulum (ER). FP-Rab6 TCs associated intimately with the ER, and STB entered the ER via specialized peripheral regions that accumulated FP-Rab6. Microinjection of antibodies that block coatomer protein I (COPI) function inhibited trafficking of a KDEL-receptor FP-fusion, but not FP-Rab6. Additionally, markers of COPI-dependent recycling were excluded from FP-Rab6/STB TCs. Overexpression of Rab6:GDP (T27N mutant) using T7 vaccinia inhibited toxicity of Shiga holotoxin, but did not alter STB transport to the Golgi or Golgi morphology. Taken together, our results indicate Rab6 regulates a novel Golgi to ER transport pathway.  相似文献   

18.
The bulk flow model of intracellular trafficking predicts that forward transport from the ER through the Golgi to the plasma membrane proceeds by default without a special signal being required (Wieland, F.T., Gleason, M. L., Serafini, T. A., and Rothman, J. E. (1987) Cell 50, 289-300). We tested a crucial prediction of this model, which is that the endogenous lipid components of the transport vesicles would reach the plasma membrane at the rapid rate of bulk flow. The rate at which endogenous glycosphingolipids moved from the ER through the Golgi to the plasma membrane was determined in Chinese hamster ovary cells using metabolic labeling with tritiated palmitate and oxidation of cell surface ganglioside NeuAc alpha 2----3Gal beta 1----4Glc beta 1----4Cer (GM3) with periodate. Whereas radioactive precursor became incorporated into ceramide and glucosyl ceramide without a detectable lag, synthesis of labeled lactosyl ceramide and ganglioside GM3 did not begin until 5-6 min and 11-12 min, respectively, after addition of labeled precursor. Labeled GM3 reached the plasma membrane 5-6 min following its synthesis. Overall, approximately 18 min transpired from the time that the ceramide precursor was synthesized in the ER until labeled GM3 reached the plasma membrane. These results indicate that lipid transport vesicles move rapidly to the plasma membrane at a rate consistent with bulk flow estimates.  相似文献   

19.
Accumulating evidence suggests that glucolipotoxicity, arising from the combined actions of elevated glucose and free fatty acid levels, acts as a key pathogenic component in type II diabetes, contributing to β-cell dysfunction and death. Endoplasmic reticulum (ER) stress is among the molecular pathways and regulators involved in these negative effects, and ceramide accumulation due to glucolipotoxicity can be associated with the induction of ER stress. Increased levels of ceramide in ER may be due to enhanced ceramide biosynthesis and/or decreased ceramide utilization. Here, we studied the effect of glucolipotoxic conditions on ceramide traffic in INS-1 cells in order to gain insights into the molecular mechanism(s) of glucolipotoxicity. We showed that glucolipotoxicity inhibited ceramide utilization for complex sphingolipid biosynthesis, thereby reducing the flow of ceramide from the ER to Golgi. Glucolipotoxicity impaired both vesicular- and CERT-mediated ceramide transport through (1) the decreasing of phospho-Akt levels which in turn possibly inhibits vesicular traffic, and (2) the reducing of the amount of active CERT mainly due to a lower protein levels and increased protein phosphorylation to prevent its localization to the Golgi. In conclusion, our findings provide evidence that glucolipotoxicity-induced ceramide overload in the ER, arising from a defect in ceramide trafficking may be a mechanism that contributes to dysfunction and/or death of β-cells exposed to glucolipotoxicity.  相似文献   

20.
Ceramide produced at the endoplasmic reticulum is transported to the Golgi apparatus for conversion to sphingomyelin. The main pathway of endoplasmic reticulum-to-Golgi transport of ceramide is mediated by CERT, a cytosolic 68-kDa protein, in a nonvesicular manner. CERT contains a domain that catalyzes the intermembrane transfer of natural C(16)-ceramide. In this study, we examined the ligand specificity of CERT in detail by using a cell-free assay system for intermembrane transfer of lipids. CERT did not mediate the transfer of sphingosine or sphingomyelin at all. The activity of CERT to transfer saturated and unsaturated diacylglycerols, which structurally resemble ceramide, was 5-10% of the activity toward C(16)-ceramide. Among four stereoisomers of C(16)-ceramide, CERT specifically recognized the natural d-erythro isomer. CERT efficiently transferred ceramides having C(14), C(16), C(18), and C(20) chains, but not longer acyl chains, and also mediated efficient transfer of C(16)-dihydroceramide and C(16)-phyto-ceramide. Binding assays showed that CERT also recognizes short chain fluorescent analogs of ceramide with a stoichiometry of 1:1. Moreover, (1R,3R)-N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecamide, which inhibited the CERT-dependent pathway of ceramide trafficking in intact cells, was found to be an antagonist of the CERT protein. These results indicate that CERT can mediate transfer of various types of ceramides that naturally exist and their close relatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号